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Abstract. The viability of the conformable stochastic differential equations is studied.
Some necessary and sufficient conditions in terms of the distance function to K are
given. In addition, when the boundary of K is sufficiently smooth, our necessary and
sufficient conditions can reduce to two relations just on the boundary of K. Lastly, an
example is given to illustrate our main results.
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1 Introduction

Fractional derivative is as old as calculus. It is the natural generalization of the ordinary
calculus involving derivatives and integrals of noninteger order. For the last few decades,
fractional calculus has attracted much attention due to its powerful and widely used tool
for better modelling and control of processes in various fields of science, physics, finance,
engineering and optimal problem, see [1–3]. Nowadays, there are several definitions
of fractional derivatives and integrals such as Riemann-Liouville, Grunwald-Letnikov,
Caputo, Weyl [4, 5], Caputo-Fabrizio [6] and Atangana-Baleanu [7]. The most popular
definitions are the Riemann-Liouville and Caputo definitions. All definitions of fractional
derivatives satisfy the property of linearity. However, almost all fractional derivatives
lack the properties of the product rule, quotient rule, chain rule, Rolle¡¯s theorem, mean
value theorem and composition rule and so on. Due to the special characteristics of the
fractional derivative, the compatibility of the stochastic integral and fractional integral
encounters many difficulties and limitations.
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To avoid these difficulties, conformable fractional derivative was proposed in Khalil
et al. [8]. It has attracted the interest of researchers, as it seems to satisfy all the require-
ments of the standard derivative. Also, the computing using this new derivative is much
easier than using other definitions of fractional derivative. Therefore, there is a large
number of works carried out using this new definition and its generalization. The de-
tails of the basic theory are reported in [9, 10] and the application are reported in [11, 12].
The conformable stochastic differential equations were proposed in [13]. It generalized
the classical stochastic differential equation and improved the fractional stochastic dif-
ferential equation. And since the conformable fractional derivative has no special non-
local characteristic for the fractional derivative, we can directly express the solution of
the equation and calculate the numerical solution, and estimate the error of the asymp-
totic solution. The Itô formula was established and the existence, uniqueness, continuous
dependence and the stability of solutions to the conformable stochastic differential equa-
tions were studied in [13,14]. Existence and Stability of Solutions to Neutral Conformable
Stochastic Functional Differential Equations were studied in [15].

Given a closed convex set K ⊂ Rn and a family X of n-dimensional stochastic pro-
cesses, one is often interested in the viability of the set K with respect to the family X,
that is, for each starting point x ∈ K the process stays in K. Viability of stochastic sys-
tems is an important tool and method to study the comparison theorem and attractor of
solutions of stochastic systems. It has important applications in the study of asymptotic
stability of stochastic differential equations and synchronous control of systems. The first
stochastic viability results can be found in Friedman [16] and Doss [17]. Since then, the
viability of the classical stochastic differential equation has been studied extensively. One
can refer to the results in [18–32], etc. Up to now, to the best of the author’s knowledge,
the viability of the conformable stochastic differential equations has not been studied in
the literature.

In this paper, we will consider the viability of the following conformable stochastic
differential equations

Dα
ρ X(t)=b(X(t),t)+σ(X(t),t)

dW(t)
dt

, ρ∈ (0,1], t∈ [α,∞),

X(α)=Xα,
(1.1)

where Dα
ρ is conformable derivative, b : Rn×[α,α+h]→Rn, and σ : Rn×[α,α+h]→Rm×n,

W(t) is a standard Wiener process on a complete filtered probability space (Ω,F ,{Ft}t≥0,
P).

The rest of this paper is organized as follows. In Section 2, we introduce some neces-
sary notations and preliminaries. In Section 3, we devote to discussing the necessary and
sufficient conditions of the viability of Eq. (1.1), and give some remarks and corollaries.
An example is given to illustrate our main results in the final Section.
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2 Preliminary

In this section we explain the general notation, introduce some definitions and lemmas
that appear in this paper.

Let Rn be the n-dimensional Euclidean space and |·| be the Euclidean norm. B is
the closed unit ball in Rn. Consider an open subset S ⊂ Rn and a finite-dimensional
space H and denote by C2,1(S,H) the set of functions from S into H that are continuously
differentiable up to order 2 and such that the 2th derivatives are Hölder continuous with
exponent 1, by C1,1

loc(S,H) the set of continuously differential functions from S into H
whose derivative is locally Lipschitiz on S. L2

n[α,α+h] is the space of n-dimensional 2th
integrable functions defined on [α,α+h]. Let m and n be positive integers and denote by
Mn×m the space of n×m matrices A equipped with the trace norm ∥A∥=

√
trace(AA∗),

where A∗ is the transpose of the matrix A.
Let K be a closed convex subset of Rn, ∂K its boundary, K̊ its interior and Kc its com-

plement. Define dK(x) :=mink∈K |x−k| the distance from x∈Rn to K, and PK(x) denotes
the projection of x onto K, i.e., dK(x) = |x−PK(x)|. Furthermore dK(x) and PK(x) are
continuous. Consider the square of the distance φ(x) := d2

K(x). It is well known (see,
e.g., [33]) that φ(x) is C1 and

φ′(x)=2(x−PK(x)), ∀x∈Rn.

Furthermore x→x−PK(x) is 1-Lipschitz and for each x∈Rn, where P′
K(x) exists, we have

φ′′(x)=2(Id−P′
K(x)). (2.1)

Moreover,
|φ′′(x)|≤2. (2.2)

Consequently, dK = φ
1
2 ∈C1,1

loc(K
c,R) and for all x /∈∂K we have

d′K(x)=
x−PK(x)
|x−PK(x)| . (2.3)

Definition 2.1 (Viability). A closed convex set K ⊂Rn is said to be viable with respect to the
conformable stochastic differential equation (1.1) if, for each ξ ∈K, there exists at least a solution
of the conformable stochastic differential equation (1.1) such that X(α)= ξ, we have X(t)∈K for
all t≥α, almost surely.

Definition 2.2 ([9]). The conformable derivative with low index ρ of a function f : [α,∞)→R is
defined as

Dα
ρ f (x)= lim

ε→0

f (x+ε(x−α)1−ρ)− f (x)
ε

, x>α, 0<ρ≤1.

Remark 2.1. Fix 0<ρ≤1 and x>α. A function f : [α,∞)→R has a conformable derivative
Dα

ρ f (x) if and only if it is differentiable at x and Dα
ρ f (x) = (x−α)1−ρ f

′
(x) holds. Obvi-

ously, Dα
1 f (x)= f

′
(x).
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Definition 2.3 ([13]). We say that an Rn-valued stochastic process X(·) is a solution of (1.1), if
X(·) is continuous and Ft-adapted and

X(t)=Xα+
∫ t

α
b(X(s),s)(s−α)ρ−1ds+

∫ t

α
σ(X(s),s)(s−α)ρ−1dW(s), t∈ [α,α+h]. (2.4)

Next, we introduce the Itô’s formula of the conformable version, which is the basic
result for discussing conformable stochastic differential equations.

Theorem 2.1 ([13]). Let 0<h<∞, X(t), t∈ [α,α+h], h>0 be an Itô process for

Dα
ρ X(t)= f (t)+g(t)

dW(t)
dt

, ρ∈ (0,1],

Y(·) :=Y(X(·),·)∈C2,1(Rn×[α,α+h],Rn). Then, Y(t), t∈ [α,α+h] is an Itô process given by

dY(t)=
∂Y(X(t),t)

∂t
dt+

∂Y(X(t),t)
∂X

f (t)(t−α)ρ−1dt+
∂Y(X(t),t)

∂X
g(t)(t−α)ρ−1dW(t)

+
1
2

∂Y2(X(t),t)
∂X2 g2(t)(t−α)2ρ−2dt.

3 Stochastic viability

In this section, we state and prove our main results. We first introduce the following
assumptions.

(H1) For all t∈ [α,α+h], X,Y∈Rn, there exists a constant L>0 such that the functions b
and σ satisfy

|b(X,t)−b(Y,t)|≤L|X−Y|, |σ(X,t)−σ(Y,t)|≤L|X−Y|.

(H2) For all t∈ [α,α+h], X∈Rn, there exists a constant L>0 such that the functions b and
σ satisfy

|b(X,t)|≤L|1+X|, |σ(X,t)|≤L|1+X|.

(H3) E(|Xα|2)<+∞ and Xα is independent of W+(0).

Theorem 3.1 ([13], Theorem 4.3). Suppose that (H1), (H2) and (H3) hold. Then Eq. (1.1) has
a unique solution X(·) :=X(Xα,·)∈L2

n[α,α+h] provided that ρ∈( 1
2 ,1] and the solution X(Xα,·)

depends continuously on Xα.

Next, we discuss the viability of Eq. (1.1). We denote by L the differential operator
associated to b, σ and defined on the set of functions V :Rn →R by

LV(x) :=V ′(x)b(x,t)(t−α)ρ−1+
1
2

Tr[σ(x,t)σ∗(x,t)V ′′(x)(t−α)2ρ−2].
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We also introduce the differential operator LK on C1,1
loc(K

c,R) by: for every V∈C1,1
loc

(Kc,R) and all x∈Kc, where the second derivative V ′′(x) does exist,

LKV(x) :=V ′(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)V ′′(x)(t−α)2ρ−2].

So, setting V(x)= φ(x)=d2
K(x) and taking into account that

V ′(x)=2dK(x)d′K(x), V ′′(x)=2dK(x)d′′K(x)+2d′K(x)⊗d′K(x),

it results that if φ is twice differential at x, then

LK φ(x)=φ′(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)φ′′(x)(t−α)2ρ−2]

=2dK(x)d′K(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)(2dK(x)d′′K(x)

+2d′K(x)⊗d′K(x))(t−α)2ρ−2]

=2dK(x)LKdK(x)+|σ∗(PK(x),t)d′K(x)(t−α)ρ−1|2. (3.1)

Theorem 3.2. A closed convex set K is viable for Eq. (1.1) if and only if for a.e. x ∈ Kc the
following conditions hold

σ∗(PK(x),t)d′K(x)=0, LKdK(x)≤0. (3.2)

Proof. We prove the necessity first. Give a useful inequality,

dK(x−PK(x)+y)≤dK(x), ∀x∈Kc, ∀y∈K, (3.3)

which is derived as follows:

dK(x−PK(x)+y)=min
z∈K

|x−PK(x)+y−z|≤ |x−PK(x)|=dK(x).

For all x∈Kc, let us consider now a weak solution to Eq. (1.1) starting at PK(x), and
let X(PK(x),t) be its continuous version. Then for all t≥α, X(PK(x),t)∈K a.s. and owing
to (3.3)

φ(x+X(PK(x),t)−PK(x))≤|x−PK(x)|2= φ(x), a.s..

Now, by Itô’s formula of the conformable version we have for any t≥α,

dφ(x+X(PK(x),t)−PK(x))= φ′(x+X(PK(x),t)−PK(x))dX(PK(x),t)

+
1
2

Tr[σ(X(PK(x),t),t)σ∗(X(PK(x),t),t)φ′′(x+X(PK(x),t)−PK(x))(t−α)2ρ−2]dt

=φ′(x+X(PK(x),t)−PK(x))b(X(PK(x),t),t)(t−α)ρ−1dt

+φ′(x+X(PK(x),t)−PK(x))σ(X(PK(x),t),t)(t−α)ρ−1dW(t)

+
1
2

Tr[σ(X(PK(x),t),t)σ∗(X(PK(x),t),t)φ′′(x+X(PK(x),t)−PK(x))(t−α)2ρ−2]dt.
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Hence, integrating between α and t, we can obtain

φ(x+X(PK(x),t)−PK(x))−φ(x)

=
∫ t

α
{φ′(x+X(PK(x),s)−PK(x))b(X(PK(x),s),s)(s−α)ρ−1

+
1
2

Tr[σ(X(PK(x),s),s)σ∗(X(PK(x),s),s)φ′′(x+X(PK(x),s)−PK(x))(s−α)2ρ−2]}ds

+
∫ t

α
φ′(x+X(PK(x),s)−PK(x))σ(X(PK(x),s),s)(s−α)ρ−1dW(s)

≤0.

Taking expectation, we can get

E[φ(x+X(PK(x),t)−PK(x))−φ(x)]

=E
[∫ t

α
{φ′(x+X(PK(x),s)−PK(x))b(X(PK(x),s),s)(s−α)ρ−1

+
1
2

Tr[σ(X(PK(x),s),s)σ∗(X(PK(x),s),s)φ′′(x+X(PK(x),s)−PK(x))(s−α)2ρ−2]}ds
]

≤0.

Consequently,

1
t−α

E
[∫ t

α
{φ′(x+X(PK(x),s)−PK(x))b(X(PK(x),s),s)(s−α)ρ−1

+
1
2

Tr[σ(X(PK(x),s),s)σ∗(X(PK(x),s),s)φ′′(x+X(PK(x),s)−PK(x))(s−α)2ρ−2]}ds
]

≤0,

which, letting t→ α, yields LK φ(x)≤ 0. Since d′K(x) is normal to K at PK(x), by [24] we
know that σ∗(PK(x),t)d′K(x)=0. Therefore, by (3.1), we can get

LK φ(x)=2dK(x)LKdK(x)+|σ∗(PK(x),t)d′K(x))(t−α)ρ−1|2=2dK(x)LKdK(x)≤0.

Since for all x∈Kc, dK(x)>0. The necessity of (3.2) follows.
We prove the sufficiency secondly. Let us consider the following conformable stochas-

tic differential equationDα
ρ X(t)=b(PK(X(t)),t)+σ(PK(X(t)),t)

dW(t)
dt

, ρ∈ (0,1], t∈ [α,∞),

X(α)=Xα ∈K.
(3.4)

Notice that K is viable for Eq. (1.1) if and only if it is viable for Eq. (3.4). So, we can
consider Eq. (3.4) from now on and denote its generic solution by X(Xα,t).
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Let x∈K, we consider a solution X(x,t) of Eq. (3.4) starting at x, let τK be the first exit
time of X(x,t) from K, i.e. τK := inf{t≥α : X(x,t) ̸∈K}.

Applying Itô’s formula of the conformable version with the stopping time, for every
t≥α, we get

φ(X(x,t∧τK))

=
∫ t∧τK

α
{φ′(X(x,s))b(PK(X(x,s)),s)(s−α)ρ−1

+
1
2

Tr[σ(PK(X(x,s)),s)σ∗(PK(X(x,s)),s)φ′′(X(x,s))(s−α)2ρ−2]}ds

+
∫ t∧τK

α
φ′(X(x,s))σ(PK(X(x,s)),s)(s−α)ρ−1dW(s)

=
∫ t∧τK

α
LK φ(X(x,s))ds+

∫ t∧τK

α
φ′(X(x,s))σ(PK(X(x,s)),s)(s−α)ρ−1dW(s)

=
∫ t

α
XτK≥sLK φ(X(x,s))ds+

∫ t

α
XτK≥s φ′(X(x,s))σ(PK(X(x,s)),s)(s−α)ρ−1dW(s).

Hence, taking expectation, according (3.1) and (3.2), for every t≥α, we can get

E[φ(X(x,t∧τK))]=E
[∫ t

α
XτK≥sLK φ(X(x,s))ds

]
≤0.

This implies X(x,t∧τK)∈K a.s. for every t≥α, so that

P(τK <∞)= lim
i→∞

P(τK ≤ i)=0,

so, τK →∞ a.s. and therefore X(x,t)∈K a.s.. The proof is complete.

Remark 3.1. The condition in the Theorem 3.2,

LKdK(x)=d′K(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)]d′′K(x)(t−α)2ρ−2.

While, in the Theorem 2.2 of [24],

LKdK(x)=d′K(x)b(PK(x),t)+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)]d′′K(x).

For ρ=1, the Theorem 3.2 reduces to the Theorem 2.2 in [24]. So our Theorem 3.2 gener-
alizes the Theorem 2.2 in [24].

Obviously, the viability conditions of Theorem 3.2 can be localized.

Theorem 3.3. The closed convex set K is viable for the Eq. (1.1) if and only if for some ε>0 and
almost all x∈ (K+εB)\K the conditions (3.2) hold.
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Actually, when the boundary of K is sufficiently smooth, we can characterize viability
imposing a simpler set of conditions just on ∂K. Recall that the oriented distance d̄ to the
boundary ∂K of K is defined by

d̄(x) :=dK(x)−dRn\K̊(x), ∀x∈Rn.

Theorem 3.4. Assume that for some ε>0, d̄∈C2 on ∂K+εB. Then K is viable for Eq. (1.1) if
and only if for all x∈∂K,

σ∗(x,t)d̄′(x)=0, LK d̄(x)≤0. (3.5)

Proof. Assume conditions (3.2) hold, i.e., ∀y∈Kc,

σ∗(PK(y),t)d′K(y)=0, LKdK(y)≤0.

Notice that ∀y∈Kc, d̄(y)=dK(y), we can get

σ∗(PK(y),t)d̄′(y)=0, LK d̄(y)≤0.

For ∀x∈∂K, letting y converge to x, we can obtain

σ∗(x,t)d̄′(x)=0

and

LKdK(y)=d′K(y)b(PK(y),t)(t−α)ρ−1+
1
2

Tr[σ(PK(y),t)σ∗(PK(y),t)d′′K(y)](t−α)2ρ−2

converges to

d̄′(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)d̄′′(x)](t−α)2ρ−2=LK d̄(x).

So,
LK d̄(x)≤0.

To prove (3.5) imply (3.2) on ∂K+εB, we first show that for all y∈∂K+εB, d̄′(PK(y))=
d′K(y) and d̄′′(PK(y))≥d′′K(y) hold. Which were proved in [24]. We notice in [25] that for
all y∈∂K+εB, σ∗(PK(y),t)d̄′(y)=0 holds. Then

LK φ(y)

=φ′(y)b(PK(y),t)(t−α)ρ−1+
1
2

Tr[σ(PK(y),t)σ∗(PK(y),t)φ′′(y)(t−α)2ρ−2]

=2dK(y)d′K(y)b(PK(y),t)(t−α)ρ−1+
1
2

Tr[σ(PK(y),t)σ∗(PK(y),t)d′′K(y)(t−α)2ρ−2]

≤2dK(y)d̄′(PK(y))b(PK(y),t)(t−α)ρ−1+
1
2

Tr[σ(PK(y),t)σ∗(PK(y),t)d̄′′(PK(y))(t−α)2ρ−2]

=2dK(y)LK d̄(PK(y))≤0.
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By [25] we know that σ∗(PK(y),t)d′K(y)=0. Therefore, by (3.1), we can get

LK φ(y)=2dK(y)LKdK(y).

So, LKdK(y)≤0. We obtain (3.2).

Remark 3.2. The condition in the Theorem 3.4,

LK d̄(x)= d̄′(x)b(PK(x),t)(t−α)ρ−1+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)d̄′′(x)](t−α)2ρ−2.

While, in the Theorem 2.8 of [24],

LK d̄(x)= d̄′(x)b(PK(x),t)+
1
2

Tr[σ(PK(x),t)σ∗(PK(x),t)d̄′′(x)].

For ρ=1, the Theorem 3.4 reduces to the Theorem 2.8 in [24]. So our Theorem 3.4 gener-
alizes the Theorem 2.8 in [24].

4 Example

In this section, we give an example to illustrate our main results.

Example 4.1. Let K :={z∈Rn : |z|≤R}. Consider the necessary and sufficient conditions
on the viability of K under Eq. (1.1).

Let KC :={z∈Rn : |z|>R}. For x∈KC, we have PK(x)=R x
|x| and P′

K(x)= R
|x| Id− R

|x|3 (x⊗
x), then

dK(x)= |x−PK(x)|=
∣∣∣x−R

x
|x|

∣∣∣= |x|−R,

d′K(x)=
x
|x| , d′′K(x)=

Id
|x| −

1
|x|3 (x⊗x).

For all x∈KC,

σ∗(PK(x),t)d′K(x)=σ∗
(

R
x
|x| ,t

)
x
|x| =0,

i.e.,

σ∗
(

R
x
|x| ,t

)
x=0, (4.1)

and

LKdK(x)=b
(Rx
|x| ,t

) x
|x| (t−α)ρ−1+

1
2

Tr
[
σ
(Rx
|x| ,t

)
σ∗

(Rx
|x| ,t

)( Id
|x| −

x⊗x
|x|3

)]
(t−α)2ρ−2≤0.

i.e.,

b
(Rx
|x| ,t

)
x+

1
2

Tr
[
σ
(Rx
|x| ,t

)
σ∗

(Rx
|x| ,t

)]
(t−α)ρ−1≤0. (4.2)
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So, the necessary and sufficient conditions on the viability of K under Eq. (1.1) be-
come: (4.1) and (4.2) hold for all x∈KC.

Letting x converge to y=R x
|x| , from (4.1) and (4.2) we can obtain that: for all y∈∂KC,

σ∗(y,t)y=0, (4.3)

b
(

y,t
)

y+
1
2

Tr
[
σ
(

y,t
)

σ∗
(

y,t
)]

(t−α)ρ−1≤0. (4.4)

Conversely, if (4.3) and (4.4) hold, then for any x∈KC, x= |x|
R R x

|x| =
|x|
R y, where we

have set y=R x
|x| , and therefore

b
(Rx
|x| ,t

)
x+

1
2
|x|
R

Tr
[
σ
(Rx
|x| ,t

)
σ∗

(Rx
|x| ,t

)]
(t−α)ρ−1≤0.

Since Tr
[
σ
(

R x
|x| ,t

)
σ∗

(
R x

|x| ,t
)]

≥0 and |x|>R, for all x∈KC, we can get

|x|
R

Tr
[
σ
(

R
x
|x| ,t

)
σ∗

(
R

x
|x| ,t

)]
≥Tr

[
σ
(

R
x
|x| ,t

)
σ∗

(
R

x
|x| ,t

)]
.

So, (4.3) and (4.4) are equivalent to (4.1) and (4.2).
So, the necessary and sufficient conditions on the viability of K under Eq. (1.1) are also

equivalent to: (4.3) and (4.4) hold for all y∈ ∂KC. Notice that these conditions concern
only the boundary of K.
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