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Abstract. A class of multidomain hybrid methods of direct discontinuous Galerkin

(DDG) methods and central difference (CD) schemes for the viscous terms is pro-

posed in this paper. Both conservative and nonconservative coupling modes are dis-
cussed. To treat the shock wave, the nonconservative coupling mode automatically

switch to conservative coupling mode to preserve the conservative property when

discontinuities pass through the artificial interface. To maintain the accuracy of the
hybrid methods, the Lagrange interpolation polynomials and their derivatives are

reconstructed to handle the coupling cells in the DDG subdomain, while the values
of ghost points for the CD subdomain are calculated by the approximate polynomials

from the DDG methods. The linear stabilities of these methods are demonstrated in

detail through von-Neumann analysis. The multidomain hybrid DDG and CD meth-
ods are then extended to one- and two-dimensional hyperbolic-parabolic equations.

Numerical results validate that the multidomain hybrid methods are high-order ac-

curate in the smooth regions, robust for viscous shock simulations and capable to
save computational cost.
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1. Introduction

To accurately predict the engineering problems and fundamental flow physics, high-

order methods, such as discontinuous Galerkin methods (DG) [9–13,26] and weighted

essentially non-oscillatory schemes (WENO) [19, 20, 31, 33, 34, 38, 48], have attracted

more interest recently with the lower numerical dissipation. Except for those methods,
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high-order hybrid methods have been developed to combine the advantages of each

individual method.

Luo et al. [24] presented a reconstruction-based discontinuous Galerkin (RDG

(P1P2)) method, where the quadratic polynomial solution (P2) is obtained from the un-

derlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares

method. Zhang et al. [42–45] proposed a hybrid DG/FV scheme, where the lower-

order derivatives of a piecewise polynomial solution are computed locally in a cell

by the DG methods and the higher-order derivatives are reconstructed by the known

lower-order derivatives. Later, Zhao et al. [46] optimized the reconstruction strategy

for DG/FV methods by a hierarchical reconstruction strategy, where the cell average

and its derivatives were reconstructed by WENO reconstruction. Zhu et al. [47] and

Guo et al. [16] developed a hybrid WCNS-CPR scheme for the efficient supersonic sim-

ulations, where WCNS is adopted to capture shocks while the smooth area is calculated

by CPR. Maltsev et al. [25] developed a hybrid DG/FV schemes, in which the key ingre-

dient is a switch between DG method and FV method based on the CWENOZ scheme.

Based on the computational domain decomposition, Cheng et al. [4,6,7] proposed the

multidomain hybrid RKDG and WENO methods for solving the hyperbolic conserva-

tion laws, which combined the advantages of high efficiency of the WENO schemes

and easy treatment of the complex geometries easily from the DG methods. Later,

Zhang et al. [41] analyzed the linear stabilities of the conservative multidomain hybrid

methods and introduced two ways of healing the stable problems. Moreover, Wang

et al. [37] proposed a novel high-order FD scheme based on DG boundary treatment

and no more than two layers were needed for the complex boundary treatments. Up to

date, the multidomain hybrid methods have been proposed to treat the inviscid terms in

the compressible inviscid flow problems. To take the advantages of the method in solv-

ing compressible viscous flow problems, we extend the multidomain hybrid methods

to handle the viscous terms and then apply the methods to solve hyperbolic-parabolic

equations.

Central difference schemes are often used to discretize the viscous terms in the fi-

nite difference methods. Compared to the formulas used in [15, 49], Shen et al. [27–

30] proposed a set of conservative fourth- and sixth-order central difference schemes

for compressible flows with variable viscosity coefficient, which has the stencil width

matching that of the fifth- and seventh-order WENO schemes and maintains the com-

pactness of the WENO schemes. It is conservative and highly efficient but difficult to

handle the complex geometries just as finite difference WENO schemes. In the DG

methods, taking a simple arithmetic mean of the solution derivatives from the left and

right is inconsistent [32]. A number of numerical methods have been proposed in

the literature to address this issue. Among those methods, the direct discontinuous

Galerkin methods [22, 23] are based on the direct weak formulation for solving the

parabolic equations. The viscous numerical flux constructed in the DDG methods is

consistent and conservative and no auxiliary variable required during the calculation.

Later, Cheng et al. [5, 8, 40] extended the DDG methods to discretize the viscous and

heat fluxes in the Navier-Stokes equations. The DDG methods are simple, conserva-
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tive, and easy to handle complex geometries but take high computational costs as DG

methods.

In this paper, we propose multidomain hybrid DDG and CD methods (DDG/CD)

for the viscous terms in hyperbolic-parabolic equations based on the domain decom-

position and give the linear stability analysis of these methods. For the consideration

of computational cost, the hybrid method of a third-order DDG method with a fourth-

order CD scheme for the parabolic equations will be presented to illustrate the idea.

Firstly, we decompose the computational domain into the CD and DDG subdomains.

At the artificial interfaces, both DDG and CD numerical fluxes can be constructed.

Therefore, there can be two types of hybrid methods. One is the conservative hy-

brid methods with the same one flux at the artificial interface, and the other is the

nonconservative hybrid methods with their own fluxes. To handle shock wave, the

nonconservative multidomain hybrid methods switch to conservative hybrid methods

to preserve the conservative property when discontinuities pass through the artificial

interface. We will show that the nonconservative hybrid methods can preserve high

order in the smooth regions, while the conservative hybrid methods are only of first

order but with the correct position of the shock wave preserved. The linear stability

analysis shows that both the conservative and nonconservative methods are linearly

stable. Combining with the multidomain hybrid DG and WENO methods for the invis-

cid terms, we will extend the multidomain hybrid methods to the hyperbolic-parabolic

equations. A total variation bounded (TVB) shock wave detector is employed to detect

the possible discontinuities. Finally, the multidomain hybrid methods are extended to

two-dimensional Navier-Stokes equations. Numerical results illustrate that the mul-

tidomain hybrid methods are high-order accurate in the smooth regions, robust for

viscous shock simulations and capable of saving computational cost.

The rest of this paper is arranged as follows. In Section 2, we give a brief intro-

duction to the DDG methods and CD schemes. In Section 3, the multidomain hybrid

DDG/CD methods for the viscous terms are proposed. The stability and the accuracy of

the hybrid DDG/CD methods are presented in Section 4. In Section 5, we extend the

multidomain hybrid methods to the hyperbolic-parabolic equations. Then we confirm

the effectiveness of these methods through various numerical tests in Section 6. Finally,

concluding remarks and suggestions for future work are given in Section 7.

2. Brief introduction to the discretization of viscous terms

2.1. Governing equations

To better illustrate the idea of the multidomain hybrid methods for the viscous

terms, we consider the following one-dimensional scalar parabolic equation:

{
ut = h(u, ux)x, x ∈ [a, b],

u(x, 0) = u0(x), t ∈ [0, T ].
(2.1)
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The computation domain [a, b] can be divided into N grids where a = x1/2 < x3/2 <
· · · < xN+1/2 = b. Also, the j-th cell is defined as Ij = (xj−1/2, xj+1/2), j = 1, 2, . . . , N ,

and the j-th cell size is ∆xj = xj+1/2 − xj−1/2.

2.2. The direct discontinuous Galerkin method

For direct discontinuous Galerkin methods [22,23], the numerical solution uh(x, t)
is defined in the finite-dimensional space Uk

h = {p : p|Ij ∈ P k(Ij)}, where P k(Ij) is

a polynomial with the degree at most k, are the basis functions defined in the cell Ij .
The Legendre orthogonal basis functions are adopted here, and can be listed as follows:

ϕj
0 = 1.0, ϕj

1 = 2
x− xj
∆x

, ϕj
2 = 4

(
x− xj
∆x

)2

− 1

3
, . . . . (2.2)

Defining the degree of the freedom ulj(t) in the cell Ij as

ulj(t) =

∫

Ij

u(x, t)ϕj
l (x)dx

(∫

Ij

(
ϕj
l (x)

)2
dx

)−1

, (2.3)

the numerical solution can be expressed as

uh(x, t) =

k∑

l=0

ulj(t)ϕ
j
l (x). (2.4)

Multiplying Eq. (2.1) by the test function v(x), and integrating by parts in Ij , we can

obtain the weak form formulation
∫

Ij

utvdx = ĥ(u, ux)j+1/2vj+1/2 − ĥ(u, ux)j−1/2vj−1/2 −
∫

Ij

h(u, ux)vxdx. (2.5)

The viscous numerical fluxes ĥ(u, ux)j±1/2 can be defined by the DDG methods

ĥ(u, ux) = β0
[b(u)]

∆x
+ b(u)x + β1∆x[b(u)xx],

[u] = u+ − u−, u =
u+ + u−

2
,

h = a(u)ux, b(u) =

∫ u

a(s)ds.

(2.6)

Here, β0 = 2 and β1 = 1/12 are usually specified. The integral
∫
Ij
h(u, ux)vxdx can be

either computed exactly or approximated by using suitable numerical quadratures, and

we can get the final semi-discrete scheme

ut = Lh(u), (2.7)

which is then discretized in time with the third-order accurate strong stability preserv-

ing Runge-Kutta method (SSPRK(3,3)) [36].
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2.3. The central difference schemes

For the Eq. (2.1), a conservative scheme in the finite difference method can be

written as

ut =
ĥj+1/2 − ĥj−1/2

∆x
, (2.8)

where ĥj±1/2 are the viscous numerical fluxes. If the viscous flux h is linear, such as

h(u, ux) = µux, where the viscosity coefficient µ is constant, it is straightforward to do

the discretization. However, if the viscosity coefficient is variable as in the compressible

flows, the conservative high-order finite difference schemes for the viscous terms are

not obvious [27–30].

To obtain the high-order accuracy, the viscous numerical flux ĥj+1/2 needs to be

constructed as

ĥj+1/2 =
d∑

J=k

αJhJ , (2.9)

where J = . . . , j − 1/2, j + 1/2, j + 3/2, . . . are the boundary points of the cells to be

determined and the approximation of the viscous term is given below

uJ =

n∑

l=m

CJ
l uj+l,

∂u

∂x

∣∣∣
J
=

1

∆x

s∑

l=r

DJ
l uj+l. (2.10)

If a two-dimensional equation is considered and the cross derivatives ∂u/∂y|J occur,

the cross derivatives are discretized in a dimension by dimension fashion, where

∂u

∂y

∣∣∣
J
=

n∑

l=m

CJ
l

∂u

∂y

∣∣∣
j+l,i

,
∂u

∂y

∣∣∣
j,i

=
1

∆y

q∑

l=p

Cc
l uj,i+l. (2.11)

By ensuring that the approximation of h(u, ux)x|xj is a central difference scheme, we

can choose different ranges for (k, d), (m,n), (r, s), (p, q) and coefficients α, CJ
l , DJ

l ,

Cc
l to obtain desirable order accurate approximation for the viscous terms. Finally,

the semi-discrete scheme ut = Lh(u) can be obtained and then discreted in time by

the third-order accurate strong stability preserving Runge-Kutta method (SSPRK(3,3))

[36]. Taking the fourth-order central difference scheme as an example, (k, d) = (−1, 1),
(m,n) = (−2, 1), (r, s) = (−3, 2) and (p, q) = (−2, 2) are used, where the coefficients

α, CJ
l , DJ

l , Cc
l can be obtained by Taylor’s series expansion and are given in Tables 1-4.

Table 1: The coefficients of α.

αj−1/2 αj+1/2 αj+3/2

−1/24 26/24 −1/24
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Table 2: The coefficients of CJ
l .

J CJ
−2 CJ

−1 CJ
0 CJ

1

j − 1/2 5/16 15/16 −5/16 1/16

j + 1/2 −1/16 9/16 9/16 −1/16

j + 3/2 1/16 −5/16 15/16 5/16

Table 3: The coefficients of DJ
l .

J DJ
−3 DJ

−2 DJ
−1 DJ

0 DJ
1 DJ

2

j − 1/2 71/1920 −141/128 69/64 1/192 −3/128 3/640

j + 1/2 −3/640 25/384 −75/64 75/64 −25/384 3/640

j + 3/2 −3/640 3/128 −1/192 −69/64 141/128 −71/1920

Table 4: The coefficients of Cc
l .

Cc
−2 Cc

−1 Cc
0 Cc

1 Cc
2

1/12 −8/12 0 8/12 −1/12

3. Multidomain hybrid method for viscous term

In this section, we focus on the implementation of multidomain hybrid methods for

the viscous terms in Eq. (2.1). Firstly, we will adopt the following statements. The com-

putational domain computed by a DDG method is called the DDG subdomain, while the

domain computed by a central difference scheme is called the central difference subdo-

main, which can be simplified as the CD subdomain. The computational domain [a, b]
is divided into two subdomains as shown in Fig. 1. The left subdomain [x1/2, xJ+1/2]
is for the DDG methods and the right subdomain [xJ+1/2, xN+1/2] is for the central dif-

ference schemes, where the artificial interface is located at x = xJ+1/2. Then we have

a semi-discrete form of the multidomain hybrid methods expressed as





d

dt
uj =

1

∆xj

(
ĥDDG
j+1/2 − ĥDDG

j−1/2

)
, j = 1, 2, . . . , J,

d

dt
uj =

1

∆xj

(
ĥCD
j+1/2 − ĥCD

j−1/2

)
, j = J + 1, J + 2, . . . , N,

(3.1)

where ĥDDG
j+1/2 (j = 0, 1, . . . , J) and ĥCD

j+1/2 (j = J, J+1, . . . , N) are the viscous numerical

fluxes in the DDG subdomain and CD subdomain, respectively. Here, uj represents

point values for the CD subdomain and cell average values (zero degree of the freedom)

for the DDG subdomain, and the semi-discrete form is not listed out for the higher-order

degrees of the freedom of the DDG method.
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(a) Domain decomposition in one dimension (b) Ghost points for CD subdomain

Figure 1: Multidomain hybrid methods for one-dimensional problems.

At the artificial interface x = xJ+1/2, two kinds of the viscous numerical fluxes

ĥDDG
J+1/2 and ĥCD

J+1/2 represent the respective viscous fluxes in different subdomains. Now

the key point is how to construct the viscous numerical fluxes at the artificial interface,

which can result in two different types of the discretization for the multidomain hybrid

method. If we take the unique viscous numerical flux at the artificial interface xJ+1/2,

which means ĥDDG
J+1/2 = ĥCD

J+1/2, we call this conservative multidomain hybrid method.

More specifically, the DDG method and CD scheme use the same viscous numerical flux

at the artificial interface. Otherwise, if the different viscous numerical fluxes are used

at the artificial interface, we refer to this as the nonconservative multidomain hybrid

method.

3.1. Nonconservative multidomain hybrid methods for viscous term

In the nonconservative multidomain hybrid method, we need to reconstruct the

viscous numerical fluxes for the DDG method and CD scheme at the artificial interface,

respectively. Here we use a nonconservative hybrid third-order DDG and fourth-order

central difference method to illustrate the procedure. We again use the Fig. 1 as an

example where the DDG subdomain is on the left and the CD subdomain is on the

right of the artificial interface x = xJ+1/2. We assume that the grids of both the DDG

subdomain and CD subdomain are uniform (∆xj = ∆x) for analysis, but a uniform

grid is not required in the DDG subdomain actually in applications.

Case 1. The reconstruction for the CD flux at the artificial interface.

The reconstruction of the viscous numerical flux for the CD subdomain at the arti-

ficial interface x = xJ+1/2 involves two matters. One is the values of the ghost points,

as shown in Fig. 1(b), which can be calculated by the DDG methods directly. More

specifically, according to the formulas (2.9), we only need the point values uCD
J−2, u

CD
J−1,

uCD
J at the ghost points xJ−2, xJ−1, xJ inside the DDG subdomain for the construction

of ĥ4thCD
J+1/2 . The other is, if the two-dimensional equations are considered, the values of

the ghost points in the boundary regions as shown in Fig. 2(a), which can be obtained

from the boundary conditions. In this work, the point values uCD
J−2, u

CD
J−1, u

CD
J are cal-

culated by the approximate polynomials (2.4) provided from the DDG method, and the

reconstruction of the CD viscous numerical flux is then well completed.
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(a) The boundary ghost points for CD subdomain (b) The Gauss points for the DG subdomain

Figure 2: The special points in two-dimensional structure meshes.

Case 2. The reconstruction for the DDG flux at the artificial interface.

Next, we mainly focus on the reconstruction of the viscous numerical flux for the

DDG method at the artificial interface x = xJ+1/2. According to the Eqs. (2.6), not only

the function values b(u)±J+1/2 but also their first and second derivatives are needed in

the DDG method. More specifically, the values u±J+1/2, u±x,J+1/2, u
±
xx,J+1/2 are necessary.

For the values u−J+1/2, u−x,J+1/2, u
−
xx,J+1/2, we can calculate the point values through the

formulas




u−J+1/2 = uh(x, t)|xJ+1/2
=

k−1∑

l=0

ulJ(t)ϕ
J
l (x)|xJ+1/2

,

d

dx
u−J+1/2 =

d

dx
uh(x, t)|xJ+1/2

=

k−1∑

l=0

ulJ(t)
d

dx
ϕJ
l (x)|xJ+1/2

,

d2

dx2
u−J+1/2 =

d2

dx2
uh(x, t)|xJ+1/2

=

k−1∑

l=0

ulJ(t)
d2

dx2
ϕJ
l (x)|xJ+1/2

.

(3.2)

However, it is not obvious to compute u+J+1/2, u+x,J+1/2, u+xx,J+1/2 because the CD

subdomain can only supply the point values rather than the degrees of freedom ulj
(l = 0, 1, 2, . . .), which are needed by the DDG method. We employ the Lagrange in-

terpolation polynomial to calculate these values. For the P k-based DDG method, we

need to use (2k+1) point values to construct the interpolation polynomials in order to

compute the values u+J+1/2, u+x,J+1/2, u
+
xx,J+1/2 for the desirable accuracy. Here we take

the third-order DDG method as an example to explain the procedure by the following

three steps:

Step 1. As shown in the Eq. (3.3), we use a five point interpolation stencil S =
{IJ−1, IJ , IJ+1, IJ+2, IJ+3} to construct the Lagrange interpolation polynomial p5(x),
which satisfies p5(xk) = uk(k = J − 1, J, . . . , J + 3). It is noted that uJ−1, uJ are

the central point values in the cells IJ−1, IJ from the DDG subdomain, which can be
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computed by the DDG methods. And the central point values uJ+1, uJ+2, uJ+3 can be

obtained from the CD schemes directly

p5(x) =
J+3∑

k=J−1

lk(x)u(xk), lk(x) =
J+3∏

j=J−1,j 6=k

x− xj
xk − xj

. (3.3)

Step 2. The corresponding first and second derivative formulas of the function

p5(x) can be calculated directly via the derivative operation. And then, the values of

the specific points can be calculated through the formulas





u+J+1/2 = p5(xJ+1/2)

= − 5

128
uJ−1 +

15

32
uJ +

45

64
uJ+1 −

5

32
uJ+2 +

3

128
uJ+3,

d

dx
u+J+1/2 =

d

dx
p5(xJ+1/2)

=
1

24∆x
(uJ−1 − 27uJ + 27uJ+1 − uJ+2),

d2

dx2
u+J+1/2 =

d2

dx2
p5(xJ+1/2)

=
1

24∆x2
(7uJ−1 + 8uJ − 42uJ+1 + 32uJ+2 − 5uJ+3).

(3.4)

Step 3. We can calculate the variable values b(uJ+1/2)
+, b(uJ+1/2)

+
x , b(uJ+1/2)

+
xx

based on (2.6) and (3.4). Then, the viscous numerical flux ĥDDGP2
J+1/2 can be computed

as the final step and the reconstruction for the DDG flux at the artificial interface is

accomplished well.

If the solution is smooth enough, we can discretize the equation according to the

formulas above and use the nonconservative hybrid method completely. However, if

there is a discontinuity near the artificial interface, then it is suitable to choose a unique

viscous numerical flux to guarantee correct position of the shock wave, which means

the nonconservative hybrid method should automatically switch to the conservative

hybrid method.

In this paper, the TVB minmod function is applied as the shock detector to detect

the possible discontinuities. The details are listed as following steps:

Step 1. For the coupling cell IJ in the DDG subdomain, the values u−J+1/2, u
+
J−1/2

can be calculated in the cell IJ directly

u−J+1/2 = uh(xJ+1/2, t), u+J−1/2 = uh(xJ−1/2, t).

Then, we can calculate the values ũJ , ˜̃uJ by the following formulas:

ũJ = u−J+1/2 − u0J ,
˜̃uJ = u0J − u+J−1/2. (3.5)
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Step 2. For the jump of the cell average of the solution, we can calculate the

∆−uJ = u0J − u0J−1, where u0J−1 and u0J are the zero degree of freedom in cells IJ−1,

IJ respectively. As for ∆+uJ , we can calculate the ∆+uJ = u0J+1 − u0J , where u0J+1 are

the zero degree of freedom in cell IJ+1 from the CD subdomain, which can be taken as

the point values uJ+1 directly.

Step 3. We perform the TVB shock detector at the cell IJ

ũ
(mod)
J = m(ũJ ,∆+uJ ,∆−uJ), ˜̃u(mod)

J = m(˜̃uJ ,∆+uJ ,∆−uJ), (3.6)

where m is the usual TVB minmod function.

Step 4. If ũ
(mod)
J 6= ũJ or ˜̃u(mod)

J 6= ˜̃uJ , it means that the solution in the cell IJ may

be discontinuous and the conservative hybrid methods are applied.

3.2. Conservative multidomain hybrid method for viscous term

According to the Subsection 3.1, two types of the viscous numerical fluxes ĥDDG
J+1/2

and ĥCD
J+1/2 at the artificial interface xJ+1/2 are reconstructed, where the values of the

numerical fluxes are different generally. If we use the unique viscous flux ĥDDG
J+1/2 =

ĥCD
J+1/2 = ĥJ+1/2 at the artificial interface, we can obtain a conservative hybrid method

and the semi-discrete form of the equation at the coupling cells IJ , IJ+1 can be ex-

pressed as 



d

dt
uj =

1

∆xJ

(
ĥJ+1/2 − ĥDDG

J−1/2

)
, j = J,

d

dt
uj =

1

∆xj

(
ĥCD
J+3/2 − ĥJ+1/2

)
, j = J + 1.

(3.7)

The problem is which viscous numerical flux should be chosen for the consideration

of stability. In the next section, the detailed proofs of the stability are given, which

reveal that both the viscous numerical fluxes are linear stable and admissible.

Now we can summarize the multidomain hybrid methods for the viscous terms.

Algorithm 3.1

1: Decompose the computational domain.

2: Initialize the degrees of freedom for the DDG methods and the point values for the

central difference schemes according to the initial conditions.

3: Assign the values of the ghost points for the central difference schemes, and then

calculate the viscous numerical flux ĥCD
j+1/2, j = J, J + 1, . . . , N in the CD subdo-

main.

4: Calculate the viscous numerical flux ĥDDG
j+1/2, j = 0, 1, . . . , J − 1 in the DDG subdo-

main except the artificial interfaces.

5: Use a shock detector to detect the possible discontinuity at the artificial interface:

If the coupling cell does not include discontinuity, then the nonconservative hybrid

methods are adopted. Otherwise, the conservative hybrid methods are applied with

a unique conservative numerical flux at the artificial interface.
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6: If the nonconservative hybrid methods are applied at the coupling cells, construct

the Lagrange interpolation polynomials for the DDG subdomain, calculate the first

and second derivatives needed by the DDG methods, compute viscous numerical

flux ĥDDG
J+1/2 at the artificial interface.

7: Update the degrees of freedom in the DDG subdomain and the point values in the

CD subdomain respectively.

8: Advance to the next moment according to the third-order SSPRK method and re-

peat the Steps 3-7 until to the given calculation time.

3.3. Time discretization

As for the time discretization, an explicit third-order accurate strong stability pre-

serving Runge-Kutta method (SSPRK(3,3)) [36] is applied with a CFL number equal

to the minimum of the CFL numbers of all the subdomains. The third-order SSPRK

method is given as follows:





u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

(3.8)

4. Theoretical analysis

4.1. Stability analysis

In the following subsections, we will give the linear stability analysis of the con-

servative multidomain hybrid method for the viscous terms. According to the TVD

theorem in [11], for a semi-discrete scheme

d

dt
uh = Lh(u

h, t), (4.1)

where Lh is the spatial operator. Applying a high order TVD Runge-Kutta method for

time iteration, the whole scheme is TVD under a CFL restriction if the spatial operator

is TVD. As the third-order accurate strong stability preserving Runge-Kutta method

(SSPRK(3,3)) [36] is TVD, it guarantees the stability of the whole scheme if the spatial

discretization is stable. Therefore, we only need to consider the stability of the semi-

discrete form of space discretization for the hybrid methods.

For the analysis of stability for the conservative multidomain hybrid method of the

viscous terms, we will consider the following one dimensional linear diffusion equation:

ut = µuxx, (x, t) ∈ [a, b]× [0, T ], (4.2)
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where the viscosity coefficient µ is a constant and positive value and a period boundary

condition is assumed in this case. The computational domain [a, b] is divided into

two subdomains. The left subdomain [x1/2, xJ+1/2] is for the DDG methods and the

right [xJ+1/2, xN+1/2] is for the central difference schemes, where the opposite position

would not affect the analysis. The coupling artificial interface is located at x = xJ+1/2.

As an example, we analyze the linear stability of the conservative multidomain hybrid

third-order DDG and fourth-order CD method by the way of von-Neumann analysis

[2]. As the third-order DDG method and fourth-order central difference scheme are

linearly stable when they are applied alone, we only need to give the stability analysis

of the multidomain hybrid methods at the coupling cells, for example, the cells IJ
or IJ+1 in (3.7). There are two types of the viscous numerical fluxes constructed at

the artificial interface, one is the DDG viscous numerical flux and the other is the CD

viscous numerical flux. Therefore, we will have two kinds of the conservative hybrid

methods for the viscous terms: multidomain hybrid DDG/CD methods with the DDG

viscous numerical flux and multidomain hybrid DDG/CD methods with the CD viscous

numerical flux. In the following subsections, we will present the stability analysis of

these two kinds of conservative hybrid methods respectively.

4.1.1. Conservative multidomain hybrid DDG/CD methods with the DDG flux

Theorem 4.1. The conservative multidomain hybrid third-order DDG and fourth-order

CD method with the DDG flux is linear stable.

Proof. If the conservative numerical flux at the artificial interface is set with the

DDG flux, which means ĥCD
J+1/2 = ĥDDG

J+1/2, the semi-form of the hybrid methods at the

coupling cells can be written as





d

dt
uDDG
J =

1

∆x

(
ĥDDG
J+1/2 − ĥDDG

J−1/2

)
,

d

dt
uCD
J+1 =

1

∆x

(
ĥCD
J+3/2 − ĥDDG

J+1/2

)
,

(4.3)

where 



ĥCD
J+3/2 = − 1

24
hCD
J+1/2 +

26

24
hCD
J+3/2 −

1

24
hCD
J+5/2,

ĥDDG
J+1/2 = hJ+1/2 +O(∆x3).

(4.4)

Here, uCD
J+1 and uDDG

J represents point values for the CD subdomain and cell average

values (zero degree of the freedom) for the DDG subdomain, and the semi-discrete

form is not listed out for the higher-order degrees of the freedom of the DDG method.

As the third-order DDG method is stable, we only need to analyze the stability of

the coupling cell in the CD subdomain

d

dt
uCD
J+1 =

1

∆x

(
ĥCD
J+3/2 − ĥDDG

J+1/2

)
. (4.5)
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According to the formula (2.9), the point values uJ−1, uJ , which are needed by the

viscous flux ĥCD
J+3/2 in the DDG subdomain, can be computed by the DDG methods

directly. Another viscous numerical flux ĥDDG
J+1/2 can be computed according to the three

steps in Section 3.1. Finally, we can obtain the viscous numerical flux of the coupling

cell IJ+1 as follows:




ĥCD
J+3/2 =

µ

17280∆x

(
− 22710uJ+1 + 22710uJ+2 − 1995uJ+3 + 111uJ+4

−111u0J−1 + 37u2J−1 + 1995u0J − 665u2J
)
,

ĥDDG
J+1/2 =

µ

1728∆x

(
3150uJ+1 − 384uJ+2 + 51uJ+3 − 57u0J−1 + 19u2J−1

−2760u0J − 17281J − 232u2J
)
,

(4.6)

where the parameters u0J−1, u
1
J−1, u

2
J−1 and u0J , u1J , u2J are the degrees of freedom in

cells IJ−1 and IJ in the DDG subdomain, respectively.

The von-Neumann analysis of the FD methods is based on the amplification factor

while of which the DG methods is based on the amplification matrix. Therefore, the

relationship between the point value and the degree of freedom should be established

first. A fifth-order Lagrange interpolation polynomial is constructed to approximate the

function u(x, t) in the formula (2.3).

For cell IJ , the fifth-order interpolation polynomial is constructed as

pJ(x) =

J+4∑

k=J

lk(x)u(xk), lk(x) =

J+4∏

j=J,j 6=k

x− xj
xk − xj

. (4.7)

Replacing the function u(x, t) with pJ(x), we can obtain the following formulas:

u0J =
6463

5760
uJ − 523

1440
uJ+1 +

383

960
uJ+2 −

283

1440
uJ+3 +

223

5760
uJ+4,

u1J = −103

96
uJ +

169

80
uJ+1 −

33

20
uJ+2 +

181

240
uJ+3 −

23

160
uJ+4,

u2J =
493

1344
uJ − 367

336
uJ+1 +

269

224
uJ+2 −

199

336
uJ+3 +

157

1344
uJ+4.

(4.8)

Similarly, the degrees of freedom in cell IJ−1 can be disposed. Therefore, we can obtain

the viscous numerical flux with the point values as follows:




ĥCD
J+3/2 = − µ

25804800∆x

(
165723uJ−1 − 2978387uJ + 33910718uJ+1

−33909462uJ+2 + 2976503uJ+3 − 162095uJ+4

)
,

ĥDDG
J+1/2 = − µ

860160∆x

(
28367uJ−1 + 661052uJ − 376070uJ+1

−541292uJ+2 + 284911uJ+3 − 56968uJ+4

)
.

(4.9)

With the first-order Euler forward method in time discretization, we can obtain the

final discrete form of the equation in the coupling cell IJ+1

un+1
J+1 = unJ+1 +

µ∆t

∆x2
1

25804800

(
685287unJ−1 + 22809947unJ
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− 45192818unJ+1 + 17670702unJ+2

+ 5570827unJ+3 − 1543945unJ+4

)
. (4.10)

In order to calculate the amplification factor, the point values unj , j = J − 1, . . . ,
J + 4 can be replaced by the general terms of the Fourier series vn exp(ikxj), j =
J − 1, . . . , J + 4, where the notation i is the imaginary unit. The parameter κ is define

as

κ = µ
∆t

∆x2
. (4.11)

Finally, we can calculate the amplification factor

G = 1 +
κ

25804800∆x2

(
22809947e−k∆xi + 17670702ek∆xi + 685287e−2k∆xi

+ 5570827e2k∆xi − 1543945e3k∆xi − 45192818
)
. (4.12)

To estimate the absolute value of amplification factor, we can further simplify the value

G in the form of the Real+ Imag∗ i, where the notation Real and Imag are the real and

imaginary part of the amplification factor respectively,

Real = 1 + κ

(
− 1429137

716800
+

11278121 cos(k∆x)

6451200
+

3128057 cos2(k∆x)

6451200

− 308789 cos3(k∆x)

1290240

)
,

Imag = −κ
1027849 sin(k∆x)− 977108 sin(2k∆x) + 308789 sin(3k∆x)

5160960
.

(4.13)

After a series of trigonometric transformations, we can calculate the final stability con-

dition with respect to |G| ≤ 1

0 < κ ≤ 0.998. (4.14)

According to the von-Neumann analysis, the conservative multidomain hybrid third-

order DDG and fourth-order CD method with the DDG flux is linear stable under the

condition of 0 < κ ≤ 0.998. The detailed estimation of the parameter κ is given in the

Appendix.

4.1.2. Conservative multidomain hybrid DDG/CD methods with the CD flux

Theorem 4.2. The conservative multidomain hybrid third-order DDG and fourth-order

CD method with the CD flux is linear stable.

Proof. If the conservative numerical flux at the artificial interface is set with the CD

flux, which means ĥDDG
J+1/2 = ĥCD

J+1/2, the equations of the multidomain hybrid methods
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at the coupling cells can be written as




d

dt
uDDG
J =

1

∆xJ

(
ĥCD
J+1/2 − ĥDDG

J−1/2

)
,

d

dt
uCD
J+1 =

1

∆xJ+1

(
ĥCD
J+3/2 − ĥCD

J+1/2

)
.

(4.15)

Similarly, we need to analyze the stability of the coupling cell IJ in the DDG subdomain

and the complete forms of the equation are





d

dt
u0J =

1

∆x

(
ĥCD
J+1/2 − ĥDDG

J−1/2

)
,

d

dt
u1J =

3

∆x

(
ĥCD
J+1/2 + ĥDDG

J−1/2

)
− 6

∆x2

∫

IJ

uxdx,

d

dt
u2J =

15

2∆x

(
ĥCD
J+1/2 − ĥDDG

J−1/2

)
− 90

∆x3

∫

IJ

ux(x− xJ)dx.

(4.16)

According to the multidomain hybrid methods, we can obtain the viscous numerical

flux in the above equations as follows:

ĥCD
J+1/2 =

1

17280∆x

(
22710uJ+1 − 1995uJ+2 + 111uJ+3 − 111u0J−2 + 37u2J−2

+ 1995u0J−1 − 665u2J−1 − 22710u0J + 7570u2J

)
,

ĥDDG
J−1/2 =

1

3∆x

(
3u1J−1 + 4u2J−1 + 3u1J − 4u2J − 6∆xu0J−1 − 6∆xu1J−1

− 4∆xu2J−1 + 6∆xu0J − 6∆xu1J + 4∆xu2J

)
,

(4.17)

where the parameters u0k, u
1
k, u

2
k (k = J − 2, J − 1, J) are the degrees of freedom in the

cell k, and the fifth-order Lagrange interpolation polynomials can be applied just like

Eq. (4.7).

As for the integral terms in the Eq. (4.16), the direct derivative of the respective

fifth-order Lagrange interpolation polynomials are used to approximate the function

ux and the integral terms can be simplified in a similar way. A simple calculation shows

that
d

dt
uDDG

∣∣∣
xJ

=
d

dt
u0J − d

3dt
u2J . (4.18)

With the first-order Euler forward method in time discretization, we can obtain the

final discrete form of the equation at the coupling cell IJ

un+1
J = unJ − µ∆t

∆x2
1

8601600

(
852431uJ−2 − 11175804uJ−1 + 19728346uJ

− 9256124uJ+1 − 231729uJ+2 + 82880uJ+3

)
. (4.19)

After replacing the point values unj , j = J − 2, . . . , J + 3 with the general terms of the

Fourier series vn exp(ikxj), j = J − 2, . . . , J + 3, we can calculate the amplification
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factor G and then separate G into the real part Real and the imaginary part Imag
respectively, where

Real = 1 + κ

(
− 4776911

2150400
+

258507 cos(k∆x)

1075200
− 310351 cos2(k∆x)

2150400

− 37 cos3(k∆x)

960

)
,

Imag = −857 sin(k∆x)− 484 sin(2k∆x) + 37 sin(3k∆x)

3840
.

(4.20)

Finally, we can calculate the final stability condition with respect to |G| ≤ 1

0 < κ ≤ 0.892. (4.21)

According to the von-Neumann analysis, the conservative multidomain hybrid third-

order DDG and fourth-order CD method with the CD flux is linear stable under the

condition of 0 < κ ≤ 0.892. The estimation of the amplification factor G is similar to

the Appendix, which is omitted in this paper.

4.2. Accuracy analysis

In this subsection, we will give the accuracy analysis of the multidomain hybrid

methods for the viscous terms.

Theorem 4.3. The conservative multidomain hybrid DDG/CD methods for the viscous

terms is of first-order accuracy.

Proof. As shown in Fig. 1, we assume that the left subdomain is computed by the

k-th order DDG methods and the right subdomain is computed by the central difference

schemes and the artificial interface is located at x = xJ+1/2. Either the CD flux or the

DDG flux is taken as the unique numerical flux at x = xJ+1/2, we can obtain the

equation of the conservative hybrid methods at the coupling cell generally

d

dt
uJ =

1

∆xJ

(
ĥCD
J+1/2 − ĥDDG

J−1/2

)
, (4.22)

where ĥCD
J+1/2, ĥ

DDG
J−1/2 are the viscous numerical fluxes computed by the central differ-

ence schemes and DDG methods at the interfaces xJ+1/2, xJ−1/2 respectively. As for the

k-th order DDG flux, the relation with the exact numerical flux at the interface is

ĥDDG
J−1/2 = hJ−1/2 +O(∆xk). (4.23)

However, from Shu and Osher [35], we know that the relationship between hCD
J+1/2 and

the exact viscous flux hJ+1/2 is

ĥCD
J+1/2 = hJ+1/2 −

∆x2

24

d2h

dx2

∣∣∣
xJ+1/2

+O(∆x4). (4.24)
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It means that the conservative viscous numerical flux computed by the central differ-

ence schemes at an interface is lower than the exact numerical flux in the range of

O(∆x2). This leads to the fact that

ĥCD
J+1/2 − ĥDDG

J−1/2 = hJ+1/2 − hJ−1/2 +O(∆x2). (4.25)

Thus, with a ∆x in the denominator of the form of a semi-discrete scheme, the con-

servative hybrid multidomain DDG/CD methods for the viscous terms are first-order

accuracy.

Theorem 4.4. The nonconservative multidomain hybrid third-order DDG and fourth-

order CD method for the viscous terms is of third-order accuracy.

Proof. For the DDG subdomain, the values of the ghost points in the CD subdomain

are of fourth-order accuracy, which are higher-order than third-order DDG methods.

As for the CD subdomain, the values of the ghost points in the DDG subdomain are

only of third-order accuracy, which is the main error in the whole domain. We take the

artificial interface located at x = xJ+1/2 as an example and analyze the accuracy of the

coupling cell IJ+1 in the CD subdomain, which is shown in Fig. 1(b).

To analyze the accuracy of the coupling cell in the CD subdomain, Taylor expan-

sions at the point xJ+1 can be performed according to the formulas (2.3). The viscous

numerical fluxes of the cell IJ+1 can be calculated as follows:




R̂4thCD
J+1/2 = µ

(
ux −

∆x

2
uxx +

∆x2

12
uxxx +

1157∆x3

4300800
uxxxx

) ∣∣∣∣
xJ+1

+O(∆x4),

R̂4thCD
J+3/2 = µ

(
ux +

∆x

2
uxx +

∆x2

12
uxxx −

157∆x3

6451200
uxxxx

) ∣∣∣∣
xJ+1

+O(∆x4).

(4.26)

Therefore, the semi-discrete form of the coupling cell IJ+1 can be simplified as

d

dt
uCD
J+1 =

R̂J+3/2 − R̂J+1/2

∆x
= µ

(
uxx −

757∆x2

2580480
uxxxx

) ∣∣∣∣
xJ+1

+O(∆x3). (4.27)

As can be seen, the accuracy of the coupling cell IJ+1 is of second-order accuracy,

which is one order lower than third-order DDG method. According to the theory of

Ref. [17, 18], if the boundary precision is one order lower than the inner cells, the

overall accuracy of the solution is kept at the higher order, where the overall third-

order accuracy of the whole computational domain can be preserved.

5. Extension to hyperbolic-parabolic equations

In this section, we mainly focus on the extension of the multidomain hybrid meth-

ods to the following hyperbolic-parabolic equation:
{
ut + f(u)x = h(u, ux)x, x ∈ [a, b],

u(x, 0) = u0(x), t ∈ [0, T ],
(5.1)
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which is a simplified model equation of the Navier-Stokes equations. The computa-

tional domain [a, b] is divided into two subdomains as shown in Fig. 1, where the

artificial interface is located at x = xJ+1/2. Corresponding to the DDG methods for

the viscous terms, the DG methods are used to discrete the inviscid terms. Multiplying

Eq. (5.1) by the test function v(x), and integrating by parts in Ij , we can obtain the

weak form formulation

∫

Ij

utvdx+
(
f̂(u)− ĥ(u, ux)

)
v
∣∣j+1/2

j−1/2
−
∫

Ij

(
f(u)− h(u, ux)

)
vxdx = 0. (5.2)

The inviscid numerical fluxes f̂(u)j±1/2 are approximated via a numerical flux denoted

by f̂(u−, u+), which is a monotone flux and satisfies the Lipschitz continuity condition.

The integral
∫
Ij
(f(u)− h(u, ux))vxdx can be either computed exactly or approximated

by using suitable numerical quadratures. For the Eq. (5.1), the conservative schemes

in the finite difference methods can be written as

ut +
f̂j+1/2 − f̂j−1/2

∆x
=

ĥj+1/2 − ĥj−1/2

∆x
, (5.3)

where the flux f̂j±1/2 are the inviscid numerical fluxes, which are disposed by the fifth-

order finite difference WENO schemes [19] in this paper to capture the discontinuities.

At the coupling cells IJ , IJ+1, the informations needed by the inviscid numerical

fluxes f̂DG
J+1/2 and f̂WENO

J+1/2 , which are the values of variable u only, are included in

the construction of the multidomain hybrid DDG/CD methods. Therefore, the inviscid

numerical fluxes f̂DG
J+1/2 and f̂WENO

J+1/2 can be calculated in a similar way. For the mul-

tidomain hybrid methods, the subdomains computed by the DG methods and the DDG

methods are uniformly called the DG subdomains, while the subdomains computed by

the finite difference WENO schemes and central difference schemes are called the FD

subdomains.

For the extension to two-dimensional Navier-Stokes equations, it is straightforward

and with no essential difficulties. More Gauss quadrature points at the artificial in-

terface have to be reconstructed as shown in Fig. 2(b). Finally, we summarize the

strategies of the multidomain hybrid methods for the hyperbolic-parabolic equations in

the following steps:

Algorithm 5.1

1: Decompose the computational domain.

2: Initialize the degrees of freedom for the DG methods and the point values for the

FD methods according to the initial conditions.

3: Assign the values of the ghost points for the FD methods, and then calculate the

inviscid numerical flux f̂WENO
j+1/2 , j = J, J + 1, . . . , N and the viscous numerical flux

ĥCD
j+1/2, j = J, J + 1, . . . , N in the FD subdomains.
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4: Calculate the inviscid numerical flux f̂DG
j+1/2, j = 0, 1, . . . , J − 1 and the viscous

numerical flux ĥDDG
j+1/2, j = 0, 1, . . . , J − 1 in the DG subdomains except the artificial

interfaces.

5: Use a shock detector to detect the possible discontinuity at the artificial interface:

If the coupling cell does not include discontinuity, then the nonconservative hybrid

methods are adopted. Otherwise, the conservative hybrid methods are applied with

a unique conservative numerical flux at the artificial interface.

6: If the nonconservative hybrid methods are applied at the coupling cells, construct

the Lagrange interpolation polynomials for the DG subdomains, calculate the first

and second derivatives needed by the DG methods, compute the inviscid numerical

flux f̂DG
J+1/2 and the viscous numerical flux ĥDDG

J+1/2 at the artificial interface.

7: Update the degrees of freedom in the DG subdomains and the point values in the

FD subdomains respectively.

8: Advance to the next moment according to the third-order SSPRK method and re-

peat the Steps 3-7 until to the given calculation time.

6. Numerical results

In this section, we will demonstrate the performance of the multidomain hybrid

methods for the viscous flow problems.

6.1. Accuracy test

Example 6.1. We solve a linear diffusion equation with the following initial and peri-

odic boundary condition:

{
ut = uxx,

u(x, 0) = cos(x), −π ≤ x ≤ π,
(6.1)

where the exact solution of this problem is u(x, t) = e−t cos(x). We simply decompose

[−π, π] into three parts: the boundary subdomains [−π, 0.5π] and [0.5π, π] and the inner

subdomain [−0.5π, 0.5π]. The DDG methods are applied in the boundary subdomains,

while the central difference schemes are in the inner subdomain. The computational

time is till to 1.0. To test the accuracy and the stability of the different conservative

viscous numerical fluxes, the DDG flux is chosen at the artificial interface x = −0.5π
and the CD flux is chosen at x = 0.5π. The respective errors and the convergence rates

of the conservative multidomain hybrid DDG and CD method are shown in Table 5.

The numerical results verify the theoretical analysis of Theorems 4.1-4.3, where both

of the conservative viscous flux are stable and a second-order accuracy can be observed

in this case.
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Table 5: Accuracy for the conservative multidomain hybrid 3rd-DDG and 4th-CD method (Example 6.1).

N L1 − error order L2 − error order L∞ − error order

24 1.291e-03 1.340e-03 2.027e-03

48 3.231e-04 1.998 3.347e-04 2.001 5.068e-04 2.000

96 8.079e-05 1.999 8.366e-05 2.000 1.265e-04 2.002

192 2.020e-05 1.999 2.091e-05 2.000 3.160e-05 2.001

384 5.050e-06 1.999 5.228e-06 2.000 7.896e-06 2.000

Example 6.2. Next, we solve a linear diffusion equation with the following initial and

periodic boundary condition:
{
ut = uxx,

u(x, 0) = sin(x), 0 ≤ x ≤ 2π,
(6.2)

where the exact solution of this problem is u(x, t) = e−t sin(x).
The decomposition of the domain is the same with Example 6.1 and the compu-

tational time is till to 1.0. Numerical results calculated by the nonconservative hybrid

DDG and CD method are shown in Table 6, where a third-order accuracy can be ob-

served and it agrees well with Theorem 4.4.

Table 6: Accuracy for the nonconservative multidomain hybrid 3rd-DDG and 4th-CD method (Example 6.2).

N L1 − error order L2 − error order L∞ − error order

24 7.330e-05 9.253e-05 1.763e-04

48 8.823e-06 3.054 1.146e-05 3.013 2.196e-05 3.004

96 1.078e-06 3.032 1.422e-06 3.010 2.750e-06 2.997

192 1.329e-07 3.019 1.770e-07 3.006 3.437e-07 3.000

384 1.649e-08 3.011 2.207e-08 3.003 4.295e-08 3.000

Example 6.3. Here, we solve a linear convection-diffusion equation with the following

initial and periodic boundary condition:



ut + ux = µuxx,

u(x, 0) =
1

4
+

1

2
sin(πx), x ∈ [−1, 1],

(6.3)

where the exact solution is

u(x, t) =
1

4
+

1

2
e−µπ2t sin

(
π(x− t)

)
.

The parameter µ is taken as 0.1 and the computational time is till to 1.0. The boundary

subdomains [−1.0,−0.5] and [0.5, 1.0] are computed by the third-order DG and third-

order DDG methods, while the inner subdomain [−0.5, 0.5] are computed by the fifth-

order WENO and fourth-order CD schemes. For the consideration of the stability, the
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Table 7: Accuracy for the conservative multidomain hybrid method (Example 6.3).

N L1 − error order L2 − error order L∞ − error order

24 3.338e-04 3.998e-04 7.036e-04

48 7.316e-05 2.189 8.230e-05 2.280 1.319e-04 2.414

96 1.821e-05 2.006 2.039e-05 2.012 3.230e-05 2.030

192 4.565e-06 1.996 5.107e-06 1.997 8.156e-06 1.985

384 1.143e-06 1.997 1.278e-06 1.998 2.044e-06 1.996

Table 8: Accuracy for the third-order nonconservative hybrid methods (Example 6.3).

N L1 − error order L2 − error order L∞ − error order

24 1.660e-04 2.029e-04 3.925e-04

48 6.038e-06 4.781 6.921e-06 4.874 1.315e-05 4.898

96 4.257e-07 3.826 5.603e-07 3.626 1.121e-06 3.552

192 5.598e-08 2.926 7.570e-08 2.887 1.488e-07 2.914

384 7.272e-09 2.944 9.652e-09 2.971 1.878e-08 2.985

DG and DDG numerical fluxes are taken as the unique fluxes at the artificial interface

x = −0.5, while the WENO and CD numerical fluxes are taken as the unique fluxes at

the artificial interface x = 0.5.

The results of the conservative and nonconservative multidomain hybrid methods

are shown in Tables 7 and 8 respectively, which agree well with the analysis of the accu-

racy in Theorems 4.3 and 4.4 and the expected second-order and third-order accuracy

can be observed in this case.

Example 6.4. In this example, we consider the two-dimensional linear convection-

diffusion equation

ut + ux + uy = ǫ(uxx + uyy), (x, y) ∈ [0, 2π]2 (6.4)

with ǫ = 0.5 and the initial condition

u(x, y, t = 0) = sin(x) sin(y).

The exact solution of this problem is

u(x, y, t) = exp(−t) sin(x− t) sin(y − t)

cf. [1]. The computational domain is decomposed into two parts: the left part [0, π] ∗
[0, 2π] and the right part [π, 2π] ∗ [0, 2π]. The third-order DG and DDG methods are

applied in the left part, while the fifth-order WENO and fourth-order CD schemes are

in the right part. In Table 9, we give the respective errors and convergence rates by the

multidomain hybrid methods, and an expected third-order accuracy can be observed in

this case.
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Table 9: Accuracy for the third-order multidomain hybrid method for 2D linear equation (Example 6.4).

N L1 − error order L2 − error order L∞ − error order

100 2.701e-03 3.255e-03 7.906e-03

400 1.733e-04 3.962 2.204e-04 3.884 5.845e-04 3.757

1600 1.895e-05 3.193 2.741e-05 3.007 6.592e-05 3.184

6400 2.365e-06 3.002 3.604e-06 2.927 7.863e-06 3.067

25600 3.083e-07 2.939 4.714e-07 2.934 9.793e-07 3.005

Example 6.5. In this example, the compressible Couette flow problem is considered

to verify the accuracy and convergence of the multidomain hybrid method for solving

the compressible Navier-Stokes equations. Assuming that the viscosity coefficient µ is

constant, the analytic solution is given by

u =
y

H
U, v = 0, p = p∞, ρ =

p

RT
,

T = T0 +
y

H
(T1 − T0) +

y

H

(
1.0 − y

H

)
(γ − 1)

PrM
2
a

2
,

(6.5)

where Pr is the Prandtl number, T0 is a fixed temperature of the bottom plate, T1 is

fixed temperature of the top plate with the moving speed U , H is the distance of the

two plates.

In this case, we take H = 2, T0 = 0.8, T1 = 0.85 and Pr = 0.72. The Mach number

for the upper wall Ma = 0.2 and the Reynolds number Re = 100 with a constant

viscosity coefficient µ = 1.0. The computational domain is a rectangle (0 ≤ x ≤ 2H
and 0 ≤ y ≤ H).

The computational domain is decomposed into two subdomains: the left subdomain

(0 ≤ x ≤ H, 0 ≤ y ≤ H) and the right subdomain (H ≤ x ≤ 2H, 0 ≤ y ≤ H). The

respective errors and the convergence rates of the multidomain hybrid methods are

shown in Table 10, where an expected third-order accuracy of the norms L1, L2, Linf

can be observed.

Table 10: Accuracy for the third-order multidomain hybrid method for the Couette flow (Example 6.5).

N L1 − error order L2 − error order L∞ − error order

50 2.671e-07 3.640e-07 8.779e-07

200 2.844e-08 3.231 3.976e-08 3.197 1.084e-07 3.017

800 3.276e-09 3.117 4.531e-09 3.133 1.338e-08 3.018

3200 3.830e-10 3.096 5.122e-10 3.144 1.669e-09 3.003

12800 5.249e-11 2.867 6.470e-11 2.985 2.204e-10 2.920

6.2. One-dimensional problems

Example 6.6. Next, we consider the well-known quasi-linear parabolic equation intro-

duced by Burgers [3]
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Figure 3: The comparison among the multidomain hybrid methods with N = 1000 at t = 8.0 (Example 6.6).

ut + uux = νuxx, x ∈ [0, 2], (6.6)

where ν is a nominally small positive parameter. It is well-known that the nonlinear

term in Burgers’ equation will cause an initially smooth disturbance to steepen up into

a narrow region, which will result in a weak shock problem. Therefore, the notation ν is

taken as 0.0001 here to test the ability of capturing the shock waves of the multidomain

hybrid methods. The initial condition is

u(x, 0) =
1

4
+

1

2
sin(πx)

and the periodic boundary conditions are considered in this example. The boundary

subdomains [0, 0.6], [1.4, 2] are calculated by the third-order DG and DDG methods,

while the other subdomains are computed by the fifth-order WENO and fourth-order

CD schemes. The results computed by the DG methods and the FD methods with N =
1000 are taken as the reference solutions. Numerical results computed by the purely

nonconservative and conservative multidomain hybrid methods and the multidomain

hybrid methods with a TVB shock detector are shown in Fig. 3, which demonstrate the

fact that the multidomain hybrid methods can preserve the high-order accuracy in the

smooth regions and the correct position of the shock waves if there is a discontinuity

passing through the artificial interface.

Example 6.7. In this example, we consider the one-dimensional scalar convection-

diffusion Buckley-Leverett equation introduced in [21]

ut + f(u)x = ǫ(ν(u)ux)x, ǫν(u) ≥ 0. (6.7)
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Figure 4: The grid convergence of one-dimensional Buckley-Leverett equation at t = 0.7 (Example 6.7).

This is a prototype model for the oil reservoir simulations (two-phases flow). It is an ex-

ample of strongly degenerate parabolic (or hyperbolic-parabolic) convection-diffusion

equation. Considering ǫ = 0.1, f(u) = u2, and

ν(u) =

{
0, |u| ≤ 0.25,

1, |u| > 0.25,
(6.8)

the variable ν(u) is discontinuous and therefore the equation is hyperbolic when u ∈
[−0.25, 0.25] and parabolic elsewhere. We apply the multidomain hybrid methods to

this equation subject to the initial condition

u(x, 0) =





1, −1/
√
2− 0.4 < x < −1/

√
2 + 0.4,

−1, 1/
√
2− 0.4 < x < 1/

√
2 + 0.4,

0, otherwise.

(6.9)

The computational domain [−2, 2] is decomposed into three parts and the artificial

interfaces are set at x = ±4/3. With the TVB shock detector, the numerical results

calculated by the third-order multidomain hybrid method with different cells are shown

in Fig. 4. The accurate transition between the hyperbolic and parabolic regions can be

observed in the results. With the grid refinement, the numerical results converge to the

reference values computed by the fifth-order WENO and fourth-order CD schemes with

N = 1000.

Example 6.8. Now we consider the Buckley-Leverett equation (6.7) with ǫ = 0.01. The

flux function f(u) without gravitational effects

f(u) =
u2

u2 + (1− u)2
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Figure 5: The grid convergence of one-dimensional Buckley-Leverett equation at t = 0.2 (Example 6.8).

and with gravitational effects

f(u) =
u2

u2 + (1− u)2
(
1− 5(1− u)2

)

are both considered in this example. The diffusion coefficient ν(u) is defined as ν(u) =
4u(1− u). The initial function is

u(x, 0) =

{
0, 0 ≤ x < 1− 1/

√
2,

1, 1− 1/
√
2 ≤ x ≤ 1,

(6.10)

and the boundary conditions are u(0, t) = 0.0 and u(1, t) = 1.0. The computational

domain is divided into three parts, where the boundary subdomains are calculated by

the DG and DDG methods and other subdomains are calculated by the WENO and CD

schemes. The artificial interfaces are set at x = 1/6 and x = 5/6. The numerical results

are shown in Fig. 5. With the grid refinement, the numerical results computed by the

third-order multidomain hybrid method can converge to the reference values computed

by the third-order DG and DDG methods with N = 1000.

6.3. Two-dimensional problems

Example 6.9. Next, we solve the following two-dimensional Buckley-Leverett equation

[21]:

ut + f(u)x + g(u)y = ǫ(uxx + uyy), (x, y) ∈ [−1.5, 1.5]2 (6.11)

with ǫ = 0.01 and the flux functions



f(u) =

u2

u2 + (1− u)2
,

g(u) = f(u)
(
1− 5(1− u)2

)
.

(6.12)
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Figure 6: The comparison of the solutions computed by different methods with N = 80 ∗ 80 at t = 0.5.
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method. From top to bottom: two-dimensional Buckley–Leverett equation, 19 contour lines of the solution
(Example 6.9).

The initial function for this example is

u(x, y, t = 0) =

{
1, x2 + y2 < 0.5,

0, otherwise.
(6.13)

As can be seen, gravitational effects are considered in the y-direction in this exam-

ple. The computational domain is decomposed into two parts, where the left part

[−1.5, 0] ∗ [−1.5, 1.5] is computed by DG methods and the right part is computed by the

FD methods. The numerical results are shown in Fig. 6, where the results computed by

the third-order multidomain hybrid methods compare well with the DG methods and

FD methods purely and the results given in [21].

Example 6.10. In this example, we solve the nonlinear and non-degenerate convection-

diffusion problem [21]

ut +
(
u− (u− 0.25)3

)
x
− (u+ u2)y = ǫ(uxx + uyy), (x, y) ∈ [−4, 4]2 (6.14)

with ǫ = 0.1. The initial condition is

u(x, y, t = 0) =

{
1, (x− 0.25)2 + (y − 0.25)2 < 5,

0, otherwise.

The computational domain is decomposed into two parts, where the left part [−4, 0] ∗
[−4, 4] is computed by the DG methods and the right part is computed by the FD

methods. Numerical results are shown in Fig. 7, where the results computed by the
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third-order multidomain hybrid methods compare well with the DG methods and FD

methods purely and the results given in [21].

Example 6.11 (Viscous Shock Tube Problem). In this example, we consider a two-

dimensional viscous shock tube problem [14], which is designed for evaluating dif-

ferent numerical methods for the Navier-Stokes equations. This is a time-dependent

unsteady problem. A unit side ([0, 1] ∗ [0, 1]) length square shock tube with insulated

walls is considered in this example. The diaphragm is initially located in the middle

of the tube x = 0.5, where the initial condition of the left diaphragm: ρL = 120, uL =
vL = 0, pL = ρL/γ, and of the right disphragm: ρR = 120, uR = vR = 0, pR = ρR/γ.

At the initial time, the diaphragm is broken and a shock wave, followed by a contact

discontinuity, moves to the right zone with Mach number Ma = 2.37 and reflects at the

right end wall. The Prandtl number is 0.72 and a Reynolds number Re = 1000 is con-

sidered. The no-slip and adiabatic solid wall conditions are imposed for all boundaries.

The computational time is till to t = 1.0.
The computational domain is decomposed into two subdomains, where the left

subdomain [0, 0.5] ∗ [0, 1] is computed by the DG methods while the other subdomain

is for the FD methods. The TVB shock detector is used in this example. With the mesh

size ∆x = ∆y = 1/500, the comparison and the distribution along the line y = 0.001
of the density ρ computed by the DG methods, FD methods and multidomain hybrid

methods are shown in Figs. 8 and 9 respectively. The flow structure is complicated and

the primary vortex calculated by the multidomain hybrid methods are comparable well

with the DG methods and FD methods purely.
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Example 6.12 (Shock Layer Interaction Problem [39]). A two-dimensional shock layer

interaction problem is considered in this example. The problem is designed to focus

on the properties of the numerical schemes rather than the boundary treatment in the

simulation of the Navier-Stokes equations. An oblique shock from the top left hand

corner is made to impact on a spatially developing mixing layer at an initial convective

Mach number of 0.6 and is reflected by a wall at the lower boundary. The computational

domain is [0, 200] ∗ [−20, 20]. The inlet condition at x = 0 is specified with a hyperbolic

tangent profile

u = 2.5 + 0.5 tanh(2y). (6.15)
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Figure 10: The comparison of the density ρ of the shock layer interaction problem at t = 120 with
N = 400 ∗ 80. From top to bottom: 3rd-DG and 3rd-DDG method, 5th-WENO and 4th-CD method,
3rd-multidomain hybrid method (Example 6.12).

For the upper stream (y > 0), ρ = 1.6374, p = 0.3327 and for the lower stream (y < 0),
ρ = 0.3626, p = 0.3327. For the upper boundary condition, u = 2.9709, v = −0.1367,

ρ = 2.1101, p = 0.4754 are taken from the flow properties to make an oblique shock.

Fluctuations are added to the inflow as

ν ′ =

2∑

k=1

ak cos(2πkt/T + φk) exp(−y2/b),

b = 10, a1 = a2 = 0.05, φ1 = 0, φ2 = π/2,

(6.16)

where T = λ/uc is period with wavelength λ = 30, convective velocity uc = 2.68. The

Prandtl number Pr is set as 0.72 and the Reynolds number Re is taken as 500. The

computational domain is divided decomposed into two subdomains, where the left one

[0, 100]∗[−20, 20] is calculated by the DG methods and the right one [100, 200]∗[−20, 20]
is computed by the FD methods with the artificial interface located at x = 100. The

comparison of the density ρ and the pressure p computed by the DG methods, FD meth-

ods and the multidomain hybrid methods are presented in Figs. 10 and 11 respectively.

All the methods can capture the shock waves properly and the vortex evolutions in

Figs. 10 and 11 are almost indistinguishable. The vortex structures induced by shear

layer instabilities can be captured well by the multidomain hybrid methods, which are

comparable with the DG methods and FD methods.
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Figure 11: The comparison of the pressure p of the shock layer interaction problem at t = 120 with
N = 400 ∗ 80. From top to bottom: 3rd-DG and 3rd-DDG method, 5th-WENO and 4th-CD method,
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Example 6.13 (Efficiency Comparison). In this example, we give the comparison of the

computational efficiency among the fifth-order WENO and fourth-order CD schemes,

the third-order DG and DDG methods, and our third-order multidomain hybrid method

for solving the two-dimensional viscous shock tube problem in Example 6.11. For the

multidomain hybrid methods, we test the different percents of the total meshes near

the left boundary wall. All of the computations are executed on the workstation with

the Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz.

The comparison of the computational cost and the computational results are shown

in Table 11 and Fig. 12 respectively. With different percents of the total meshes for

the DG methods, the computational results compare well with the DG methods and FD

methods purely. As can be seen, the third-order DG and DDG methods take the most

computational time and the fifth-order WENO and fourth-order CD schemes have the

highest efficiency among these methods in this example. The last column in Table 11

denotes the percent of saving computational time compared to the DG method. With

the lower percent of the DG subdomain, the computational cost is more close to the FD

methods and faster than the DG methods. Specially, with the 4% of the total meshes

for DG methods, the third-order multidomain hybrid methods save almost 92.45% time

compared to the third-order DG method, which reveals that our multidomain hybrid

methods is more highly efficient than the traditional DG methods.
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From left to right and from top to bottom: density with 4% DG, density with 10% DG, density with 20%

DG, density with 30% DG, density with 40% DG, density along the line y = 0.002 (Example 6.13).

Table 11: The efficiency comparison among the different methods (Example 6.13).

Method Grid CFL CPU time(s) Percent(%)

5th-WENO and 4th-CD schemes 250*250 0.05 563 96.61

multidomain hybrid method(4%) 250*250 0.05 1252 92.45

multidomain hybrid method(10%) 250*250 0.05 2199 86.74

multidomain hybrid method(20%) 250*250 0.05 3762 77.32

multidomain hybrid method(30%) 250*250 0.05 5355 67.72

multidomain hybrid method(40%) 250*250 0.05 6924 58.26

multidomain hybrid method(50%) 250*250 0.05 8600 48.16

3rd-DG and 3rd-DDG methods 250*250 0.05 16591 -

7. Conclusions

In this paper, we developed two versions of the multidomain hybrid DDG/CD meth-

ods for the viscous terms. One is the conservative multidomain hybrid third-order DDG

and fourth-order CD method, and the other is the nonconservative multidomain hybrid

third-order DDG and fourth-order CD method. Special treatments are used to preserve

the conservative property when discontinuities pass through the artificial interfaces and

high-order accuracy for smooth regions as well. The analysis of the stability showed
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that both the conservative viscous numerical fluxes are linearly stable. Combining with

the multidomain hybrid RKDG and WENO methods for the inviscid terms, we extended

the multidomain hybrid methods to the hyperbolic-parabolic equations such as two-

dimensional Navier-Stokes equations. Numerical results showed that the multidomain

hybrid methods can preserve non-oscillation property, high-order accuracy and high

efficiency. Further researches to unstructure grids to deal with the complex geometries

are ongoing.

Appendix A

In this appendix, we will give the detailed estimation of the amplification factor G

in Theorem 4.1. The real and imaginary parts of the amplification factor G are

Real = 1 + κ

(
− 1429137

716800
+

11278121 cos(k∆x)

6451200
+

3128057 cos2(k∆x)

6451200

− 308789 cos3(k∆x)

1290240

)
,

Imag = −κ
1027849 sin(k∆x)− 977108 sin(2k∆x) + 308789 sin(3k∆x)

5160960
.

(A.1)

In order to satisfy the stability condition of von-Neumann analysis, it demands that

|G| ≤ 1. Moreover, we have 0 ≤ G2 ≤ 1. Firstly, we should transform the trigonometric

functions to the unified form by the trigonometric formulas

cos(k∆x) =

√
1− sin2(k∆x),

cos2(k∆x) = 1− sin2(k∆x),

cos3(k∆x) =
(
1− sin2(k∆x)

)3/2
,

sin(2k∆x) = 2 sin(k∆x)

√
1− sin2(k∆x),

sin(3k∆x) = 3 sin(k∆x)− 4 sin3(k∆x).

(A.2)

Then, two functions g(x) and f(x) are defined as

g(x) =
308789

1290240
x3 − 244277

645120
x+

244277

645120
x(1− x2)1/2,

f(x) = − 308789

1290240
(1− x2)3/2 +

3128057

6451200
(1− x2)

+
11278121

6451200
(1− x2)1/2 − 1429137

716800
,

(A.3)

where the definitional domain is x ∈ [−1, 1] and x is real. Therefore, we have

G2 = G2(x) =
(
1 + f(x)κ

)2
+
(
g(x)κ

)2
, x ∈ [−1, 1]. (A.4)
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Simplifying the Eq. (A.4) by notation κ and uniting the similar terms, we can obtain

a quadratic function of notation κ

G2(x) = a(x)κ2 + b(x)κ + 1, x ∈ [−1, 1], (A.5)

where

a(x) =

(
− 3410608278072863

9007199254740992
x+

3410608278072863

9007199254740992
xσ1(x)

+
2155664101773481

9007199254740992
x3
)2

+

(
σ1(x)σ2(x)−

8734819158974251

18014398509481984
x2

+
11278121

6451200
σ1(x)−

27181815108109389

18014398509481984

)2

,

b(x) = 2σ1(x)σ2(x)−
8734819158974251

9007199254740992
x2 +

11278121

3225600
σ1(x)

− 27181815108109389

9007199254740992
,

σ1(x) = (1− x2)1/2, σ2(x) =
2155664101773481

9007199254740992
x2 − 2155664101773481

9007199254740992
.

(A.6)

The function a(x) is bigger than zero for ∀x ∈ [−1, 1]. For the inequality equation 0 ≤
G2, the criterion ∆ of the quadratic function is always lower than zero for ∀x ∈ [−1, 1].
As a consequence, the inequality equation 0 ≤ G2 is always true for κ.

As for the inequality equation G2 ≤ 1, the equation can be simplified as

a(x)κ2 + b(x)κ ≤ 0, x ∈ [−1, 1]. (A.7)

Obviously, κ = 0 is a solution of the inequality equation. With κ > 0, we have

a(x)κ ≤ −b(x), x ∈ [−1, 1]. (A.8)

Taking q(x) = −b(x)/a(x) and letting its derivative qx(x) = 0, the extreme points can

be calculated as

x0 = 0, x1 = −0.384, x2 = −0.00207, x3 = 0.384, x4 = 0.00207. (A.9)

Finally, we take the minimum value among the extreme points and the boundary points

and have

0 < κ ≤ 0.998. (A.10)
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