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FINITE VOLUME ELEMENT METHODS:

AN OVERVIEW ON RECENT DEVELOPMENTS

YANPING LIN, JIANGGUO LIU, AND MIN YANG

Abstract. In this paper, we present an overview of the progress of the finite volume element
(FVE) methods. We show that the linear FVE methods are quite mature due to their close
relationship to the linear finite element methods, while development of higher order finite volume
methods remains a difficult and promising research front. Theoretical analysis, as well as the
algorithms and applications of these methods, are reviewed.
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1. Introduction

Finite volume methods have been widely used in sciences and engineering, e.g.,
computational fluid mechanics and petroleum reservoir simulations. Compared
to finite difference (FD) and finite element (FE) methods, finite volume methods
are usually easier to implement and offer flexibility in handling complicated domain
geometries. More importantly, the methods ensure local mass conservation, a highly
desirable property in many applications.

The construction of finite volume methods is based on a balance approach: a
local balance is written on each cell which is usually called a control volume; By
the divergence theorem, an integral formulation of the fluxes on the boundary of a
control volume is obtained; the integral formulation is then discretized with respect
to the discrete unknowns.

Finite volume methods have been developed along two directions. First, finite
volume methods can be viewed as an extension of finite difference methods on irreg-
ular meshes. It is then called cell centered methods or finite difference methods [50].
Such methods usually satisfy the maximum principle and maintain flux consistency.
The higher order formulations of cell centered methods need to use a large stencils
of neighboring cells in polynomial reconstruction. Second, finite volume methods
can be developed in a Petrov-Galerkin form by using two types of meshes: a primal
one and its dual, where the primal mesh allows to approximate the exact solution,
while the dual mesh allows to discretize the equation. Such finite volume methods
are relatively close to finite element methods and are called finite volume element
(FVE) methods. FVE methods have the following advantages: 1). the accuracy of
FVE methods solely depends on the exact solution and can be obtained arbitrarily
by suitably choosing the degree of the approximation polynomials; 2). FVE meth-
ods are well suited for complicated domain and require simple treatment to handle
boundary conditions. This overview will concentrate on the methodological issues
that arise in FVE methods.
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We first use an abstract equation to illustrate the idea of FVE methods. Consider
the following equation

Lu = f on Ω,(1)

where L : X −→ Y is an operator. Let Ωh = {K} denote a primal partition of Ω
with elements K. Each element is associated with a number of nodes. Nodes are
points on the elements K at which linearly independent functionals are prescribed.
For each node, we shall associate a domain K∗ with it, which is usually called a
control volume. All of the control volumes form a dual partition Ω∗

h = {K∗} of Ω.
Denote by S∗

h the piecewise test space on Ω∗
h, which is constructed by generalized

characteristic functions [70, 71] of control volumes. We recap the definition of gen-
eralized characteristic functions here: Let x0 be a node and D a domain containing
x0. A generalized characteristic functions of D at x0 comprises the functions which
are the polynomial basis functions in the Taylor expansion of a fixed order of a
function at x0 within D , and zero outside D.

Then a variational FVE form for equation (1) is established as

(Lu, v∗h) = (f, v∗h), for all v∗h ∈ S∗
h.(2)

Note that S∗
h contains piecewise constants. Hence, conservation is locally preserved

by applying the divergence theorem. The discrete FVE form is to seek an approxi-
mation of u in Sh for (2), where Sh is a finite element space defined on Ωh. Different
choices for dual partitions, solution spaces, and test spaces lead to different FVE
methods. If piecewise polynomials of degrees k and k′ are used for the solution s-
pace and the test space, respectively, the corresponding FVE scheme is called k−k′
dual grid scheme [23].

2. Linear FVE methods

Linear (1 − 0) FVE methods have been extensively studied and their theories
and algorithms are relatively mature now.

2.1. FVE methods for elliptic problems.
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Figure 1. A control volume

2.1.1. Conforming, nonconforming, and discontinuous methods. A primal
partition for 1D domain (a, b) is denoted by Ωh : a = x0 < x1 < . . . < xn−1 < xn =
b, while its dual is denoted by Ω∗

h : a = x0 < x1/2 < . . . < xn−1/2 < xn = b with
(xi−1/2, xi+1/2) being control volumes. A primal partition Ωh for 2D linear FVE
problems can be constructed using triangles and quadrilaterals. If the solution space
Sh is constructed using conforming linear elements, then an associate control volume
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K∗ for a vertex is obtained by connecting midpoints of edges and an arbitrary
interior point in the element. See, e.g., Figure 1 (a)(b), where the control volume
is the dotted polygonal domain around the vertex. If the interior point is chosen
as the barycenter or circumcenter, the corresponding dual partition is named as
barycenter or circumcenter (Voronoi) dual partitions, which are widely used in
engineering. If the solution space Sh is constructed using nonconforming Crouzeix-
Raviart elements, then the control volume for each midpoint of an edge is obtained
by connecting the vertices and an arbitrary interior point in the element (Figure 1
(c)). Dual partition for 3D problems can be constructed in a similar way, see e.g.
[81, 101]

In 1982, the original FVE methods (called generalized difference methods) were
developed by Li for 1D and 2D elliptic problems [67, 72, 120]. The approximate
solutions were sought in the conforming linear (bilinear) finite elements defined on
a primal partition. The test space S∗

h consists of characteristic functions defined
on a dual partition. The ellipticity of the auxiliary schemes, which were generated
by use of some quadrature formulas, was first investigated. Then the ellipticity
and H1 errors of the schemes were proved. Since then, many Chinese researchers
have contributed to the development of the generalized difference methods. Most
of their results, till to 1994, are collected in the monograph [70, 71].

Another approach to analyze linear FVE methods on triangular meshes is to
compare FVE scheme with the corresponding FE scheme. Bank and Rose [2] found
that the difference of stiffness matrices between FVE (called box method) method
and FE method is O(h) and is the same if the diffusion matrix is elementary. Their
observation can be expressed as

|aFV (uh, I
∗
hvh)− aFE(uh, vh)| ≤ Ch|uh|1|vh|1, uh, vh ∈ Sh,(3)

where I∗h : Sh −→ S∗
h is a linear transfer operator,

aFV (uh, I
∗
hvh) = −

∑

K∗∈Ω∗

h

I∗hvh

∫

∂K∗

a∇u · nds

is the FVE bilinear form of the elliptic term −∇ · (a∇u), and

aFE(uh, vh) =

∫

Ω

a∇u · ∇udx

is the standard FE bilinear form. By the closeness relationship (3), the following
error estimates hold

‖|u− uh‖| ≤ inf
v∈Sh

(‖|u− v‖|+ ‖u− v̄‖0),

‖|u− uL‖| ≤ ‖|u− uh‖| ≤ C(‖|u− uL‖|+ ‖u− ūL‖0),
where ‖| · ‖| denotes the energy norm, v̄ = I∗hv a piecewise projection of v, and uL
the linear FE approximation. From then on, treating linear FVE methods as “a
perturbation” of the corresponding FE methods becomes an efficient and popular
tool in the analysis of linear FVE methods. Properties of FVE methods could be
derived from the standard FE results, see e.g. [39, 46, 56, 61, 100].

Early on, the FVE methods mainly used conforming linear elements to construct
solution spaces. Nonconforming elements have good stability properties and par-
allelability. A dual partition for the FVE method based on the Crouzeix-Raviart
element can be constructed as in Figure 1 (c). Thus, for each edge, there exists
an associated control volume K∗, which consists of the union of the sub-triangular
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sharing the edge. In 1999, Chatzipantelidis [15] studied such FVE scheme for defi-
nite elliptic problems. Optimal order errors in the L2- norm and a mesh-dependent
H1-norm were proved by a direct examination of coercivity of the scheme and a
duality argument. It is worth noticing that the interior point in Figure 1 (c) should
be chosen as the barycenter of the element to obtain the optimal order L2 error
estimate. This is also the case for the conforming FVE methods. FVE methods
based on other nonconforming elements can be constructed similarly, see e.g. [80],
where a nonparametric P1-nonconforming quadrilateral FVE method is introduced.

For triangular meshes, linear FVE methods (conforming or nonconforming) and
the corresponding FE methods will reduce to the same stiffness matrix when the
diffusion coefficient is constant; they differ only in the right-hand side terms. But
this difference can be controlled as follows when the barycenter dual partition is
used [16, 33, 100]

|(f, v∗h)− (f, vh)| ≤ C
∑

K∈Ωh

hK‖f‖0,K |vh|1,K ,(4)

|(f, v∗h)− (f, vh)| ≤ C
∑

K∈Ωh

h2K‖f‖W 1,p(K)|vh|W 1,q(K),
1

p
+

1

q
= 1,(5)

where v∗h ∈ S∗
h is a piecewise constant interpolation of vh ∈ Sh. Based on this obser-

vation, a unified analysis for conforming and nonconforming linear FVE methods
was performed in [16]. The main idea there is to write the FVE methods as

∑

K∈Ωh

(A∇uh · n,QK
2 χ)∂K + (Luh, Q1χ)K = (f,Q1χ), ∀χ ∈ Sh.(6)

where Lu = −∇ · (a∇u), and Q1χ and QK
2 χ are defined as an appropriate linear

combination of point values of χ. Compared with the corresponding FE methods,
the following optimal order errors were obtained

‖u− uh‖1 ≤ Ch‖u‖2,

‖u− uh‖0 ≤ Ch2(‖u‖2 + ‖f‖1,p), 1 < p ≤ 2.

In particular, the discrete method (6) led to some new overlapping FVE schemes.
Discretization methods utilizing discontinuous elements possess the advantages

of high parallelizability, localizability, and easy handling of complicated geometries.
In 2004, Ye [113] developed a FVE method based on discontinuous P1 elements (D-
FVEM) for second order elliptic problems. The primal partition Ωh can be noncon-
forming, allowing hanging nodes. The dual partition is constructed by connecting
the barycenter of each primal element with line segments to the vertices. The dual
partition of DFVEM looks like that of nonconforming FVE method (see Figure 1
(c)). But for DFVEM, one sub-triangle forms one control volume. Hence, there
exist two control volumes for an interior edge. A discrete form for diffusion term
−∇ · (a∇u) is defined as: for uh, vh ∈ Sh,

aFV (uh, γvh)

=−
∑

K∈Ωh

3
∑

i=1

∫

Pi+1QPi

(a∇uh · n)γvhds−
∑

e∈Eh

∫

e

[γvh] · {a∇uh}+ α
∑

e∈Eh

[γuh][γvh],

where Q is the barycenter of the element K, Pi three vertices, Eh edges of the
primal partition, α penalty factor, γ a transfer operator from Sh to S∗

h. A unified
way to analyze linear FVE methods, including DFVE methods, was investigated
by exploring their natural relation to the FE methods [39].
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It should be emphasized that the optimal order errors of FVE methods need
more regular assumptions on the exact solution than FE methods. The regularities
in both the exact solution and the source term will affect the accuracy of FVE
methods. Ewing et. al. [46] confirmed that the conforming linear FVE method
cannot have the standard O(h2) convergence rate in the L2-norm when the source
term has minimum regularity, only being in L2, even if the exact solution is in H2.
The L2-error estimate in such case is

‖u− uh‖0 ≤ C(h2‖u‖2 + h1+β‖f‖β), 0 ≤ β ≤ 1.(7)

It was also shown in [21] that when the source term f ∈W 1,p, the L2-error should
be

‖u− uh‖0 ≤ Ch2| lnh|δ1,p/2‖f‖W 1,p , p ≥ 1,(8)

where δ is the Kronecker symbol. Unlike FE methods, the estimate ‖u − uh‖0 ≤
Ch2‖f‖0,p, p ≥ 2 does not exist.

2.1.2. Mixed FVE methods. Another type of FVE methods are based on mixed
forms, which are also called as covolume methods [27, 28, 29, 33]. The main idea of
such methods is to use two partitions of the domain to find approximations of the
state and flux variables simultaneously. A conservation law on the primal volumes is
used for the state variable and a constitutive law on the dual volumes or covolumes
is used for the flux variable. For example, we depict the nonoverlapping covolumes
in Figure 2, where a typical interior covolume (conrol volume) in the dual partition
is the dashed quadrilateral, the closure of the union of the two sub-triangles sharing
the common edge E. The two interior points in the primal elements are usually
chosen as the barycenters. Thus each edge E of the primal element corresponds to
a covolume. On the boundary, the covolume reduce to a sub-triangle. In Figure 3,
the dashed covolumes are overlapping. This type of staggered grid is also adopted
in the MAC method [26] and is particularly of interest in oil recovery simulations.
The right quadrilateral case in Figure 3 can be viewed as a distorted figure of left
rectangles.
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Figure 2. Primal elements and nonoverlapping control volumes

The significance of the mixed FVE methods is that, unlike lower order mixed
finite element methods, mixed finite volume methods can decouple the pressure
from the flux and compute it basically cost-free. Thus they require fewer degrees
of freedom than the mixed finite element methods.
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Figure 3. Primal elements and overlapping control volumes

To illustrate the basic idea of the mixed FVE methods, let us consider a model
elliptic problem

−∇ · (K∇p) = f, in Ω,

K∇p · n = 0, on ∂Ω,

where Ω is a bounded polygonal domain in R
2 with boundary ∂Ω andK is a diffusion

matrix. The above equation can be written as a system of a first order equations

K−1u = −∇p, in Ω,

∇ · u = f, in Ω,

u · n = 0, on ∂Ω

Let Ωh be a triangular or quadrilateral partition of Ω. To define a mixed FVE
scheme, a dual partition Ω∗

h can be constructed as in Figure 2 and Figure 3, where
a control volume for an edge E is the dashed line quadrilateral K∗

E . The solution
space Hh with velocity u can be taken as piecewise constant vector functions on
Ω∗

h that have continuous normal traces across the interior edges, or lowest-order
Raviat-Thomas space with respect to Ωh. The solution space with pressure p can
be chosen as the piecewise constant space Lh on Ωh. The test space Yh is usually
built by piecewise constant vectors, which have continuous normal traces, but take
on different constant vector values on the left and right pieces of an interior dual
element and are zero on boundary dual elements. The mixed FVE scheme for the
model elliptic problem is to find uh × ph ∈ Hh × Lh such that

a(uh,vh) + b(vh, ph) = (f,vh), vh ∈ Yh(9)

c(uh, qh) = (f, qh), qh ∈ Lh,(10)

where

a(uh,vh) =

∫

Ω

K−1uh · vhdx,

b(vh, qh) =
∑

K∗

E
∈Ω∗

h

∫

E

vh · n[qh]Eds,

c(uh, qh) =















−
∑

K∗

E
∈Ω∗

h

∫

E

uh · n[qh]Eds,
∫

Ω

qh∇ · uhdx, if uh is linear.

By introducing a suitable transfer operator γh from the solution space Hh to the
corresponding test spaces Yh (e.g., piecewise edge averaging vectors), the above
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scheme can be rewritten as

a(uh, γhvh) + b(γhvh, ph) = (f, γhvh), vh ∈ Hh(11)

c(uh, qh) = (f, qh), qh ∈ Lh.(12)

The scheme is now well connected to the standard mixed FVE method and they
share some common properties. In fact, the most important issue in the covolume
framework is the construction of the operator γh and test spaces that will maintain
optimal order convergence rates, and superconvergence results, when compared
with the corresponding mixed FE methods.

The covolume methods using nonoverlapping dual partitions were analyzed in
[27] and finally presented in a unified manner in [36]. For nonoverlapping cases,
Chou and Kwak [29] proved the first order of convergence for the approximate
velocities as well as for the approximate pressures on rectangular meshes. Chou,
Kwak, and Kim [31] extended the analysis to the general second-order elliptic prob-
lems on quadrilateral grids. They formulated a new framework where the locally
supported test functions are images of the natural unit coordinate vectors under
the Piola transformation. Under the assumption that the quadrilateral mesh sat-
isfies the ”almost parallelogram” condition, the optimal order error estimates were
obtained.

There also exist FVE methods that use only a single nonstaggered grid sys-
tem to achieve stability. An approximate flux can be sought in the lowest-order
Raviart-Thomas space Hh, while the solution space Lh for pressure is chosen as
the nonconforming P1 elements (triangular meshes) [40] or the rotated noncon-
forming P1 space (quadrialteral meshes) [28]. Then the mixed FVE scheme is to
find uh × ph ∈ Hh × Lh such that for any Q ∈ Ωh,

∫

Q

(uh +K∇ph) · ∇χdx = 0, χ ∈ Nh(Q),(13)

∫

Q

∇ · uhdx =

∫

Q

fdx.(14)

2.1.3. Superconvergence. Study of superconvergence of FVE methods includes
two aspects. One is to treat the linear FVE methods as a perturbation of the FE
methods and prove that the differences between the FVE and FE solutions are
higher order terms. This phenomenon is also named as ”supercloseness”. In 1988,
Hackbusch [56] proved that the error between the FEM solution and the FVM
solution for two-dimensional elliptic problems is of first order in general case and
is of second order for barycenter dual partition. As a consequence of Hackbush’s
result, some superconvergence of FE methods are also naturally valid for the FVE
methods, see, e.g., [4, 5, 17, 33, 38, 87, 100].

Another aspect is to obtain superconvergence when the meshes satisfy some spe-
cial properties. In 1991, Cai, Mandel and McCormick [9, 11] established improved
O(h3/2) and O(h2) H1 errors for triangular meshes when the control volumes are
symmetric or essentially symmetric. For quadrilateral meshes, if the meshes are
h2-uniform, i.e., each two neighbor quadrilaterals is close to a parallelogram, su-
perconvergence was derived in an average gradient norm in [78].

2.2. Extensions. Due to the nonsymmetry of the schemes, coercivity of FVE
methods for nonlinear problems is difficult to verify. In 1987, Li [68] considered
an elliptic problem with nonlinear diffusion a(x, u). A circumcenter dual partition
was adapted to ensure the symmetry of the scheme and then the Brouwer fixed
point theorem gave the existence of the approximate solution. The first order error
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in H1-norm was obtained. In 2005, a barycenter type FVE method was analyzed
for an elliptic problem with the diffusion coefficient being a tensor [17]. Compared
with the corresponding FE method, optimal order errors in general norms were
derived. Recently, Bi and Ginting [8] extended the analysis in [17] to a more
general quasilinear elliptic problem

−∇ · F (x,∇u) + g(x, u,∇u) = 0, in Ω,

u = 0, on ∂Ω.

It was proved that the approximations are convergent with O(h), O(h1−2/r| lnh|),
r > 2, and O(h2| lnh|) in the H1-, W 1,∞- and L2-norm when u ∈ W 2,r(Ω) and
u ∈ W 2,∞(Ω) ∩ W 3,p(Ω), p > 1, respectively. Moreover, the optimal order error
estimates in the W 1,∞- and L2-norm, and an O(h2| lnh|) estimate in the L∞-norm
are derived under the assumption u ∈ W 2,∞(Ω) ∩H3(Ω). For the following quasi-
linear elliptic problem

−∇ · (a(p) + b(p))) + c(p) = f, in Ω,

p = 0, on ∂Ω.

Kwak and Kim [63] used an overlapping mixed FVE method [29] to discretize it
and obtained the first order errors for both the state and the flux variables.

Since the linear FVE methods are close to the corresponding FE methods, ex-
tension of linear FVE methods from elliptic problems to time-dependent problems
is usually straightforward by a perturbation argument. A unified approach and
general error estimates for parabolic problems were presented in [33] by a pertur-
bation analysis. FVE methods for parabolic integro-differential problems, which
arise in modeling reactive flows or material with memory effects, have been in-
tensively studied by using the Petrov-Volterra projection [48, 49, 93]. Symmetric
FVE schemes can also be developed by using the “lumped mass” technique to solve
the discrete equations more efficiently [79, 85, 86, 91]. FVE methods combined
with the upwind or characteristic techniques can well handle convection-dominated
problems [35, 88, 92, 95].

Remark. We should notice that until now, little progress has be made on FVE
methods for nonlinear time-dependent problems. The existence of the approxima-
tions for such problems is still not well-known.

Navier-Stokes equations are of crucial importance in fluid dynamics. Covolume
methods can be applied to discretize the generalized Stokes equations, where the
velocity might be approximated by conforming and nonconforming linear elements
or rotated bilinear elements, and the pressure by piecewise constants [26, 27, 28].
In 2001, Ye [112] revealed a close relationship between the FVE and FE approx-
imations for lower-order elements for Stokes equations. The solution spaces used
there include conforming, linear velocity-constant pressure on triangles, conforming
bilinear velocity-constant pressure on rectangles and their macro-element versions,
and a nonconforming linear velocity-constant pressure on triangles and noncon-
forming rotated bilinear velocity-constant pressure on rectangles. FVE methods
based on other nonconforming elements [19, 43, 99], discontinuous P1 elements
[41, 114], stabilized elements [57, 58, 59, 65, 66], can also be used to discretize the
Stokes and Navier-Stokes problems. A critical step in the analysis of FVE methods
for Stokes (Navier-Stokes) problems is to verify the inf-sup condition, which can
be successfully obtained from the corresponding FE methods by a perturbation
argument.
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In many applications, a simulation domain is often formed by several materials
separated by curves or surfaces from each other, and this often leads to interface
problems. In the immersed element method, standard FE functions are used in
elements occupied by one of the materials, but piecewise polynomials patched by
interface jump conditions are employed in elements formed by multiple materials.
Particularly, the meshes used can be independent of the interface. In 1999, a
FVE method based on immersed elements on triangular meshes were presented in
[47]. Optimal error estimates in an energy norm are obtained by a perturbation
argument. A bilinear immersed FVE method was constructed in [60], and the
optimal order L2- and H1- errors were confirmed by numerical examples.

FVE methods are also well adapted to discretize systems of equations coupled
with elliptic, parabolic and hyperbolic types. Examples of performance of FVE
methods combined with multiscale methods for two-phase flows in oil reservoirs can
be found in [44, 51]. Level set methods are widely used for predicting evolutions
of complex free surface topologies. [83] presented a characteristic level set equation
derived by using the characteristic-based scheme. An explicit FVE method was
developed to discretize the equation on triangular grids.

2.3. Algorithms.

2.3.1. Adaptive algorithms. A posteriori error estimation is particularly use-
ful and successful in designing efficient adaptive algorithms for numerical schemes.
Developing the theory of a posteriori error estimates for finite volume methods has
attracted much attention. In 2000, Agouzal and Oudin [1] compared finite volume
methods with some well-known FE methods, namely the dual mixed methods and
nonconforming primal methods, for elliptic equations. Equivalences were exploited
to give a posteriori error estimators for finite volume methods. In 2002, Lazarov
and Tomov [64] adopted the finite element local error estimation techniques to the
case of conforming linear FVE approximations for 2D and 3D indefinite elliptic
problems, and a residual type error estimator and its practical performance were
investigated. New residual-type error estimators and averaging techniques were
given in [14]. In 2003, Bergam, Mghazli, and Verfürth [3] obtained a residual-type
a posteriori error estimates of a FVE method for a quasi-linear elliptic problem of
nonmonotone type using the Kirchhoff transformation. The approach in [3] can
not be used to derive a posteriori error estimates of the FVE method when the
diffusion coefficient is a matrix. Bi and Ginting [7] overcame this difficulty and
derived a residual-type a posterior error estimate of FVE method when diffusion is
a nonlinear matrix function. A posteriori error estimates for nonconforming FVE
methods for steady Stokes problems and indefinite elliptic problems were obtained
in [19, 104], respectively. Residual type estimators, which could be applied to d-
ifferent finite volume methods associated with different trial functions including
conforming, nonconforming and totally discontinuous trial functions, were estab-
lished in a systematic way [116]. All the results above have demonstrated that the
a posteriori error estimates for the FVE method are quite close to those for the FE
methods, and the mathematical tools from FE theory can be successfully applied
for the analysis.

For the discontinuous finite volume methods (DFVM), a posteriori error estima-
tion and adaptive schemes have been investigated in [76, 116].

2.3.2. Multigrid algorithms. Multigrid methods have proven to be robust and
effective in conjunction with the FE methods for elliptic problems. Since linear FVE
methods can be obtained from related FE methods by adding small perturbation
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terms to the bilinear forms (on the left-hand side) and the linear functionals (on
the right-hand side) corresponding to the FE formulations, this gives possibility
for designing multigrid algorithms for FVE methods in a similar way for the FE
methods.

In 2002, Chou and Kwak [30] analyzed V-cycle multigrid algorithms for a class
of perturbed problems whose perturbation in the bilinear form preserves the con-
vergence properties of the multigrid algorithm of the original problem. The re-
quirement for small coarse grid was necessary for the covolume method to make
sense. As an application, they studied the convergence of multigrid algorithms for
a FVE method for variable coefficient elliptic problems on polygonal domains. Sim-
ilar to the FE methods, the V-cycle algorithm with one pre-smoothing converges
with a rate independent of the number of levels. Two most important classes of
smoothers, Jacobi type and Gauss-Seidel type, were analyzed. Cascadic multigrid
method, which requires no coarse grid corrections and can be viewed as a “one-
way” multigrid method, is effective for solving large-scale problems. The cascadic
multigrid algorithms have been proposed for solving the algebraic systems arising
from the conforming and nonconforming FVE methods [80, 90]. It was shown that
these algorithms are optimal in both accuracy and computational complexity. In
2007, Bi and Ginting [6] studied two-grid FVE algorithms for linear and nonlinear
elliptic problems, which involves a nonlinear solve on the coarse grid with size H
and a linear solve on the fine grid with size h ≪ H , In 2009, postprocessing FVE
procedures were developed for the time-dependent Stokes problem and the semi-
linear parabolic problem [106, 110]. The postprocessing technique can be seen as
a novel two-grid method, which involves an additional solution on a finer grid af-
ter the time evolution is finished. Unlike the traditional two-grid algorithm, there
is no communication from fine to coarse meshes until the end of time-marching.
This implies that the extra cost of the postprocessing is relatively negligible when
compared with the cost of computations from t = 0 to t = T on the coarser mesh.

2.3.3. Other algorithms. The elliptic boundary value problems require a large
number of unknowns and the use of parallel computers. Under the assumption
that the coefficients are of two scales and periodic in the small scale, Ginting [55]
analyzed numerical methods based on finite volumes that can capture the small
scale effect on the large scale solution without resolving the small scale details
and thus reduce the number of degrees of freedom. The convergence analysis was
based on estimating the perturbation of the two-scale finite volumes with respect
to finite elements. Moreover, the author presented an application of the method to
flows in porous media. The FVE methods for solving differential equations have
a shortcoming that the matrices are not well-conditioned. With the help of an
interpolation operator from a trial space to a test space, [74] showed that both
wavelet preconditioners and multilevel preconditioners designed originally for the
FE method can be used to precondition the FVE matrices. These preconditoners
lead to matrices with uniformly bounded condition numbers.

3. Higher order FVE methods

To design a higher order FVE method, the first requirement is that the degrees of
freedom of the test space and the solution space should be the same, and the second
requirement is that the test space should include the characteristic functions of the
control volumes so that local conservation will be preserved. Compared to linear
FVE methods, higher order FVE methods differ considerably from the correspond-
ing FE methods. The perturbation argument is no longer applicable for analyzing
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higher order schemes. Nonconforming and nonsymmetric discretizations result in
difficulty of establishing a general framework for analysis. The main idea for an-
alyzing higher order FVE methods is to first derive the elementary matrix forms,
and then manage to obtain positiveness and boundness of the resulted matrices
under certain geometric assumptions.

3.1. One-dimensional case. In 1982, Li [67] introduced higher-order FVE meth-
ods for two-point boundary value problem. The solution space Sh used usual finite
elements on Ωh of a domain (a, b). The dual partition Ω∗

h was built by the mid-
points of the primal elements. The basis functions for the test space S∗

h were chosen
from the following set of piecewise polynomials,

ψ
(r)
j (x) =

{

(x− xi)
r

r!
, xi−1/2 ≤ x ≤ xi+1/2,

0, otherwise,
(15)

where xi−1/2 = 1
2 (xi + xi−1) and r = 0, 1, · · · .

For example, for a quadratic FVE method, the primal and dual partitions could
be

Ωh :a = x0 < x1/2 < x1 < x3/2 < · · · < xn−1/2 < xn = b,

Ω∗
h :a = x0 < x1/4 < x3/4 < · · · < xn−1/4 < xn = b.

The solution space Sh is chosen as piecewise Lagrange quadratic elements, whereas
the test space S∗

h is chosen as piecewise characteristic functions defined on Ω∗
h;

For a cubic FVE method, the primal and dual partitions could be

Ωh :a = x0 < x1 < · · · < xn−1 < xn = b,

Ω∗
h :a = x0 < x1/2 < x3/2 < . . . < xn−1/2 < xn = b.

The solution space Sh is chosen as piecewise Hermit elements on Ωh, the test space
S∗
h is spanned by the following basis functions

ψ
(0)
i =

{

1, x ∈ [xi−1/2, xi+1/2],
0, otherwise;

ψ
(1)
i =

{

x− xi, x ∈ [xi−1/2, xi+1/2],
0, otherwise.

Optimal order error estimates in the H1-norm for these methods can be derived
by investigating directly positiveness and boundness of the resulted matrices, see,
e.g., [22, 67].

The shape of the dual partition could affect the accuracy of the corresponding
higher order FVE methods. Choosing certain special points as the nodes of the
dual partition may help derive sharp error estimates. The set of Barlow points
(optimal stress points) is a good choice for this purpose. The derivative of a rth
Lagrange interpolation Ih at Barlow points {bi}ri=1 satisfies

(u− Ihu)
′|bi = 0, ∀u ∈ P

r+1, i = 1, . . . , r,(16)

which means that the accuracy of the derivative at Barlow points is one order higher
when compared with the finite element derivative field. The analysis for quadratic
(2-0) and cubic (3-0) FVE methods based on Barlow points could be found in
[53, 54], where superconvergence and optimal order L2-error were obtained.

Borrowing the idea from [16] (see (6)), another type of higher order FVE methods
were constructed for one dimensional indefinite elliptic problems in [84]. Compared
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Table 1. Barlow points in the reference element [−1, 1]

r 2 3 4 5

Barlow points ± 1√
3

0,±
√
5
3 ±

√

3±
√

29/5

2
√
2

0,±
√

35±8
√
7

5
√
3

with FE methods, a systematic way is presented to analyze the FVE schemes. The
main results obtained there include

• If r = 2, 4, 6, where r denotes the degree of the approximation piecewise
Lagrange polynomials, then the finite volume methods, with control vol-
umes based on the roots of r-th Legendre polynomial, have optimal order
of convergence in the H1- and L2-norms;

• If r ≥ 3, then the finite volume methods, with control volumes based on the
arbitrary internal nodes of [0, 1], have only optimal order of convergence in
the H1-norm.

In [89] a class of high-order FVE schemes with spectral-like spatial resolution char-
acteristics is developed. An implicit reduction of the number of unknowns was
obtained by a local implicit mapping of some degrees of freedom.

Recently, a family of arbitrary order FVM schemes, with control volumes based
on the roots Gauss points, were constructed and analyzed in a unified approach
[13]. The solution space there was chosen as the Lagrange finite element with
the interpolation points being the Lobatto points, significantly different from other
FVE methods. With help of the inf-sup condition, the optimal order convergence
in the H1-and L2-norms, and superconvergence, some of which was much better
than that of the counterpart finite element method, were derived.

3.2. Multidimensional case. A difficult task in multidimensional higher order
FVE methods is to construct a suitable dual partition to ensure the solvability of
the scheme. This is quite complicated compared to those in linear FVE methods.
Moreover, certain geometric requirements have to be specified for different higher
order methods.

0
P


0
M


1
P


02
P


20
P


2
P


1
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21
M


01
M


Figure 4. A dual partition for the quadratic FVE methods on a
triangular mesh
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3.2.1. Triangular meshes. As an example, we first consider a quadratic (2-0)
FVE method. Let Ωh be a triangular partition in R

2. Let Nh and Mh be respec-
tively the sets of vertices and edge midpoints. The dual partition Ω∗

h is built from
the control volumes of all points in Nh and Mh. Its construction is specificized as
follows:

(1) Let P0 be a vertex in Nh. Let Pi (i = 1, 2, . . . ,m) be the adjacent vertices
of P0 , Qi the barycenter of the triangle of △P0PiPi+1 and P0i , M0i given points
on the segment P0Pi and P0Qi, respectively such that

|P0P0i| = α|P0Pi|, |P0M0i| =
3

2
β|P0Qi|, 1 ≤ i ≤ m,

where |PQ| denotes the length of the line segment joining points P and Q and
0 < α < 1/2, 0 < β < 2/3 are two given parameters. We connect P0i,M0i as in
Figure 4 to obtain a control volume DP0

surrounding P0.
(2) Let M0 ∈ Mh be a midpoint of the common side of two adjacent elements

K1 = △P0P1P2 and K2 = △P0P2P3. We denote by Q1 and Q2 the barycenter of
K1 and K2 respectively. Let M01,M21,M02,M22 be the points respectively on the
segments such that

|P0M0i| =
3

2
β|P0Qi|, |P2M1i| =

3

2
β|P2Qi|.

A control volume DM0
surrounding M0 is obtained by connecting successively P01,

M01, Q1, M11, P10, M12, Q2, M02 and P01. Then all these control volumes form
the dual partition Ω∗

h. The solution space Sh is chosen as the quadratic Lagrange
elements on Ωh, while the test space S

∗
h is chosen as the piecewise constants on Ω∗

h.
Different choices of α and β lead to different quadratic FVE schemes.

In order to extend the 2-0 FVE method to general r − 0 (r > 2) methods, a
crucial step is to construct a corresponding dual partition. This might be realized
in a systematic way by using several techniques based on the Voronoi diagram
and its variants [25]. In 2010, a r − 0, r > 2 higher order FVE method [96] was
proposed for elliptic problems in 2D. Numerical tests demonstrated optimal errors
in the H1-norm. While the errors in the L2-norm were one order below optimal for
even polynomial degrees and optimal for odd degrees.

Next we consider a sample cubic Hermit type (3-1) FVE method. The dual
partition is constructed as follows (see Figure 5). Suppose that P0 is a vertex of
a triangular element in the primal partition Ωh, The control volume of P0 is the
polygonal domain M1M2 · · ·M6, where Mi(1 ≤ i ≤ 6) are midpoints of the cor-
responding sides. Suppose that Q is a barycenter of an element △PiPjPk, The
control volume of Q is the triangle △MiMjMk. All these control volumes make
dual partition Ω∗

h. The solution space Sh is chosen as the piecewise cubic Her-
mit polynomials on Ωh, while the test space S∗

h is spanned by the following basis
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Figure 5. A dual partition for the Hermit 3-1 FVE method on a
triangular mesh

functions:

ψ
(0)
P =

{

1, (x, y) ∈ K∗
P ,

0, otherwise.

ψ
(x)
P =

{

x− xP , (x, y) ∈ K∗
P ,

0, otherwise.

ψ
(y)
P =

{

y − yP , (x, y) ∈ K∗
P ,

0, otherwise.

ψQ =

{

1, (x, y) ∈ K∗
Q,

0, otherwise.

Here P,Q denote respectively the vertex and barycenter of an arbitrary primal
element.

In 1991, Tian and Chen [94] considered a quadratic FVM scheme with α =
β = 1/3. Optimal order H1- error was obtained under the assumption that the
maximum angle of each element of the triangulation is not greater than π/2 and
the ratio of the lengths of the two sides of the maximal angle is within the interval
[(2/3)1/2, (3/2)1/2]. In 1996, Liebau [75] considered the case in which α = 1/4, β =
1/3. In 2009, Xu and Zou [101] proved that when α, β varies from 0.18979 to
0.18991, the mass matrix was positive definitive for any θ0 ≥ 2.99◦, where θ0
was the minimal angle of the triangulations. In 2011, Ding and Li [42] studied a
Lagrangian cubic FVE method. In 1994, Chen [20] presented the cubic Hermite
type FVE method described above. Under the same mesh assumption as that in
[94], a third error in the H1-norm was obtained when the exact solution u ∈ H4(Ω).
The main idea in all analysis is to rewrite the scheme into a summation of local
bilinear forms on the primal elements by a transfer operator from Sh to S∗

h; Then
map the local bilinear forms into the reference element and examine positiveness of
the local matrix directly.

The above higher order FVE methods require a complicated construction of
control volumes. FVE methods mixing the discretization of a linear FVE and a
higher order FE formulation can avoid such complication. Given a triangulation
Ωh, the solution space is chosen as a kth-order finite element space Vk,Ωh

. There
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exists a hierarchical decomposition

Vk = V1 +Wk,

where V1 is the linear finite element space, and Wk is spanned by the hierarchical
basis function up to order k excluding linear basis. The test function space is chosen
as

Vk := V0;B ⊕Wk,

where V0,B is a piecewise constants defined on a dual mesh B, which arises from
linear FVE methods. The kth-order order FVEM reads as: Given f ∈ L2(Ω), find
u ∈ Vk such that

ā(u; v) = (f ; v) ∀v ∈ V0;B ;(17)

a(u; v) = (f ; v) ∀v ∈Wk,(18)

where ā(·, ·) is the linear FVE bilinear form and a(·, ·) the FE counterpart. Such
hybrid FVE methods were developed by Chen [24]. Ellipticity and optimal order
H1- errors for quadratic cases on triangular and rectangular meshes have been
obtained and verified by numerical experiments.

Recently, Chen, Wu, and Xu [23] provided a systematic study of the geometric
requirements for various higher order FVE methods on triangular meshes. Their
study was carried out in two steps. The 1st step is to parameterize the mesh geo-
metric requirements by using a linear combination of the mesh feature matrices
obtained from the reference element. The 2nd step is to analyze the linear combi-
nation. Edge-length parametrization was used to measure the shape of triangles.
Necessary and sufficient conditions for the uniformly local ellipticity condition of
higher order FVE schemes are introduced, some of of which can be verified easily
by a computer program.

3.2.2. Tensor-product and quadrilateral meshes. In 2003, Cai, Douglas and
Park [10] presented a systematic way to derive higher order finite volume schemes
from higher order mixed finite element methods in two and three dimensions. The
procedure starts from hybridization of the mixed method. Then a localized (hy-
bridized) mixed finite element approximation is formulated. Use a quadrature rule
to make one matrix in the discrete form diagonal, instead of block diagonal. Finally,
the elimination of the flux and Lagrange multiplier yields equations in the scalar
variable, which gives the higher order finite volume method. Higher order finite
volume methods derived from BDM2 elements and Raviart–Thomas elements have
been studied as well.

In 2005, Kim [62] extended the mixed FVE method in [32] to arbitrary or-
ders, and applied the new method to an elliptic problem with nonlinear diffusion
a(x, |∇p|). They used H(div; Ω)-conforming RTk elements for the vector variable,
completely discontinuous k+1 polynomials for the scalar variable. If one eliminates
the flux variable in a local manner, then the method will reduce to a discontinuous
Galerkin method for the scalar variable.

Higher order FVE methods can also be constructed from the one-dimensional
methods presented in Section 3.1 by using tensor products, see, e.g., [98, 117, 119].

Quadrilateral meshes can be regarded as mappings from rectangular ones. Mea-
suring the effect of the distortion becomes a critical task. For an affine biquadratic
FVE method, the primal partition Ωh could be a conforming quadrilateral mesh,
whereas the dual partition Ω∗

h can be constructed as follows. As shown in Figure
6, each edge of Q ∈ Ωh is partitioned into three segments so that the ratio of



FVE METHODS: AN OVERVIEW AND DEVELOPMENTS 29

these segments is 1 : n : 1. We connect these partition points with line segments
to the corresponding points on the opposite edge. This way, each quadrilateral
of Ωh is divided into nine sub-quadrilaterals Qz, z ∈ Zh(Q), where Zh(Q) is the
set of the vertices, the midpoints of edges, and the center of Q. For each node
z ∈ Zh = ∪Q∈Ωh

Zh(Q), we associate a control volume Vz, which is the union of
the subregions Qz containing the node z. Therefore, we obtain a collection of con-
trol volumes covering the domain Ω. This is the dual partition Ω∗

h of the primal
partition Ωh. The solution space Sh is chosen as the affine biquadratic Lagrange
elements on Ωh, while the test space S∗

h is chosen as the piecewise constants on
Ω∗

h. In 2006, Yang [102] studied a quadratic FVE method with n = 2. Optimal or-

Q


1

n


1


Figure 6. A generic quadrilateral Q is partitioned into nine subregions

der H1 error was proved under the “almost parallelogram” mesh assumption. The
method was extended to three-dimensional problems on right quadrangular prism
grids [109], where the ratio of the segments for control volumes is 1 : 4 : 1 to ensure
the symmetry.

3.3. Extensions to time-dependent problems. Up to now, little progress has
been made on higher order FVE methods for time-dependent problems, due to
the nonsymmetry of the schemes. Higher order FVE methods differ greatly from
the corresponding FE methods, so that the perturbation argument is no longer
applicable for analysis. How to control and measure the nonsymmetry of the related
schemes is still an open problem.

In 1984, Li and Wu studied a cubic Hermit FVE method for 1D parabolic prob-
lems. The bilinear form associated with the diffusion term is divided into symmetry
and nonsymmetry parts and was proved to be not too far away from being sym-
metric, i.e., only having an O(h) discrepency. It is found in [111] that if the dual
partition for a biquadratic FVE method is constructed by the points related to the
Simpson quadrature, then the scheme will be symmetric for constant coefficients
problems. Hence, such a quadratic method can be successfully applied to many
time-dependent problems, see, e.g., [103, 107]. Quadratic (biquadratic) FVE meth-
ods whose dual partition is based on Barlow points can have optimal order L2- error
and superconvergence. But such dual partition will destroy the symmetry of the
scheme. Special test functions should be used to symmetrize the scheme [105, 118].
More specifically, for any uh, vh ∈ Sh, there exist corresponding ũh, ṽh ∈ Sh such
that (uh,Π

∗
hṽh) = (vh,Π

∗
hũh) and ah(uh,Π

∗
hṽh) = ah(vh,Π

∗
hũh).
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For the quadratic FVE scheme on quadrilateral meshes, the analysis is much
more complicated. In 2011, Yang and Liu [108] managed to measure the non-
symmetry of (·, I∗h·) for a FVE method whose dual partition was based on the
Simpson quadrature. Then an optimal convergence rate in the L2(H1)-norm was
proved. However, there are technical difficulties in deriving error estimates in
L∞(0, T ;H1(Ω)) and L∞(0, T ;L2(Ω)) norms.

We conclude the overview with few remarks on challenging research fronts in
FVEM.

(i) For general unstructured meshes, how should we construct higher order
FVE methods that possess optimal order errors in various norms?

(ii) Nonsymmetry of higher order FVE schemes is difficult to measure and
become a fetter in the development for time-dependent problems.

(iii) Efficient algorithms need to be developed.
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