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1 Introduction

Let (M,g) be a compact Riemannian manifold of dimension n≥3 . For a fixed point p in
M, we define a function ρp on M as follows

ρp(x)=

{
distg(p,x), x∈B(p,δg),
δg, x∈M\B(p,δg),

(1.1)

where δg denotes the injectivity radius of M.
Let h and f be two regular functions on M. Consider on M\{p} the following Hardy-

Sobolev equation:

∆gu− h(x)
ρ2

p(x)
u= f (x)|u|2∗−2u, (E f ,h)

where ∆gu =−div(∇gu) is the Laplace-Beltrami operator and 2∗ = 2n
n−2 is the Sobolev

critical exponent.
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As one may notice, when dropping the singular term 1
ρ2

p(x) from equation (E f ,h) and

putting h= n−2
4(n−1)Scalg, where Scalg is the scalar curvature of (M,g), one falls in the cele-

brated prescribed scalar curvature equation whose origin comes from the study of confor-
mal deformation of the metric to prescribed scalar curvature. A smooth positive solution
u of the prescribed scalar curvature equation provides a conformal metric g′=u

4
n−2 g with

scalar curvature the function f ; when f is constant we fall n the famous Yamabe equa-
tion. The prescribed scalar curvature equation is largely studied and lot of results have
been obtained. For those interested, good comprehensive references may be the books [1]
and [2]. Equation (E f ,h) can be, then, seen as a singular prescribed scalar curvature equa-
tion.

The case where the function ρp, in equation (E f ,h), is of power 0<γ<2 and f ≡1, has
been studied in [3] and is related to the study of conformal deformation to constant scalar
curvature of metrics which are smooth only in some geodesic ball B(p,δ) (see [3,4]). Note
that the author in [3, 4] considers also equation (E f ,h), with f ≡1, and shows existence of
a solution on compact manifolds.

In this paper, we are interested in proving the existence of multiple solutions of equa-
tion (E f ,h). The tool used is a classical theorem from critical point theory (see Theo-
rem 4.2 below). Note that the main difficulty in applying this theorem lies in satisfy-
ing the compactness assumption under which the critical points exist. This difficulty is
due mainly to the presence of Sobolev exponent and Hardy potential. More explicitly,
presence of Sobolev exponent and Hardy potential renders non-compact the inclusions
H2

1(M)⊂L2∗ M and H2
1(M)⊂L(M,ρ−2

p ) (see Section 2 for definition of the notation). This
leads us to analyze compactness of Palais-Smale sequences which can be done by means
of of a Struwe type decomposition formulas of Palais-Smale sequences.

2 Notation, useful results and statement of the main result

In this section, we introduce some notation and results that are useful in our study.
We denote by D1,2(Rn),(n≥3), the Euclidean Sobolev space which is the closure space

of Co(Rn), the space of functions u with compact support in Rn, with respect to the norm

||u||D1,2(Rn)=

√∫
Rn

|∇u|2dx.

Let K(n,2) denote the best constant in the sharp Euclidean Sobolev inequality(∫
Rn

|u|2∗dx
) 1

2∗

≤K(n,2)
(∫

Rn
|∇u|2

) 1
2

.

The explicit value of K(n,2) has been obtained in [5] and [6] (see also [2, Theorem 5.3.1])

K(n,2)=

√
4

n(n−2)w2/n
n

,
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where wn is the volume of the unit sphere Sn ⊂Rn+1. It is well known that the extremal
functions for the above Euclidean sobolev inequality are the family of functions

wξ(x)=(n(n−2))
n−2

4

(
ξ

ξ2+|x|2

) n−2
2

, ξ>0, (2.1)

which classify all positive solutions of the Euclidean equation (see [7])

∆u=u2∗−1. (2.2)

Let (M,g) be a compact Riemannian manifold. Denote by B(q,r) the geodesic ball of
center q∈M and radius r and by B(r)⊂Rn the Euclidean ball of center 0 and radius r.

Let q∈ M. Denote by expq the exponential map at q which, for 0< r < δg, where δg

stands for the injectivity radius of (M,g), defines a diffeomorphism from B(r) to B(q,r).
Let H2

1(M) be the Sobolev space defined as the completion of C∞(M) with respect to
the norm

||u||2H2
1 (M)=

∫
M
(|∇gu|2+u2)dvg.

The manifold M is compact, the Sobolev space H2
1(M) is then compactly embedded in

Lq(M) for q<2∗= 2n
n−2 and continuously for q=2∗.

It is known that for any u ∈ H2
1(M), there exists a constant B > 0 such that(see [8,

Theorem 4.6]) (∫
M
|u|2∗

) 2
2∗

≤K2(n,2)
∫

M
|∇gu|2dvg+B

∫
M

u2dvg. (2.3)

Let ρp be the function defined by (1.1) and denote by L2(M,ρ−2
p ) the weighted space

of functions u such that u2

ρ2
p

is integrable. It is a Banach space endowed with norm

∥u∥2
2,ρ−2

p
=
∫

M

|u|2
ρ2

p
dvg.

In [3], the author proved the following Hardy inequality: let (M,g) be a compact
Riemannian manifold, for every ε> 0 there exists a positive constant A(ε) such that for
any u∈H2

1(M),

∫
M

u2

ρ2
p

dvg ≤ (K2(n,−2)+ε)
∫

M
|∇gu|2dvg+A(ε)

∫
M

u2dvg, (2.4)

with K(n,−2) being the best constant in the Euclidean Hardy inequality

∫
Rn

u2

|x|2 dx≤K(n,−2)2
∫

Rn
|∇u|2dx, u∈C∞

0 (Rn).
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The constant K(n,−2) is equal to 2
n−2 and is not attained.

If u is supported in some ball B(p,δ), 0< δ< δg, then there exists a positive constant
Kδ(n,−2) ∫

B(p,δ)

u2

ρ2
p

dvg ≤Kδ(n,−2)
∫

B(p,δ)
|∇gu|2dvg, (2.5)

with Kδ(n,−2) goes to K(n,−2) as δ goes to 0.
On the Euclidean space Rn, the author in [9] considered the equation

∆u− λ

|x|2 u= |u| 4
n−2 u, λ>0, (2.6)

and proved that for 0 < λ < (n−2)2

4 = 1
K2(n,−2) , Eq. (2.6) has a one parameter family of

radially symmetric positive solutions

Uλ,w(x)=w
2−n

2 Uλ

( x
w

)
, w>0, x∈Rn, (2.7)

where

Uλ(x)=(n(n−2))
n−2

4

(
aλ |x|aλ−1

1+|x|2aλ

) n
2 −1

, x∈Rn,

where aλ =
√

1−λK2(n,−2). Note that for λ= 0, we meet the functions wξ defined by
(2.1). Furthermore, if we denote by Sλ the infimum

Sλ = inf
u∈D1,2,u ̸=0

∫
Rn

(
|∇u|2−λ

u2

|x|2

)
dx(∫

Rn
|u|2∗dx

) 2
2∗

,

then the functions defined by (2.7) are extremal for this infimum. That is

Sλ =

∫
Rn

(
|∇wλ,ξ |2−λ

w2
λ,ξ

|x|2

)
dx

(∫
Rn

|wλ,ξ |2
∗
dx
) 2

2∗
. (2.8)

Moreover, it follows from [9] that

Sλ =
(1−λK2(n,−2))

n−1
n

K2(n,2)
. (2.9)
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Let h and f be smooth functions on M such that f is positive everywhere on M and
1−h(p)K(n,−2)2>0. Denote by D∗ the constant

D∗=
(Sh(p))

n
2

n( f (p))
n−2

2
=

(1−h(p)K2(n,−2))
n−1

2

n( f (p))
n−2

2 Kn(n,2)
. (2.10)

A weak solution of (E f ,h) is a function u∈H2
1(M) such that∫

M

(
g(∇gu,∇gv)− h

ρ2
p

uv

)
dvg−

∫
M

f (x)|u|2∗−2uvdvg =0, ∀ v∈H2
1(M).

Weak solutions of (E f ,h) are in C∞(M\{p}). In fact, let u∈ H2
1(M) be any weak solution

of (E f ,h). for ε>0 small, put Nε =M\B(p,ε) and consider the problem
∆gv− h(x)

(ρp(x))2 v= f (x)|v|2
∗−2 v, x∈Nε,

v|∂B(p,ε)=u|∂B(p,ε),
v∈H2

1(Nε).

(2.11)

Since u is weak solution of the above problem, then by [2, Lemma 6.2.9], u ∈ C∞(Nε).
Since ε are arbitrary, we get that u∈C∞(M\{p}).

Let J f ,h denote the energy functional defined on H2
1(M) by

J f ,h(u)=
1
2

∫
M

(
|∇gu|2− h

ρ2
p

u2

)
dvg−

1
2∗

∫
M

f (x)|u|2∗dvg. (2.12)

The functional J f ,h is a C2 functional on H2
1(M). Its Fréchet derivative is given by

(DJ f ,h)(u)·v=
∫

M

(
g(∇gu,∇gv)− h

ρ2
p

uv

)
dvg−

∫
M

f (x)|u|2∗−2uvdvg.

A critical point of the functional J f ,h is a function u ∈ H2
1(M) such that (DJ f ,h)(u)·v =

0,∀v∈H2
1(M). Weak solutions of equation (E f ,h) then coincide with critical points of the

functional J f ,h. Now, put

µ= inf
u∈H2

1 (M),u ̸=0

∫
M

(
|∇gu|2− h

ρ2
p

u2

)
dvg(∫

M
f (x)|u|2∗dvg

) 2
2∗

.

Denote by Eh the functional

Eh(u)=
∫

M

(
|∇gu|2− h

ρ2
p

u2

)
dvg. (2.13)
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The functional Eh(u) is said to be coercive if there exists a positive constant λ> 0 such
that Eh(u)≥λ∥u∥2

H2
1 (M)

. If Eh(u) is coercive, by Sobolev inequality (2.3) and positivity of
the function f , we get µ>0.

In [3], the authors showed, by the classical variational method, the existence of weak
solution of (E f ,h), with f ≡1, under the condition

µ<
1−h(p)K2(n,−2)

K2(n,2)
=(1−h(p)K2(n,−2))

1
n (nD∗)

2
n .

In Proposition 4.1 below, we extend this existence result to equation (E f ,h) and we prove
the existence of a weak solution under the condition

µ<

(
1−h(p)K2(n,−2)

) n−1
n

( f (p))
n−2

n K2(n,2)
=(nD∗)

2
n .

Now, for further use, we recall the notion of Lusternik-Schnirelmann category. For
more details, the reader may consult, for example, the book [10].

Let X and Y be two topological spaces. The Lusternik-Schnirelmann category CatY(X)
of a X with respect to Y with X⊂Y is the least integer k≤∞ such that there exists an open
covering of Ui of X with each Ui is contractible in Y. If X=Y, we put CatX(X)=Cat(X).

In this paper, we prove the following main result

Theorem 2.1. Let (M,g) be a compact Riemannian manifold of dimension n. Let f and h be two
smooth functions on M such that f is positive everywhere on M and the function h is such that
the operator Eh, defined by (2.13), is coercive. Suppose that the following conditions are satisfied

(a) h(p)>0, 1−h(p) 4
(n−2)2 >0,

(b) n=dim(M)>2+ 2
a , a=

√
1−h(p) 4

(n−2)2 ,

(c) Scalg(p)>0, (∆gh)(p)− 1
3 h(p)Scalg(p)>0,

(d) supx∈M f (x)= f (p), (∆g f )(p)− 1
3 f (p)Scalg(p)>0.

Then, equation (E f ,h) admits at least Cat(M) weak solutions u with 0< J f ,h(u)<D∗ and at least
one weak solution u with J f ,h(u)>D∗.

3 Compactness of Palais-Smale sequences

Consider again the energy function J f ,h (defined in (2.12))

J f ,h(u)=
1
2

∫
M

(
|∇gu|2− h

ρ2
p

u2

)
dvg−

1
2∗

∫
M

f (x)|u|2∗dvg, u∈H2
1(M).
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A Palais-Smale sequence um (P-S in short) of J f ,h at a level d is a sequence that satisfies
J f ,h(um)→d and DJ f ,h(um)φ→0,∀φ∈H2

1(M).
The functional J f ,h is said to satisfy P-S condition at level d if each P-S sequence at

level d is relatively compact. Let us introduce on D1,2(Rn) the functionals

J(u)=
1
2

∫
Rn

|∇u|2dx− 1
2∗

∫
Rn

|u|2∗dx, and

J∞(u)=
1
2

(∫
Rn

|∇u|2dx−h(p)
∫

Rn

u2

|x|2 dx
)
− f (p)

2∗

∫
Rn

|u|2∗dx. (3.1)

Let 0< r< δg
2 be a constant and denote by ηr a cut-off function on Rn such that

0≤ηr ≤1, ηr =1 on B(r) and η=0 on Rn\B(2r). (3.2)

We state a theorem which is similar to Theorem 3.1 in [11]. This theorem describes the
asymptotic behaviour of P-S sequences of the functional J f ,h.

Theorem 3.1. Let (M,g) be a compact Riemannian manifold with dim(M)=n≥3. Consider on
M the distance function ρp defined by (1.1) and let h be a continuous function on M that at the
point p∈M, it satisfies 0<h(p)< 1

K(n,−2)2 .
Let um be a P-S sequence of the functional J f ,h at level d. Then, there exist k∈N, sequences

Ri
m>0,Ri

m →
m→∞

0, ℓ∈N sequences τ
j
m>0,τ j

m →
m→∞

0, converging sequences xj
m→xj

o ̸= p in M, a

solution u∈H2
1(M) of (E f ,h), solutions vi ∈D1,2(Rn) of

∆u− h(p)
|x|2 u= f (p)|u|2∗−2u, x∈Rn, (3.3)

and nontrivial solutions νj ∈D1,2(Rn) of (2.2) such that up to a subsequence

um =u+
k

∑
i=1

(Ri
m)

2−n
2 ηr(exp−1

p (x))vi((Ri
m)

−1exp−1
p (x))

+
ℓ

∑
j=1

(τi
m)

2−n
2 ηr(exp−1

xj
m
(x))( f (xj

o))
2−n

4 νj((τ
j
m)

−1exp−1
xj

m
(x))+Wm, (3.4)

with Wm →0 in H1
2(M), and

J f ,h(um)= J f ,h(u)+
k

∑
i=1

J∞(vi)+
ℓ

∑
j=1

( f (xj
o))

2−n
2 J(νj)+o(1). (3.5)

Proof. The proof is identical to the proof of Theorem 3.1 in [11].

A direct consequence of the above theorem is the following corollaries.
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Corollary 3.1. Suppose that supx∈M f (x)= f (p). Let um be a P-S sequence of J f ,h at a level d.
Then, if 0< d< D∗, the sequence um converges, up to a subsequence, strongly in H2

1(M), to a
non-trivial critical point of J f ,h.

Proof. By the above theorem, there exists a critical point u of J f ,h, a sequence of solutions
vi of (2.6) and sequence of non trivial solutions νj of (2.2) such that up to a subsequence,
equalities (3.4) and (3.5) hold.

Suppose that u≡ 0. Since every solution v of (3.3) satisfies J∞(v)≥D∗ and for every
solution ν of (2.6) satisfies J(ν)≥ 1

(supx∈M f (x))
n−2

2 Kn(n,2)
, we get by (3.5) that

J f ,h(um)≥min

(
1

(supx∈M f (x))
n−2

2 Kn(n,2)
,D∗

)
=D∗,

which is a contradiction.

Corollary 3.2. Let um be a P-S sequence of J f ,h at level D∗. Then, up to a subsequence, either um
converges strongly to a nontrivial critical point u of J f ,h, or there exists a sequence of functions
wm ∈H2

1(M) such that wm →0 strongly in H2
1(M) and

um =wm+
(

f (p)
2−n

4

)
ϕp,Rm ,

where ϕp,Rm is the function

ϕp,Rm =(n(n−2))
n−2

4

(
aRa

m
(
dg(p,x)

)a−1

R2a
m +

(
dg(p,x)

)2a

) n
2 −1

,

with a=
√

1−h(p)K2(n,−2) and dg(p,x) the distance from p to x.

Proof. By (3.5), we can have

D∗= J f ,h(u)+ J∞(v)+o(1),

with v a solution of (3.3). Then, either u ̸=0 and v=0, or u=0 and

um =wm+(Rm)
2−n

2 ηr(exp−1
p (x))v((Rm)

−1exp−1
p (x))

with v a positive solution of (3.3). As the solution v can be written as v(x)=( f (p))
2−n

4 ϑ(x),
such that ϑ is positive solution of (2.6) with λ=h(p), we get

um =wm+(Rm)
2−n

2 ( f (p))
2−n

4 ηr(exp−1
p (x))ϑ((Rm)

−1exp−1
p (x))

=wm+( f (p))
2−n

4 ηr(exp−1
p (x))Uh(p),Rm(exp−1

p (x)),

where Uh(p),Rm is defined by (2.7). Then,

um =wm+( f (p))
2−n

4 ϕp,Rm .
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4 Construction of solutions

In this section, we construct weak solutions of (E f ,h) as critical points of the functional
J f ,h. Let us cnsider the Nehari manifold N f ,h associated to the functional J f ,h

N f ,h ={u∈H2
1(M)\{0}, DJ f ,h(u)·u=0}. (4.1)

It is easy to see that this manifold defines a natural constraint set for the functional J f ,h in
the sense that a P-S sequence of J f ,h on N f ,h is also a P-S of J f ,h on H2

1(M). Moreover, if h is
such that

∫
M(|∇gu|2− h

ρ2
p
u2)dvg>0 for all u∈H2

1(M)\{0}, then we have supt>0(tu)= tou
with

to =


∫

M

(
|∇gu|2− h

ρ2
p

u2

)
dvg(∫

M
|u|2∗dvg

) 2
2∗


n−2

4

,

and tou∈N f ,h. Consider the projection Φ : H2
1(M)\{0}−→N f ,h defined by

Φ(u)=


∫

M

(
|∇gu|2− h

ρ2
p

u2

)
dvg(∫

M
|u|2∗dvg

) 2
2∗


n−2

4

u. (4.2)

We have the following existence result

Proposition 4.1. Let f and h two smooth functions on M such that f is positive everywhere on
M. Under the following conditions

1. The functional Eh(u)=
∫

M

(
|∇gu|2− h

ρ2
p
u2
)

dvg is coercive,

2. h(p)>0, 1−h(p)K2(n,−2)>0,

3. supx∈M f (x)= f (p),

4. µ< (nD∗)
2
n ,

there exists a non trivial critical point of J f ,h.

Proof. Put d= infN f ,h J f ,h. By applying the Ekeland variational principle, we can obtain a
P-S sequence on N f ,h at level d which is also a P-S sequence um on H2

1(M). It is clear that



10 Y. Maliki and F. Z. Terki/ J. Partial Diff. Eq., 37 (2024), pp. 1-24

d≥ 1
n µ

n
2 >0. Let u∈H2

1(M)\{0}, then by homogeneity of

Ih(u)=

∫
M

(
|∇gu|2− h

ρ2
p

u2

)
dvg(∫

M
f |u|2∗dvg

) 2
2∗

,

since Φ(u)∈N f ,h, where Φ(u) is defined by (4.2), we get that

Ih(u)= Ih(Φ(u))=(nJ f ,h(Φ(u)))
2
n ≥ (nd)

2
n .

Thus we get that µ≥(nd)
2
n and hence d= 1

n µ
n
2 which means that, under the last condition

of the corollary, that d < D∗. Hence the sequence um converges, up to a subsequence,
strongly in H2

1(M) to a non trivial critical point of J f ,h.

In searching other critical points of the functional J f ,h, we apply the following classical
theorem (see for example [10, 12]).

Theorem 4.1. Let J be C1 real functional defined on a C1,1 Banach manifold N. For c∈R, put
Jc ={ u∈N : J(u)< c}. If J is bounded from below on N and satisfies the P-S condition, then it
has at least Cat(Jc) critical points in Jc.

Moreover, if N is contractible and Cat(Jc)>1 then there exists at least one critical point u/∈ Jc.

The main difficulty in applying Theorem 4.1 above is that the P-S condition for the
functional J f ,h is not satisfied for any energy level because of the presence of the critical
exponent 2∗ and the critical singular term. We construct a subset of the manifold N f ,h on
which the P-S condition is satisfied and then apply Theorem 4.1 on this subset to obtain
critical pints of the functional J f ,h.

In the following part, we combine ideas from [13] and [14]. First, by the well-known
Nash embedding theorem, without loss of generality, we can assume that the Riemannian
manifold M is embedded in some Euclidean space RN .

Let Mr be the set
Mr ={x∈RN : d(x,M)< r}.

Define the radius of the topological invariance rM of M by

rM =sup{r>0 : Cat(Mr)=Cat(M)}.

Let Σε be the subset of N f ,h defined by

Σε ={u∈N f ,h : s.t. D∗−g(ε)< J f ,h(u)<D∗, for some g(ε)>0, with g(ε)→0 as ε→0}.

By Corollary 3.3, the P-S condition is satisfied in the set Σε. To prove the main theorem,
we construct two continuous maps Iε : M→Σε and β :Σε→MrM such that the composition
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βoIε is homotopic to the identity. This leads, by the Lusternik-Schnirelmann properties
(see [10] for example) that Cat(Σε)≥Cat(M). Thus, by applying Theorem 4.1 on the set
Σε, we obtain at least Cat(M) critical points of the functional J f ,h in Σε.

Finally, we end the proof of the main theorem by proving the existence of another
critical point u /∈Σε. This can be done by constructing a set Pε that contains Iε(M) and is
contractible in N f ,h∩ JCε for Cε such that 0<Cε <D∗.

First, we have to prove that the set Σε is not empty. This is achieved in Lemma 4.1
below.

Let 0< δ<
δg
2 be a constant and let φ be a smooth cut-off function defined on R such

that 0≤ φ<1, φ≡1 on (−δ,δ) and φ≡0 on R\(−2δ,2δ).
For a given ε∈ (0,1) let us consider on M the functions

ϕε(x)=C(n,a)φ(ρp(x))
(

εa

((ρp(x))1−a(ε2a+(ρp(x))2a)

) n−2
2

,

where

C(n,a)=(a2n(n−2))
n−2

4 , and a=
√

1−h(p)K(n,−2)2 with 0<h(p)<
1

K(n,−2)2 . (4.3)

By [15, Lemma 3], for each ε ∈ (0,1), the function ϕε(x) belongs to the Sobolev space
H2

1(M). We prove the following

Lemma 4.1. Suppose that

(a) n=dim(M)>2+
2
a

, a=
√

1−h(p)K(n,−2)2,

(b) Scalg(p)>0, (∆gh)(p)− 1
3 h(p)Scalg(p)>0,

(c) f (p)=supx∈M f (x), (∆g f )(p)− 1
3 f (p)Scalg(p)>0.

Then, there exists a function g(ε)>0 with g(ε)→0 as ε→0 such that for ε small

D∗−g(ε)< J f ,h(Φ(ϕε))<D∗. (4.4)

Proof. Put

Ian+1
n =

∫ ∞

o

tan+1

(1+t2a)n dt,

and

U(x)=C(n,a)
(

|x|a−1

1+|x|2a

) n−2
2

, x∈Rn, (4.5)

where a and c(n,a) are defined by (4.3).
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By [15, Lemma 4], for n> 2
a +2, we have the following expansions

∫
M
|∇gϕε|2dvg =

∫
Rn

|∇U|2dx− 1
6n

Scalg(p)C1(n,a)Ian+1
n ε2+o(ε2), (4.6)

with

C1(n,a)=
(n−2

2

)2
C(n,a)2wn−1

[
(1−a)2 an−2

a(n−2)+2
+2(1−a2)

+(1+a)2 an+2
a(n−2)−2

]
, (4.7)∫

M

h(x)(
ρp(x)

)2 ϕ2
ε dvg =h(p)

∫
RN

U2

|x|2 dx+C2(n,a)Ian+1
n

·
(

1
2n

(∆gh)(p)− 1
6n

h(p)Scalg(p)
)

ε2+o(ε2), (4.8)

with

C2(n,a)=C(n,a)2wn−1

(
2+

an−2
a(n−2)+2

+
an+2

a(n−2)−2

)
, (4.9)∫

M
f |ϕε|2

∗
dvg = f (p)

∫
Rn

|U(x)|2∗dx+C(n,a)2∗wn−1

·
(

1
2n

(∆g f )(p)− 1
6n

f (p)Scalg(p)
)

Ian+1
n ε2+o(ε2), (4.10)

and

(∫
M

f |ϕε|2
∗
dvg

)− 2
2∗

=

(
f (p)

∫
Rn

|U(x)|2∗dx
)− 2

2∗

1− C(n,a)wn−1

2∗n f (p)
∫

Rn
|U(x)|2∗dx

·
(
(∆g f )(p)− 1

3
f (p)Scalg(p)

)
Ian+1
n ε2

]
+o(ε2). (4.11)

Now, put

A=

[
C2(n,a)

(
1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)
+

1
6n

Scalg(p)C1(n,a)
]

Ian+1
n ,

B=
C(n,a)wn−1

2∗n
(

f (p)
∫

Rn
|U(x)|2∗dx

) 2
2∗ +1

[
(∆g f )(p)− 1

3
f (p)Scalg(p)

]
Ian+1
n .
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By assumptions of the Lemma, we have A>0 and B>0. Put

E(ϕε)=

∫
M

(
|∇gϕε|2−

h(x)
(ρp(x))2 ϕ2

ε

)
dvg(∫

M
f |ϕε|2

∗
dvg

) 2
2∗

. (4.12)

Using the expansions (4.6), (4.8) and (4.11), we get

E(ϕε)=

∫
Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx(∫

Rn
f (p)|U|2∗dx

) 2
2∗

−
[

B
∫

Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx

+
A(∫

Rn
f (p)|U|2∗dx

) 2
2∗

]
ε2+ABε4+o(ε4). (4.13)

Now, using the fact that∫
Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx(∫

Rn
f (p)|U|2∗dx

) 2
2∗

=
(1−h(p)K2(n,2,−2))

n−1
n

( f (p))
n−2

n K2(n,2)
=(nD∗)

2
n . (4.14)

Since A>0 and B>0, by taking

K(ε)=

B
∫

Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx+

A(∫
Rn

f (p)|U|2∗dx
) 2

2∗

ε2>0, (4.15)

and by writing

(
nJ f ,h(Φ(ϕε))

) 2
n =

∫
M

(
|∇gϕε|2−

h(x)
(ρp(x))2 ϕ2

ε

)
dvg(∫

M
f |ϕε|2

∗
dvg

) 2
2∗

,

we get that for ε small

(nD∗)
2
n −K(ε)<

(
nJ f ,h(Φ(ϕε))

) 2
n < (nD∗)

2
n .
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Now, by (4.15), we have(
(nD∗)

2
n −K(ε)

) n
2
=nD∗− n

2
(nD∗)

n−2
n K(ε)+o(K(ε))

=nD∗− n
2
(nD∗)

n−2
n

[
B
∫

Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx

+
A(∫

Rn
f (p)|U|2∗dx

) 2
2∗

]
ε2+o(ε2).

Finally, by taking

g(ε)=
n
2
(nD∗)

n−2
n

B
∫

Rn

(
|∇U|2−h(p)

U2

|x|2

)
dx+

A(∫
Rn

f (p)|U|2∗dx
) 2

2∗

ε2

+o(ε2), (4.16)

we get the desired conclusion.

4.1 The map Iε

In this subsection, we construct a continuous map Iε : M→Σε. For a fixed point q∈M, we
put rq(x)=distg(q,x), x∈M and let ϕq,ξ be the function

ϕq,ξ(x)=C(n,a)φ(rq(x))

(
ξarq(x)a−1

ξ2a+rq(x)2a

) n
2 −1

, ξ>0, (4.17)

where a and c(n,a) are defined by (4.3). For ε∈ (0,1), define a function Iε : M→N f ,h by

Iε(q)=Φ((1−ε2)ϕp,ε+ε2ϕq,ε).

Let us prove the following lemmas

Lemma 4.2. The function Iε : M→N f ,h is continuous.

Proof. By continuity of the projection Φ : H2
1(M)(u)\{0}→N f ,h, in order to prove the

continuity of the function Iε(q), we need to prove the continuity of the function ϕq,ε with
respect to q. We proceed as in the proof of [13, Proposition 4.2]. Let qj be a sequence of
points of M that converges to q and prove that

ϕqj,ε →ϕq,ε in H2
1(M) as qj →q.
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Put Aj =B(qj,2δ)∩B(q,2δ). Since qj → q there exist jo such that Aj ̸=∅ for all j≥ jo. Then,
for qj close to q we have∫

Aj

|ϕqj,ε(x)−ϕq,ε(x)|2dvg

=
∫

exp−1
q (Aj)

|(ϕqj,ε−ϕq,ε)(expq(z))|
2
√
|gexp(z)|dz

=C(n,a)2

[∫
exp−1

q (Aj)
ηq,δ(expq(z))

2|(Uqj −Uq)(expq(z))|
2
√
|gexp(z)|dz

+
∫

exp−1
q (Aj)

U2
qj
(expq(z))|ηq,δ(expq(z))−ηqj,δ(expq(z))|

2
√
|gexp(z)|dz

+2
∫

exp−1
q (Aj)

ηq,δUqj,ε|(ηq,δ−ηqj,δ)(expq(z))||(Uqj −Uq)(expq(z))|
2
√
|gexp(z)|dz

]
,

where

Uq,ε(x)=

(
εarq(x)a−1

ε2a+rq(x)2a

) n
2 −1

, q∈M.

Using the fact that Uqj →Uq and ηqj,ε → ηq,ε pointwise together with the boundedness of∫
exp−1

q (Aj)
U2

qj
(expq(z))

√
|gexp(z)|dz, we get that∫

Aj

|ϕqj,ε(x)−ϕq,ε(x)|2dvg →0.

Of course, outside the set Aj,
∫

M\Aj
|ϕqj,ε(x)−ϕq,ε(x)|2dvg→0. Similarly, the same conclu-

sion holds for
∫

M |∇gϕqj,ε(x)−∇gϕq,ε(x)|2dvg.

Lemma 4.3. Suppose that

(a) n=dim(M)>2+
2
a

, a=
√

1−h(p)K(n,−2)2,

(b) Scalg(p)>0, (∆gh)(p)− 1
3

h(p)Scalg(p)≥0,

(c) f (p)=supx∈M f (x), (∆g f )(p)− 1
3 f (p)Scalg(p)≥0.

Then, Iε(q)∈Σε for all q∈M.

Proof. First, if q= p, we have Iε(p)=Φ(ϕp,ε) and the conclusion follows from Lemma 4.1.
If q ̸= p, let δ>0 be small enough so that B(q,2δ)∩B(p,2δ)=∅. In this way, the functions
ϕp,ε and ϕq,ε are of disjoint supports. Put

I
(
(1−ε2)ϕp,ε+ε2ϕq,ε

)
(4.18)
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=
∫

M

(
|∇g((1−ε2)ϕp,ε+ε2ϕq,ε))|2−

h
r2

p
((1−ε2)ϕp,ε+ε2ϕq,ε)

2

)
dvg.

Then, we have

I
(
(1−ε2)ϕp,ε+ε2ϕq,ε

)
=(1−ε2)2

∫
M

(
|∇gϕp,ε|2−

h
r2

p
ϕp,ε

)
dvg+ε4

∫
M

(
|∇gϕq,ε|2−

h
r2

p
ϕq,ε

)
dvg.

We point out that by considering a normal geodesic coordinate system around the point
q and following the proof of [15, Lemma 4] the expansion (4.6) remains the same for the
point q, i.e.∫

M
|∇gϕq,ε|2dvg =

∫
Rn

|∇U|2dx− 1
6n

Scalg(q)C1(n,a)Ia(n−2)+1
n ε2+o(ε2),

with c1(n,a) is defined by (4.7). Then,

ε4
∫

M
|∇gϕq,ε|2dvg = ε4

∫
Rn

|∇U|2dx+o(ε4).

Moreover, always by considering a normal geodesic coordinate system around the point
q, we have∫

M

h(x)
r2

p
ϕ2

q,εdvg =C(n,a)2wn−1
h(q)

(rp(q))2 ε2
∫ ∞

0

ta(n−2)+1

(1+t2a)n−2 dt+O(εa(n−2)),

with wn−1 is the volume of the unit sphere Sn−1⊂Rn. Since a(n−2)>2, we get that

ε4
∫

M

h(x)
r2

p
ϕ2

q,εdvg = o(ε4).

Hence, we obtain

I
(
(1−ε2)ϕp,ε+ε2ϕq,ε)

)
(4.19)

=(1−ε2)2
∫

M

(
|∇gϕp,ε|2−

h
r2

p
ϕ2

p,ε

)
dvg+ε4

∫
Rn

|∇U|2dx+o(ε4).

On the other hand, since the functions ϕp,ε and ϕq,ε are of disjoint supports, we have(∫
M

f |(1−ε2)ϕp,ε+ε2ϕq,ε|2
∗
dvg

)− 2
2∗

=

(
(1−ε2)2∗

∫
M

f |ϕp,ε|2
∗
dvg +ε2×2∗

∫
M

f |ϕq,ε|2
∗
dvg

)− 2
2∗

.
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Here again, by considering a normal geodesic coordinate system around q, we get (see
[15, Lemma 4])∫

M
f |ϕq,ε|2

∗
dvg = f (q)

∫
Rn

|U(x)|2∗dx+C(n,a)2∗wn−1

(
1

2n
(∆g f )(q)− 1

6n
f (q)Scalg(q)

)
· Ian+1

n ε2+o(ε2). (4.20)

Then, since 2∗>2, we get that

ε2×2∗
∫

M
f |ϕq,ε|2

∗
dvg = o(ε4).

We get then(∫
M

f |(1−ε2)ϕp,ε+ε2ϕq,ε|2
∗
dvg

)− 2
2∗

=(1−ε2)−2
(∫

M
f |ϕp,ε|2

∗
dvg

)− 2
2∗

+o(ε4). (4.21)

Thus, by (4.18), (4.19) and (4.21), we get

(
nJ f ,h(Iε)

) 2
n =

∫
M

(
|∇gϕp,ε|2−

h(x)
(ρp(x))2 ϕ2

p,ε

)
dvg(∫

M
f |ϕp,ε|2

∗
dvg

) 2
2∗

+

∫
Rn

|∇U|2dx(
f (q)

∫
Rn

|U|2∗dx
) 2

2∗
ε4+o(ε4).

Hence, by (4.12), (4.13) and (4.14), we get

(
nJ f ,h(Iε)

) 2
n =(nD∗)

2
n −K(ε)+

AB+

∫
Rn

|∇U|2dx(
f (q)

∫
Rn

|U|2∗dx
) 2

2∗

ε4+o(ε4),

with K(ε) is defined by (4.15). Hence, we conclude that Iε ∈Σε as in Lemma 4.1.

4.2 The map β : Σε→MRM .

In this subsection, we construct a map β : Σε → MRM . For this aim, we introduce the
barycenter function β :N f ,h →Rn defined by

β(u)=

∫
M
(x+q−p) f |u|2∗dvg∫

M
f |u|2∗dvg

.

The function β is well defined as u ̸=0 for all u∈N f ,h and the manifold M is embedded in
some Euclidean space RN . We prove some properties of the function β through a series
of lemmas:
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Lemma 4.4. We have
lim
ε→0

β(Iε(q))=q.

Proof. We begin with case q= p. By homogeneity of the function β, we have

β(Iε(p))=β(ϕp,ε)=

∫
M

x f |ϕp,ε|2
∗
dvg∫

M
f |ϕp,ε|2

∗
dvg

.

Then

|β(Iε(p))−p|=

∣∣∣∣∣∣∣
∫

M
x f |ϕp,ε|2

∗
dvg∫

M
f |ϕp,ε|2

∗
dvg

−

∫
M

p f |ϕp,ε|2
∗
dvg∫

M
f |ϕp,ε|2

∗
dvg

∣∣∣∣∣∣∣≤
∫

M
|x−p| f |ϕp,ε|2

∗
dvg∫

M
f |ϕp,ε|2

∗
dvg

.

For the numerator, we have

∫
M
|x−p| f (x)|ϕp,ε|2

∗
dvg =C(n,a)

∫
M

φ(rp(x))rp(x) f (x)

(
εarp(x)a−1

ε2a+rp(x)2a

) n
2 −1

dvg.

We repeat the same calculation as in Lemma 4.3, we get∫
M
|x−p| f (x)|ϕp,ε|2

∗
dvg =ε f (p)

∫
Rn

|U|2∗dx+
(

1
2n

(∆g f )(p)− 1
6n

f (p)Scalg(p)
)

·(C(n,a))2∗wn−1 Ian+1
n ε3+o(ε3). (4.22)

For the dominator, we have already∫
M

f |ϕp,ε|2
∗
dvg = f (p)

∫
Rn

|U|2∗dx+
(

1
2n

(∆g f )(p)− 1
6n

f (p)Scalg(p)
)

·(C(n,a))2∗wn−1 Ian+1
n ε2+o(ε2).

By letting ε→0, we get that limε→0 β(Iε(p))= p.
Now, for q ̸= p, we choose δ small enough so that B(q,2δ)∩B(p,2δ)=∅ in such way

that the functions ϕp,ε and ϕq,ε have disjoint supports. Then, similarly as above, we have

|β(Iε(q))−q|≤

∫
M
|x−p| f (x)|(1−ε2)ϕp,ε+ε2ϕq,ε|2

∗
dvg∫

M
f (x)|(1−ε2)ϕp,ε+ε2ϕq,ε|2

∗
dvg

.

Since the functions ϕp,ε and ϕq,ε have disjoint supports, we have∫
M
|x−p| f (x)|(1−ε2)ϕp,ε+ε2ϕq,ε|2

∗
dvg
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=(1−ε2)2∗
∫

M
|x−p| f (x)|ϕ2∗

p,ε|dvg+ε2×2∗
∫

M
|x−p| f (x)|ϕq,ε|2

∗
dvg

≤(1−ε2)2∗
∫

M
|x−p| f (x)|ϕ2∗

p,ε|dvg+ε2×2∗
∫

M
|x−q| f (x)|ϕq,ε|2

∗
dvg

+ε2×2∗ |q−p|
∫

M
f (x)|ϕq,ε|2

∗
dvg. (4.23)

By (4.20), (4.22) and the expansion∫
M
|x−q| f (x)|ϕq,ε|2

∗
dvg =ε f (q)

∫
Rn

|U|2∗dx+
(

1
2n

(∆g f )(q)− 1
6n

f (p)Scalg(q)
)

·(C(n,a))2∗wn−1 Ian+1
n ε3+o(ε3),

the three terms of right-hand side of inequality (4.23) tend to zero as ε goes to zero.
Besides, by (4.10), (4.11) and (4.21), we have∫

M
f (x)|(1−ε2)ϕp,ε+ε2ϕq,ε|2

∗
dvg → f (p)

∫
Rn

|U|2∗dx as ε→0.

Therefore, we get

|β(Iε(q))−q|→0 as ε→0.

Lemma 4.5. For any γ∈ (0,1) and for every uε ∈Σε, we have∫
B(p, rM

2 )
f |uε|2

∗
dvg > (1−γ)( f (p))

2−n
2 (Sh(p))

n
2 ,

where Sh(p) is defined by (2.9) with λ=h(p).

Proof. Suppose by contradiction that there exist γo ∈ (0,1) , a sequence εm → 0 as m→∞
and a sequence um =uεm ∈Σεm such that∫

B(p, rM
2 )

f |um|2
∗
dvg ≤ (1−γo)( f (p))

2−n
2 (Sh(p))

n
2 . (4.24)

By proceeding as in [13, Lemma 5.4], we can assume that DN f ,h J f ,h(um)→ 0 as m → ∞.
Since D∗−g(εm)< J f ,h(um)<D∗, for some g(εm)>0 and g(εm)→0 as m→∞ and since the
manifold N f ,h defines a natural constraint for the functional J f ,h (see [10]), we can assume
that um is a P-S sequence of J f ,h at level D∗. Thus by Corollary 3.2, up to a subsequence,
either um converges strongly in H2

1(M) to nontrivial critical point u of J f ,h, or there exists
a sequence of reals Rm→0 as m→∞ and a sequence wm∈H2

1(M) that converges strongly
to 0 in H2

1(M) such that
um =( f (p))

2−n
4 ϕp,Rm +wm. (4.25)
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Suppose that um converges strongly in H2
1(M), up to a subsequence, to a nontrivial criti-

cal point u∈H2
1(M) of J f ,h. Then, u satisfies

∫
M f |u|2∗dvg =nD∗ and∫

B(p, rM
2 )

f |u|2∗dvg ≤ (1−γ0)( f (p))
2−n

2 (Sh(p))
n
2 . (4.26)

Let δ>0 be a constant and define functions wm : Rn −→R

vm(x)=(εm)
n−2

2 ηδ(εmx)u(expp(εmx)),

where ηδ is defined in (3.2).
It is known, see [1, Theorem 1.53] (see also the proof of [1, Lemma 2.24]), that in the

normal geodesic coordinates (B(p,δ),exp−1
p ), for every ε∈ (0,1), we can have

(1−ε)ndx≤dvg ≤ (1+ε)ndx.

We proceed as in the proof of [11, Lemma 3.3] (see also the proof of [13, Lemma 5.7]) to
show that (DJ∞)(vm)φ→0, ∀φ∈D1,2(Rn) as m→∞. Then,

J∞(vm)=
f (p)

n

∫
Rn

|vm|2
∗
dx+o(1)≥D∗=

( f (p))
2−n

2 (Sh(p))
n
2

n
, (4.27)

where J∞ is defined by (3.1).
On the other hand, by continuity of f on p and by (4.26), for m large, we have∫

B(0,δ)
f (p)|vm|2

∗
dx=

∫
B(0,εmδ)

f (p)|ηδ(x)u(expp(x))|2∗dx

≤ 1
(1−ε)n

∫
B(p,εmδ)

f (x)|u|2∗dvg+
ε

(1−ε)n

∫
B(p,εmδ)

|u|2∗dvg

≤ (1−γo)nD∗

(1−ε)n +
ε

(1−ε)n

∫
B(p,εmδ)

|u|2∗dvg.

Then, we can easily see that for ε small, there exists a small positive constant ηε such that
ηε <γo and ∫

B(0,δ)
f (p)|vm|2

∗
dx≤ (1−(γo−ηε))nD∗+o(1),

so that, by (4.27), we get the contradiction.
Now, suppose that up to a subsequence, um is such that (4.25) is satisfied. By using

the inequality

(a+b)2∗ ≥ a2∗+b2∗+2∗a2∗−1b+2∗ab2∗−1, a≥0, b≥0,

and by using the fact that wm →0 strongly in H2
1(M) together with (4.24), we obtain∫

B(p, rM
2 )

f |ϕp,Rm |2
∗
dvg ≤ (1−γo) f (p)(Sh(p))

n
2 +o(1). (4.28)
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Put ε∗m =Rm →0 as m→∞. Thus, by using the expansion (4.11), we have∫
M

f |ϕp,ε∗m |
2∗dvg = f (p)

∫
Rn

|U|2∗dx−(C(n,a))2∗wn−1 Ian+1
n

·
(

1
2n

(∆g f )(p)− 1
6n

f (p)Scalg(p)
)
(ε∗m)

2+o((ε∗m)
2).

As the function U is a positive solution of (2.6) with λ=h(p), we get∫
M

f |ϕp,ε∗m |
2∗dvg = f (p)(Sh(p))

n
2 +o(εm).

Recall that the function ϕp,ε∗m is supported in B(p,2δ), then by choosing δ small (so that
δ< rM

2 ), we obtain by (4.28)

f (p)(Sh(p))
n
2 +o(εm)≤ (1−γ0) f (p)(Sh(p))

n
2 +o(1).

Hence, by letting m→∞, we get the contradiction

f (p)(Sh(p))
n
2 ≤ (1−γ0) f (p)(Sh(p))

n
2 .

Lemma 4.6. For ϵ small, β(uε)∈MrM for all uε ∈Σε.

Proof. Let uε ∈Σε, by Lemma 4.5, we get that for any γ∈ (0,1)∫
B(p, rM

2 )
f |uε|2

∗
dvg∫

M
f |uε|2

∗
dvg

>
(1−γ)( f (p))

2−n
2 (Sh(p))

n
2

nD∗ =(1−γ). (4.29)

Recall that
MrM ={x∈Rn : d(x,M)< rM}.

By (4.29), we obtain

|β(u)−p|=

∣∣∣∣∣∣∣
∫

M
(x−p) f |uε|2

∗
dvg∫

M
f |uε|2

∗
dvg

∣∣∣∣∣∣∣
≤

∫
B(p, rM

2 )
|x−p| f |uε|2

∗
dvg∫

M
f |uε|2

∗
dvg

+

∫
M\B(p, rM

2 )
|x−p| f |uε|2

∗
dvg∫

M
f |uε|2

∗
dvg

≤ rM

2
+Diam(M)

1−

∫
B(p, rM

2 )
f |uε|2

∗
dvg∫

M
f |uε|2

∗
dvg
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≤ rM

2
+Diam(M)γ,

where Diam(M) is the diameter of M. Thus, by choosing γ small, we get the conclusion.

5 Proof of the main result

Proof. By Lemmas 4.3 and 4.6 the maps Iε : M → Σε and β : σε → MrM are well defined.
Moreover, by Lemma 4.4 the composition β◦Iε:M→MrM is well defined and is homotopic
to the identity. Thus, by the properties of Lusternik-Schnirelmann category, Cat(Σε)≥
Cat(M). Since the Palais-Smale conditions are satisfied in the set Σε, by Theorem 4.1
there are at least cat(M) critical points of the functional J f ,h.

It remains, to achieve the proof of the theorem, to prove that there exists another
critical point u with J f ,h(u)>D∗. For this task, following [13], we construct a set Pε which
is contractible in N f ,h∩ Jc

f ,h.
Put φε =(1−ε2)ϕp,ε+ε2ϕq,ε and define the set

Ωε,t ={(1−t)φε+tε6ϕp, 1
ε
, t∈ [0,1]}.

Consider Pε,t, the projection of Ωε on the Nehari manifold N f ,h

Pε,t ={Φ(ωε,t), ωε,t ∈Ωε}.

We notice immediately that Iε(M)⊂Pε,t and Pε,t is contractible in H2
1(M). Put

cε = sup
t∈[0,1]

J f ,h(Φ(ωε,t)).

We show that 0< cε <D∗. We have already, by Lemma 4.3, that cε ≥ J f ,h(Φ(φε,t))>0.
Let ωε,t ∈Ωε. Then, we have∫

M
|∇gωε,t|2dvg =(1−t)2

∫
M
|∇g φε|2dvg+t2ε12

∫
M
|∇gϕp, 1

ε
|2dvg

+2t(1−t)ε6
∫

M
g(∇g φε,∇gϕp, 1

ε
)dvg.

By (4.6), we have∫
M
|∇gϕp, 1

ε
|2dvg =

∫
Rn

|∇U|2dx− 1
6n

Scalg(p)C1(n,a)Ian+1
n

(
1
ε2

)
+o
(

1
ε2

)
.

Then,

ε12
∫

M
|∇gϕp, 1

ε
|2dvg =− 1

6n
Scalg(p)C1(n,a)Ian+1

n ε10+o(ε10)= o(ε8),
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and

ε6
∣∣∣∣∫M

g(∇g φε,∇gϕ 1
ε
)dvg

∣∣∣∣≤∫M
|∇g φε|·|∇gϕ 1

ε
|dvg

≤
(∫

M
|∇g φε|2dvg

) 1
2
(

ε12
∫

M
|∇gϕ 1

ε
|2dvg

) 1
2

= o(ε4).

Then, we get ∫
M
|∇gωε,t|2dvg =(1−t)2

∫
M
|∇g φε|2dvg+o(ε4). (5.1)

Similarly, we get ∫
M

h
ρ2

p
w2

ε,tdvg =(1−t)2
∫

M

h
ρ2

p
φ2

ε dvg+o(ε4).

Besides, ∫
M

f |ωε,t|2
∗
dvg =

∫
M

f |(1−t)φε+tε6ϕp, 1
ε
|2∗dvg

≥(1−t)2∗
∫

M
f |φε|2

∗
dvg+t2∗ε6×2∗

∫
M

f |ϕp, 1
ε
|2∗dvg.

As before, by (4.10) we have∫
M

f |ϕp, 1
ε
|2∗dvg = f (p)

∫
Rn

|U(x)|2∗dx

+C(n,a)2∗wn−1

(
1

2n
(∆g f )(p)− 1

6n
f (p)Scalg(p)

)
Ian+1
n

1
ε2 +o

(
1
ε2

)
.

Then, we can easily see that

ε6×2∗
∫

M
f |ϕp, 1

ε
|2∗dvg = o(ε4).

Then ∫
M

f |ωε,t|2
∗
dvg =

∫
M

f |(1−t)φε+tε6ϕp, 1
ε
|2∗dvg ≥ (1−t)2∗

∫
M

f |φε|2
∗
dvg+o(ε4).

Hence, we get

(
nJ f ,h(Φ(ωε,t))

) 2
n =

∫
M
|∇gωε,t|2dvg−

∫
M

h
ρ2

p
ω2

ε,tdvg(∫
M

f |ωε,t|2
∗
dvg

) 2∗
2
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≤

∫
M
|∇g φε|2dvg−

∫
M

h
ρ2

p
φ2

ε dvg+o(ε4)

(∫
M

f |φε|2
∗
dvg

) 2∗
2

+o(ε4)

.

Then, the conclusion J f ,h(Φ(ωε,t)<D∗ follows as in Lemma 4.3 and thus 0< cε <D∗.
Now, since Cat(Σε)≥Cat(M)> 1 and the (P-S) condition, with levels in the interval

]0,D∗[, is satisfied (see Corollary 3.3), by Theorem 4.1 there exists another critical point u
of J f ,h with D∗< J f ,h(u) and the proof is complete.
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