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MULTISCALE ANALYSIS AND COMPUTATION FOR

PARABOLIC EQUATIONS WITH RAPIDLY OSCILLATING

COEFFICIENTS IN GENERAL DOMAINS

LIQUN CAO, FANGMAN ZHAI, AND YAU SHU WONG

Abstract. This paper presents the multiscale analysis and computation for parabolic equations
with rapidly oscillating coefficients in general domains. The major contributions of this study are
twofold. First, we define the boundary layer solution and the convergence rate with ε

1/2 for the
multiscale asymptotic solutions in general domains. Secondly, a highly accurate computational
algorithm is developed. Numerical simulations are then carried out to validate the theoretical
results.
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1. Introduction

We consider the initial-boundary value problems for second order parabolic e-
quations with rapidly oscillating coefficients as follows:

(1)











∂uε(x, t)
∂t

− ∂
∂xi

(

aεij(x, t)
∂uε(x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω× (0, T )

uε(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T )
uε(x, 0) = ū0(x),

where Ω ⊂ Rn is a bounded convex polygonal domain with the boundary ∂Ω.
f(x, t), g(x, t), ū0(x) are known functions. In this study, we consider the following

specific cases for the coefficients aεij(x, t): i.e. aεij(x, t) = aij(
x
ε ,

t
εk

), and k =

0, 1, 2, 3.
Let ξ = ε−1x, τ = ε−kt, k = 0, 1, 2, 3. We make the following assumptions:
(A1) For k = 1, 2, 3, aij(ξ, τ) are 1-periodic and τ0-periodic in ξ, τ , respectively.

For k = 0, aij(ξ, t) are 1-periodic in ξ.
(A2) aij = aji, γ0|η|

2 ≤ aij(ξ, τ)ηiηj ≤ γ1|η|
2, γ0, γ1 > 0, ∀(η1, · · · , ηn) ∈ Rn,

where γ0, γ1 are constants independent of ε.
(A3) Let Q = (0, 1)n be the reference cell of composite materials with a periodic

microstructure, Q ⊂⊂ Q′ and Q′ = (
L
⋃

m=1
Dm) \ ∂Q′. Suppose that the boundaries

∂Dm are C1,γ for some 0 < γ < 1. aεij(x, t) ∈ Cµ,∞(Dm × (0, T )), i, j = 1, 2, · · · , n
for some constants 0 < µ < 1.

(A4) f ∈ L2(0, T ;L2(Ω)), g ∈ L2(0, T ;H1/2(∂Ω)), ū0 ∈ H1(Ω).
Problem (1) arises frequently in modeling the heat and mass transfer problem

in composite materials or porous media (see, e.g., [11]). It involves materials with
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a large number of heterogeneities (inclusions or holes). For homogenization result-
s concerning linear parabolic equations with rapidly oscillating coefficients which
depend on the spatial and time variables, we refer to Bensoussan, Lions and Pa-
panicolaou [2] for periodic cases and to Colombini and Spagnolo [7] for the general
non-periodic case. For a type of nonlinear parabolic partial differential operators,
Pankov [23] and Svanstedt [24] derived the G-convergence and the homogeniza-
tion results. Zhikov, Kozlov and Oleinik [26] investigated parabolic operators with
almost periodic coefficients and presented convergence results for the asymptotic
homogenization.

By introducing the cutoff function, Bensoussan, Lions and Papanicolaou (cf. [2])
obtained the strong convergence result without an explicit rate for the first-order
corrector of the solution of linear parabolic equations in L2(0, T ;H1(Ω)). Brahim-
Otsmane, Francfort and Murat (cf. [3]) extended this result to L2(0, T ;W 1,1(Ω)).
Ming and Zhang (cf.[21]) derived the convergence result with an explicit rate ε1/2

for the case k = 0 under the assumption u0 ∈ H3,1(Ω × (0, T )), where u0(x, t)
is the solution of the linear homogenized parabolic equation. Allegretto, Cao and
Lin (cf. [1]) investigated the higher-order multiscale method for linear parabolic
equations in four specific cases k = 0, 1, 2, 3, and derived the convergence results
with an explicit rate ε1/2 under the assumption u0 ∈ Hs+2,1(Ω×(0, T )), s = 1, 2. It
is well known that, for a bounded polygonal Lipschitz domain Ω, the assumptions
u0 ∈ Hs+2,1(Ω×(0, T )), s = 1, 2 may be invalid. Thus the error estimates in [1] fail.
In this study, we present the following two major contributions. First, we define
the boundary layer solution and derive the convergence results with an explicit
rate ε1/2 for the multiscale asymptotic solutions in a bounded polygonal Lipschitz
domain Ω. Secondly, we present a highly accurate computational algorithm.

The remainder of this paper is organized as follows. Section 2 is devoted to
the proofs of the main convergence results for the multiscale asymptotic method.
In Section 3, we discuss finite element computations and the error estimates for
the related problems. In particular, a new computational scheme is proposed to
solve the boundary layer solutions numerically. In Section 4, a finite element post-
processing technique and a numerical method with high accuracy are presented.
Finally, numerical simulations are carried out to validate the theoretical results
reported in this paper.

Throughout the paper the Einstein summation convention on repeated indices
is adopted. By C we shall denote a positive constant independent of ε.

2. Multiscale Asymptotic Expansions and the Convergence Results

In this section, we first introduce the multiscale asymptotic expansions for prob-
lem (1) which has been investigated in [1]. Then we define the boundary layer
solutions and derive the convergence results for the modified multiscale asymptotic
solutions.

Let ξ = ε−1x, τ = ε−kt, k = 0, 1, 2, 3. For the four specific cases k = 0, 1, 2, 3,
following the idea of [1], we define the formal multiscale asymptotic expansions of
the solution for problem (1) given by

(2)
uε
1(x, t) = u0(x, t) + εNα1(ξ, τ)

∂u0(x, t)

∂xα1

,

uε
2(x, t) = u0(x, t) + εNα1(ξ, τ)

∂u0(x, t)

∂xα1

+ ε2Nα1α2(ξ, τ)
∂2u0(x, t)

∂xα1∂xα2

,
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where the cell functions Nα1(ξ, τ), Nα1α2(ξ, τ), α1, α2 = 1, 2, · · · , n are given in [1].
The function u0(x, t) is the solution of the homogenized parabolic equation and can
be computed from:

(3)



















∂u0(x, t)

∂t
−

∂

∂xi

(

âij
∂u0(x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω× (0, T )

u0(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T )

u0(x, 0) = ū0(x),

where (âij) is the homogenized coefficients tensor given in [1]. It can be proved
that (âij) is a symmetric and positive-definite matrix.

As already mentioned in Section 1, in order to derive the convergence results with
an explicit rate ε1/2 for the multiscale asymptotic solutions defined in (2), we must
assume that u0 ∈ Hs+2,1(Ω× (0, T )). However, for a bounded polygonal Lipschitz
domain Ω, generally speaking, the assumptions u0 ∈ Hs+2,1(Ω × (0, T )), s = 1, 2
may be invalid. Moreover, the multiscale asymptotic solutions uε

s(x, t), s = 1, 2
do not satisfy the boundary conditions on ∂Ω in a general domain. To overcome
these difficulties, we define the boundary layer solutions. Now we introduce the
notation, let Ω0 be a subdomain of the whole domain Ω consisting of the union of
periodic cells, i.e. Ω0 =

⋃

z∈Iε
ε(z + Q), where Iε = {z ∈ Zn, ε(z + Q) ⊂⊂ Ω},

dist(∂Ω0, ∂Ω) > 2ε, and Ω1 = Ω \Ω0. They are illustrated as in Fig.1 (a) and (b).

(a)

Ω 0

(b)

Ω
0

Ω 1

Ω∂

Figure 1. (a) Interior subdomain Ω0, (b) the boundary layer Ω1.

We define the boundary layer solutions given by

(4)































∂uε,b
s (x, t)

∂t
−

∂

∂xi

(

aεij(x, t)
∂uε,b

s (x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω1 × (0, T )

uε,b
s (x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ),

uε,b
s (x, t) = uε

s(x, t), (x, t) ∈ (∂Ω0 ∩ ∂Ω1)× (0, T ),

uε,b
s (x, 0) = ū0(x),

where uε
s(x, t), s = 1, 2 are defined in (2).

Remark 2.1 Existence and uniqueness of the boundary layer solutions can be
established under the assumptions (A2) − (A4). Hence we define the multiscale
asymptotic solutions for problem (1) as follows:

(5) Uε
s (x, t) =

{

uε
s(x, t), (x, t) ∈ Ω0 × (0, T ),

uε,b
s (x, t), (x, t) ∈ Ω1 × (0, T ),

where s = 1, 2.
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Next, we derive the interior error estimates for the multiscale asymptotic solu-
tions uε

s(x, t), s = 1, 2, and then employ the boundary layer solutions to obtain the
error estimates in the whole domain Ω.

Theorem 2.1Suppose that Ω ⊂ R
n, n ≥ 1 is a bounded convex polygonal

domain. Let uε(x, t) be a weak solution of problem (1), and let u0(x, t) be the
solution of the homogenized parabolic equation (3), and uε

1(x, t), u
ε
2(x, t) be the

first-order and the second-order multiscale asymptotic solutions defined in (2), re-
spectively. Here, f ∈ L2(0, T ;L2(Ω)) ∩H1(0, T ;Hs(Ω′′)), g ∈ L2(0, T ;H1/2(∂Ω)),
ū0 ∈ H1(Ω) ∩Hs+1(Ω′′), where Ω0 ⊂⊂ Ω′′ ⊂⊂ Ω. For the specified case k = 0, we
assume that aij(

x
ε , t) ∈ C1(0, T ) for any fixed x ∈ Ω. For k = 2, we assume that

u0 ∈ H3,1(Ω× (0, T )). Under the assumptions (A1)− (A4), then it holds

(6)

sup
0≤t≤T

∫

Ω0
(uε(x, t) − uε

s(x, t))
2dx+

∫ T

0 ‖uε(x, t) − uε
s(x, t)‖

2
H1(Ω0)

dt

≤







C(T )ε, for k = 0; s = 1, 2
C(T )ε, for k = 1, 3; s = 2
C(T )ε2, for k = 2; s = 2

where C(T ) is a positive constant independent of ε but dependent of T .
Proof. First, we introduce the following subdomains:

Ω′ = {x ∈ Ω : if dist(x, ∂Ω) ≥ ε/2},
Kε = {x ∈ Ω : if dist(x, ∂Ω) ≤ 2ε},
K ′

ε = {x ∈ Ω : if ε ≤ dist(x, ∂Ω) ≤ 2ε}.

It is obvious that Ω0 ⊂⊂ Ω′ ⊂⊂ Ω. Under the assumptions of the theorem and
using the interior regularity of linear parabolic equations, we can conclude that
u0 ∈ H1(0, T ;Hs+2(Ω′)), s = 1, 2. Let introduce the cutoff function mε(x) given
by

(7)

mε ∈ D(Ω)
mε = 0, if dist(x, ∂Ω) ≤ ε
mε = 1, if dist(x, ∂Ω) ≥ 2ε

ε|∂mε
∂xi

| ≤ C, i = 1, 2, · · · , n.

For cases k = 0, 1, 3, define

(8)
θε1(x, t) = u0(x, t) + εmε(x)Nα1 (ξ, τ)

∂u0(x, t)

∂xα1

θε2(x, t) = u0(x, t) +mε(x)
[

εNα1(ξ, τ)
∂u0(x, t)

∂xα1

+ ε2Nα1α2(ξ, τ)
∂2u0(x, t)

∂xα1∂xα2

]

.

For k = 2, define

(9) θε2(x, t) = u0(x, t) + εNα1(ξ, τ)
∂u0(x, t)

∂xα1

+ ε2mε(x)Nα1α2(ξ, τ)
∂2u0(x, t)

∂xα1∂xα2

.

Let Ωt = Ω× (0, t) and define

(u, v)Ωt =

∫ t

0

∫

Ω

uvdxdt, Lεw ≡ −
∂

∂xi

(

aεij(x, t)
∂w

∂xj

)

.

Here we prove Theorem 2.1 only for the case k = 2, s = 2. The other cases
can be shown similarly. Without loss of generality, we assume that g(x, t) ≡ 0.
For ∀v ∈ L2(0, t;H1

0 (Ω)), recalling (2.2c)-(2.2d) of [1], (1),(8) and by complex
computations, we obtain the following equation in the sense of distributions:

(10) (
∂(uε − θε2)

∂t
, v)Ωt + (Lε(u

ε − θε2), v)Ωt = Jε
2 (v),
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where
(11)
Jε
2 (v)

= −
(

εNα1
∂
2
u
0

∂xα1∂t
, v

)

Ωt
−

(

ε2mε(x)Nα1α2
∂
3
u
0

∂xα1∂xα2∂t
, v

)

Ωt

−
(

(mε(x)− 1)
∂Nα1α2

∂τ
∂
2
u
0

∂xα1∂xα2

, v
)

Ωt
−

(

(mε(x)− 1) ∂
∂ξi

(aij
∂Nα1α2

∂ξj
) ∂

2
u
0

∂xα1∂xα2

, v
)

Ωt

−
(

εaijNα1
∂
3
u
0

∂xα1∂xj∂xi
, v
)

Ωt
−

(

ε
∂mε(x)
∂xi

aij
∂Nα1α2

∂ξj
∂
2
u
0

∂xα1∂xα2

, v
)

Ωt

−
(

ε
∂mε(x)
∂xj

∂
∂ξi

(aijNα1α2)
∂
2
u
0

∂xα1∂xα2

, v
)

Ωt
−

(

ε2
∂mε(x)
∂xj

aijNα1α2
∂
3
u
0

∂xα1∂xα2∂xi
, v
)

Ωt

−
(

ε2
∂
2
mε(x)

∂xi∂xj
aijNα1α2

∂
2
u
0

∂xα1∂xα2

, v
)

Ωt
−

(

εmε(x)aij
∂Nα1α2

∂ξj
∂
3
u
0

∂xα1∂xα2∂xi
, v
)

Ωt

−
(

ε2
∂mε(x)
∂xi

aijNα1α2
∂
3
u
0

∂xα1∂xα2∂xj
, v
)

Ωt
−

(

εmε(x)
∂
∂ξi

(aijNα1α2)
∂
3
u
0

∂xα1∂xα2∂xj
, v
)

Ωt

−
(

ε2mε(x)aijNα1α2
∂
4
u
0

∂xα1∂xα2∂xj∂xi
, v
)

Ωt
.

Under the assumptions (A1) − (A4), it follows from Theorem 1.2 of [16] that

Nα1 , Nα1α2 ,
∂Nα1

∂τ
,
∂Nα1α2

∂τ
∈ L2(0, τ0;W

1,∞(Q)). If we assume that u0 ∈ H3,1(Ω×

(0, T )), then we can verify that

(12)
|
(

εNα1

∂2u0

∂xα1∂t
, v
)

Ωt
| ≤ Cε‖∂u

0

∂t
‖L2(0,t;H1(Ω))‖v‖L2(0,t;H1(Ω)),

|
(

εaijNα1

∂3u0

∂xα1∂xj∂xi
, v
)

Ωt
| ≤ Cε‖u0‖L2(0,t;H3(Ω))‖v‖L2(0,t;H1(Ω)).

On the other hand, under the assumptions of this theorem, we apply the interior
regularity for linear parabolic equations to obtain u0 ∈ Hs+2,1(Ω′×(0, T )), s = 1, 2,
where Ω′ ⊂⊂ Ω, and u0 is the solution of the homogenized parabolic equation (3).
From (7) and (A2)− (A3), we can verify that
(13)

|
(

ε2mε(x)Nα1α2

∂3u0

∂xα1∂xα2∂t
, v
)

Ωt
| ≤ Cε2‖∂u

0

∂t
‖L2(0,t;H2(Ω′))‖v‖L2(0,t;H1(Ω)),

|
(

ε2mε(x)aijNα1α2

∂4u0

∂xα1∂xα2∂xj∂xi
, v
)

Ωt
| ≤ Cε2‖u0‖L2(0,t;H4(Ω′))‖v‖L2(0,t;H1(Ω)).

Thanks to Theorem 1.2 of [16] and using (7) and Lemma 1.5 of [22], we obtain
(14)

|
(

ε
∂mε(x)
∂xi

aij
∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

, v
)

Ωt
| ≤ Cεε−1‖u0‖L2(0,t;H2(K′

ε))
‖v‖L2(0,t;L2(K′

ε))

≤ Cε‖u0‖L2(0,t;H3(Ω′))‖v‖L2(0,t;H1(Ω)),

(15)

|
(

(mε(x)− 1)
∂Nα1α2

∂τ
∂2u0

∂xα1∂xα2

, v
)

Ωt
| ≤ C‖u0‖L2(0,t;H2(Kε))‖v‖L2(0,t;L2(Kε))

≤ Cε‖u0‖L2(0,t;H3(Ω))‖v‖L2(0,t;H1(Ω)),

(16)

|
(

ε2
∂mε(x)
∂xj

aijNα1α2

∂3u0

∂xα1∂xα2∂xi
, v
)

Ωt
| ≤ Cε‖u0‖L2(0,t;H3(K′

ε))
‖v‖L2(0,t;L2(K′

ε))

≤ Cε2‖u0‖L2(0,t;H4(Ω′))‖v‖L2(0,t;H1(Ω)),

(17)

|
(

ε2
∂2mε(x)
∂xi∂xj

aijNα1α2

∂2u0

∂xα1∂xα2

, v
)

Ωt
| ≤ C‖u0‖L2(0,t;H2(K′

ε))
‖v‖L2(0,t;L2(K′

ε))

≤ Cε‖u0‖L2(0,t;H3(Ω′))‖v‖L2(0,t;H1(Ω)).



MULTISCALE ANALYSIS AND COMPUTATION FOR PARABOLIC EQUATIONS 55

Similarly, we have
(18)

|
(

εmε(x)aij
∂Nα1α2

∂ξj
∂3u0

∂xα1∂xα2∂xi
, v
)

Ωt
| ≤ Cε‖u0‖L2(0,t;H3(Ω′))‖v‖L2(0,t;L2(Ω′))

≤ Cε‖u0‖L2(0,t;H3(Ω))‖v‖L2(0,t;H1(Ω)),

(19)

|
(

ε2
∂mε(x)
∂xi

aijNα1α2

∂3u0

∂xα1∂xα2∂xj
, v
)

Ωt
| ≤ Cε‖u0‖L2(0,t;H3(K′

ε))
‖v‖L2(0,t;L2(K′

ε))

≤ Cε2‖u0‖L2(0,t;H4(Ω′))‖v‖L2(0,t;H1(Ω)).

We observe that
(20)

(1−mε(x))
∂
∂ξi

(aij
∂Nα1α2

∂ξj
) ∂2u0

∂xα1∂xα2

= ε(1−mε(x))
∂
∂xi

(aij
∂Nα1α2

∂ξj
) ∂2u0

∂xα1∂xα2

= ε ∂
∂xi

[

(1−mε(x))aij
∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

]

− ε
∂(1−mε(x))

∂xi
aij

∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

−ε(1−mε(x))aij
∂Nα1α2

∂ξj
∂3u0

∂xα1∂xα2∂xi
.

By integration by parts, we get

(21)

|
(

ε ∂
∂xi

[

(1−mε(x))aij
∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

]

, v
)

Ωt
|

= |
(

ε
[

(1−mε(x))aij
∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

]

, ∂v
∂xi

)

Ωt
|

≤ Cε‖u0‖L2(0,t;H2(Kε))‖v‖L2(0,t;H1(Kε))

≤ Cε3/2‖u0‖L2(0,t;H3(Ω))‖v‖L2(0,t;H1(Ω)).

Using Theorem 1.2 of [16], we have

(22)

|
(

ε
∂(1−mε(x))

∂xi
aij

∂Nα1α2

∂ξj
∂2u0

∂xα1∂xα2

, v
)

Ωt
|

≤ C‖u0‖L2(0,t;H2(K′

ε))
‖v‖L2(0,t;L2(K′

ε))

≤ Cε‖u0‖L2(0,t;H3(Ω′))‖v‖L2(0,t;H1(Ω)),

(23)

|
(

ε(1−mε(x))aij
∂Nα1α2

∂ξj
∂3u0

∂xα1∂xα2∂xi
, v
)

Ωt
|

≤ Cε‖u0‖L2(0,t;H3(Kε))‖v‖L2(0,t;L2(Kε))

≤ Cε3/2‖u0‖L2(0,t;H3(Ω′))‖v‖L2(0,t;H1(Ω)).

Combining (21)-(23), it gives

(24) |
(

(1−mε(x))
∂

∂ξi
(aij

∂Nα1α2

∂ξj
)

∂2u0

∂xα1∂xα2

, v
)

Ωt
| ≤ Cε‖v‖L2(0,t;H1(Ω)),

where C is a positive constant independent of ε. Hence,

(25)
ε
∂mε(x)
∂xj

∂
∂ξi

(aijNα1α2)
∂2u0

∂xα1∂xα2

= ε2 ∂
∂xi

[∂mε(x)
∂xj

aijNα1α2

∂2u0

∂xα1∂xα2

]

−ε2
∂2mε(x)
∂xi∂xj

aijNα1α2

∂2u0

∂xα1∂xα2

− ε2
∂mε(x)
∂xj

aijNα1α2

∂3u0

∂xα1∂xα2∂xi
.

Similarly to (20)-(24), we have

(26) |
(

ε
∂mε(x)

∂xj

∂

∂ξi
(aijNα1α2)

∂2u0

∂xα1∂xα2

, v
)

Ωt
≤ Cε‖v‖L2(0,t;H1(Ω)),
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(27) |
(

εmε(x)
∂

∂ξi
(aijNα1α2)

∂3u0

∂xα1∂xα2∂xj
, v
)

Ωt
≤ Cε‖v‖L2(0,t;H1(Ω)),

where C is a positive constant independent of ε. From (11)-(19), (24), and (26)-(27),
we obtain

(28) |Jε
2 (v)| ≤ Cε‖v‖L2(0,t;H1(Ω)),

where C is a positive constant independent of ε. From the initial conditions, we
have

(29) uε(x, 0)− θε2(x, 0) = εϕ(x, ξ),

where ϕ(x, ξ) =
[

Nα1(ξ, τ)
∂u0(x, t)
∂xα1

+ εmε(x)Nα1α2(ξ, τ)
∂2u0(x, t)
∂xα1∂xα2

]

|t=0. It is not

difficult to show that ‖ϕ‖L2(Ω) ≤ C‖u0‖H2(Ω′) ≤ C. By using the Gronwall’s
inequality, we complete the proof of Theorem 2.1.

Theorem 2.2 Suppose that Ω ⊂ Rn, n ≥ 1 is a bounded convex polygonal
domain. Let uε(x, t) be a unique weak solution of problem (1), and let Uε

1 (x, t),
Uε
2 (x, t) be the first-order and the second-order multiscale solutions defined in (5),

respectively. Under the hypotheses of Theorem 2.1, we obtain the following esti-
mates:

(30)

sup
0≤t≤T

∫

Ω

(uε(x, t)− Uε
s (x, t))

2dx+
T
∫

0

‖uε − Uε
s ‖

2
H1(Ω)dt

≤







C(T )ε, for k = 0; s = 1, 2
C(T )ε, for k = 1, 3; s = 2
C(T )ε2, for k = 2; s = 2

where C(T ) is a positive constant independent of ε but dependent of T .
Proof. We prove Theorem 2.2 only for the case k = 2, s = 2. Recall that the

boundary layer solutions uε,b
s (x, t), s = 2 defined in (4), using (6) and the trace

theorem, we have

(31)
‖uε − uε,b

s ‖L2(0,T ;H1(Ω1)) ≤ C‖uε − uε
s‖L2(0,T ;H1/2(∂Ω0∩∂Ω1))

≤ C‖uε − uε
s‖L2(0,T ;H1(Ω0)) ≤ C(T )ε,

where C is a positive constant independent of ε, but dependent of T .
From (6) and (31), using the triangle inequality, we have

(32)

‖uε−Uε
s‖L2(0,T ;H1(Ω)) ≤ ‖uε−uε

s‖L2(0,T ;H1(Ω0))+‖uε−uε,b
s ‖L2(0,T ;H1(Ω1)) ≤ C(T )ε.

The other terms are similar. Thus, we complete the proof of Theorem 2.2.
Remark 2.2 It should be emphasized that, in order to obtain the convergence

results with an explicit rate ε1/2 for cases k = 1, 2, 3, we need to apply the second-
order multiscale asymptotic expansion defined in (8)2 and (9). Here, (8)2 denotes
the second equation in (8) .The numerical results presented in Section 5 show that
the second-order correctors are necessary.

3. Numerical Algorithms for Related Problems

3.1. Adaptive backward Euler-Galerkin method for cell problems. We
recall the definitions of the cell functions for the four specific cases k = 0, 1, 2, 3.
Observe that the cell problems with k = 0, 1, 3 are all elliptic equations, where t
(or τ ) plays the role of a parameter. Hence, the standard finite element method
can be applied. However, for the case k = 2, the cell problems are of second order
parabolic equations with respect to the scales (ξ, τ) ∈ Q× (0, τ0), where ξ = ε−1x,
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τ = ε−2t and τ0 is a time period. Now, consider solving the cell problems for k = 2,
in which the cell functions Np(ξ, τ), Npq(ξ, τ), p, q = 1, 2, · · · , n is defined in turn
(33)


















∂Np(ξ, τ)
∂τ

− ∂
∂ξi

(

aij(ξ, τ)
∂Np(ξ, τ)

∂ξj

)

= ∂
∂ξi

(aip(ξ, τ)), (ξ, τ) ∈ Q× (0, τ0)

Np(ξ, τ) is 1-periodic in ξ,
∫

Q

Np(ξ, τ)dξ = 0

Np(ξ, 0) = Np(ξ, τ0),

where Q = (0, 1)n, τ0 is a time period.

(34)



































∂Npq(ξ, τ)
∂τ

− ∂
∂ξi

(

aij(ξ, τ)
∂Npq(ξ, τ)

∂ξj

)

= ∂
∂ξi

(aip(ξ, τ)Nq(ξ, τ))

+apj(ξ, τ)
∂Nq(ξ, τ)

∂ξj
+ apq(ξ, τ) − âpq, (ξ, τ) ∈ Q× (0, τ0)

Npq(ξ, τ) is 1-periodic in ξ,
τ0
∫

0

∫

Q

Npq(ξ, τ)dξdτ = 0

Npq(ξ, 0) = Npq(ξ, τ0),

where âpq = 1
τ0

τ0
∫

0

∫

Q

[

apq(ξ, τ) + apj(ξ, τ)
∂Nq(ξ, τ)

∂ξj

]

dξdτ , p, q = 1, 2, · · · , n.

In order to solve the time periodic boundary value problem, we refer the inter-
ested reader to Thomée’s classical book (see [25], p.21). The basic idea is to employ
an iterative method to compute the sequence {vm}m≥0 defined by

(35) vm+1(0) = vm(τ0) = E(τ0)vm(0), m = 0, 1, · · ·

where E(τ0)vm(0) denotes the value of the solution for the linear parabolic equation
at time τ = τ0 for a given initial value vm(0) and v0(0) chosen arbitrarily. It
can be proved that this equation has a unique solution v. Once v is known, the
time periodic boundary-value problem may be solved as an initial boundary-value
problem.

On the other hand, since the elements aij(ξ, τ) of the coefficients matrix of (33)
and (34) are discontinuous, and the solutions of (33) and (34) admit singularities.
Thus the computational error is likely concentrated around the singularities. We
now propose an adaptive algorithm to solve the cell problems (33) and (34). For the
solution of (34), we apply the same mesh as for solving (33). For the a-posteriori

error estimates for the finite element method and the adaptive algorithm for solving
linear parabolic problems, a comprehensive survey is given in [6], p.86-96. Following
the terminology and the notation of [6], we propose the adaptive algorithm for
problem (33). We introduce the following notation: Let A = (aij(ξ, τ)) be the
coefficients matrix and Ap be the p-th column of A, p = 1, 2, · · · , n. Then, (33) can
be rewritten as follows:

(36) ∂τNp −∇ ·
[

A∇Np +Ap

]

= 0,

where ∇· is a divergence operator. Here, ∇ = ∇ξ and ξ = ε−1x. For simplicity and
without confusion, we continue to use ∇ instead of ∇ξ.

The weak formulation of (36) can be expressed as:

(37) 〈∂τNp, ϕ〉 −
(

[A∇Np +Ap],∇ϕ
)

= 0, ∀ϕ ∈ H1
per(Q),

where H1
per(Q) = {v ∈ H1(Q), v is 1-periodic function}, Q = (0, 1)n.

We now consider the backward Euler fully discrete approximation with variable
time steps for (37). Let τm be the step size at the m− th time-step and set
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τm =
m
∑

j=1

τj , and N be the total number of steps, that is τN ≥ τ0. At each time-

step m, m = 1, 2, · · · , N , denote by Mm a uniformly regular partition of Q which
is obtained from Mm−1 by using refinement/coarsening procedures. Note that the
elements must be aligned with the boundary of Q to employ the periodic boundary
conditions on ∂Q. Let V m

per ⊂ H1
per(Q) be the usual space of conforming linear

finite elements over Mm. Then the fully discrete scheme for problem (33) at the
m− th time-step is given as follows:

(38) 〈∂̄mNm
p,h, vh〉+

(

[A∇Np +Ap],∇vh
)

= 0, ∀vh ∈ V m
per ,

where ∂̄mNm
p,h =

(

Nm
p,h−Nm−1

p,h

)

/τm. Denote by Bm the collection of interior inter-
element sides e of Mm in Q. hK is the diameter of K ∈ Mm and he is the size of
e ∈ Bm. Define the jump residual across e ∈ Bm as follows:
(39)

Jm
e

def
=

[

A(·, τm)∇Nm
p,h +Ap(·, τ

m)
]

e
· νe =

{(

A(·, τm)∇Nm
p,h +Ap(·, τ

m)
)

|K1

−
(

A(·, τm)∇Nm
p,h +Ap(·, τ

m)
)

|K2} · νe, e = ∂K1 ∩ ∂K2,

where νe is the unit normal to e from K2 to K1.
By introducing the energy norm ‖u‖E,Q = (A∇u,∇u)1/2, we have the following

upper bound estimate.
Proposition 3.1 Let Np(ξ, τ), p = 1, 2, · · · , n be the solutions of the cell prob-

lems (33), and let Nm
p,h be the fully discrete finite element approximations at the

m−th time-step. For any integer 1 ≤ m ≤ N , we have the following a posteriori

error estimate:
(40)

‖Nm
p −Nm

p,h‖L2(Q) +

m
∑

j=1

∫ τ j

τ j−1

‖Np −N j
p,h‖

2
E,Qdt ≤

m
∑

j=1

τjη
j
time + C

m
∑

j=1

τjη
j
space,

+C
(

m
∑

j=1

∫ τ j

τ j−1

‖(A(τ) −A(τ j))∇N j
p,h + (Ap(τ) −Ap(τ

j))‖2L2(Q)dτ
)2

,

where C is a positive constant independent of ε, hK , he, but dependent on the
minimum angle of the meshes Mj, j = 1, 2, · · · ,m. The time error indicator ηjtime

and the space error indicator ηjspace are given by

ηjtime =
1

3
‖N j

p,h −N j−1
p,h ‖2E,Q, ηjspace =

∑

e∈Bj

ηje, j = 1, 2, · · · ,m

with the local error indicator ηje defined as

ηje =
1

2

∑

K∈Qe

h2
K‖∂̄jN j

p,h‖
2
L2(K) + he‖J

j
e‖

2
L2(e).

Here, Qe is the collection of two elements sharing the common side e ∈ Bj.
Proof. From (37) and (38), for ∀ϕ ∈ H1

per(Q), ∀vh ∈ V j , we get

(41)
〈∂̄jN j

p,h, ϕ〉+
(

A(τ j)∇N j
p,h,∇ϕ

)

= 〈∂̄jN j
p,h, ϕ− vh〉

(

A(τ j)∇N j
p,h,∇(ϕ − vh)

)

−
(

Ap(τ
j),∇vh

)

,

where A(τ j) = A(·, τ j), Ap(τ
j) = Ap(·, τ

j). For τ ∈ (τ j−1, τ j ], set Np,h(τ) =

l(τ)N j
p,h + (1 − l(τ))N j−1

p,h , where l(τ) = (τ − τ j−1)/τj . It is not difficult to verify
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that

(42)

〈
∂(Np −Np,h)

∂τ
, ϕ〉+

(

A(τ)∇(Np −N j
p,h),∇ϕ

)

= −〈∂̄jN j
p,h, ϕ− vh〉 −

(

[A(τ j)∇N j
p,h +Ap(τ

j)],∇(ϕ− vh)
)

−
(

[(A(τ) −A(τ j))∇N j
p,h + (Ap(τ) −Ap(τ

j))],∇ϕ
)

.

Let ϕ = Np − Np,h and vh = rh(Np − Np,h), where rh : H1
per(Q) → V j is the

Clément interpolation operator (see [6], p.36). We can show that

(43)

(

A∇(Np −N j
p,h),∇(Np −Np,h)

)

=
1

2
‖Np −N j

p,h‖
2
E,Q

+
1

2
‖Np −Np,h‖

2
E,Q −

1

2
‖Np,h −N j

p,h‖
2
E,Q.

Assuming that the elements of A(τ j) and Ap(τ
j) are piecewise constants in each

K ∈ Mj, and using the fact that ∇N j
p,h is piecewise constant in K, we get

(44)

(

[A(τ j)∇N j
p,h +Ap(τ

j)],∇[(Np −Np,h)− rh(Np −Np,h)]
)

= −
∑

e∈Bj

∫

e

Jj
e

[

(Np −Np,h)− rh(Np −Np,h)
]

ds.

From (42), we have

(45)

1

2

d

dτ
‖Np −Np,h‖

2
L2(Q) +

1

2
‖Np −N j

p,h‖
2
E,Q +

1

2
‖Np −Np,h‖

2
E,Q

=
1

2
‖Np,h −N j

p,h‖
2
E,Q − 〈∂̄jN j

p,h, (Np −Np,h)− rh(Np −Np,h)〉

+
∑

e∈Bj

∫

e

Jj
e

[

(Np −Np,h)− rh(Np −Np,h)
]

ds.

−
(

(A(τ) −A(τ j))∇N j
p,h + (Ap(τ) −Ap(τ

j)),∇(Np −Np,h)
)

.

For any τ∗ ∈ (τm−1, τm], by integrating (45) in time from 0 to τ∗ and using (A2)
and the error estimate for the Clément interpolation operator, we obtain
(46)

1

2
‖(Np −Np,h)(τ

∗)‖2L2(Q) +
1

2

m
∑

j=1

∫ τ j∧τ∗

τ j−1

[

‖Np −N j
p,h‖

2
E,Q + ‖Np −Np,h‖

2
E,Q

]

dτ

≤
1

2
‖(Np −Np,h)(0)‖

2
L2(Q) +

1

2

m
∑

j=1

∫ τ j

τ j−1

‖Np,h −N j
p,h‖

2
E,Qdτ

+C
m
∑

j=1

∫ τ j

τ j−1

(

ηjspace
)1/2

‖Np −Np,h‖E,Qdτ

+

m
∑

j=1

∫ τ j

τ j−1

‖(A(τ) −A(τ j))∇N j
p,h + (Ap(τ) −Ap(τ

j))‖L2(Q)‖Np −Np,h‖E,Qdτ .

From (33) and (35), we have (Np −Np,h)(0) ≡ 0. It is obvious that

(47)

∫ τ j

τ j−1

‖Np,h −N j
p,h‖

2
E,Qdτ =

∫ τ j

τ j−1

(1− l(τ))2‖N j
p,h −N j−1

p,h ‖2E,Qdτ

=
1

3
τj‖N

j
p,h −N j−1

p,h ‖2E,Q.

Using the Young inequality ab ≤ λa2 + 1
4λ

b2, we compete the proof of Proposition

3.1.
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Remark 3.1 Based on the local error indicators ηjtime and ηjspace in Proposition
3.1, one can present a time and space adaptive algorithm. We refer the interested
reader to Algorithm 7.1 of [6], p.93.

Repeating the procedure of Theorem 7.7 of ([6], p.83), we obtain the following
proposition:

Proposition 3.2 Let Np, Npq, p, q = 1, 2, · · · , n, be the solutions of the cell
problems (33) and (34), respectively. Suppose that Nm

p,h, Nm
pq,h are the corre-

sponding fully discrete solutions at time τ = τm =
m
∑

j=1

τj by using the back-

ward Euler-Galerkin method, where h and τm are the size of the final mesh and
the time-step size, respectively. Under the assumptions (A1) − (A4), if Np Npq ∈
H2,1(Q × (0, τ0)) ∩H0,2(Q× (0, τ0)), where τ0 is a time period, then we have
(48)
‖Nm

p,h −Np(τ
m)‖L2(Q) ≤ C

{

h2 + τm
}

, ‖Nm
pq,h −Npq(τ

m)‖L2(Q) ≤ C
{

h2 + τm
}

,

‖Nm
p,h −Np(τ

m)‖H1(Q) ≤ C
{

h+ τm
}

, ‖Nm
pq,h −Npq(τ

m)‖H1(Q) ≤ C
{

h+ τm
}

,

where 1 ≤ m ≤ N , τN ≥ τ0, and C is a positive constant independent of h, τm.

3.2. Crank-Nicolson Galerkin method for the homogenized parabolic e-

quation. Suppose that (âij) is a homogenized coefficients matrix and (âhij) is the
approximation of (âij). For example, in the case k = 2, we know

(49) âij =
1

τ0

∫ τ0

0

∫

Q

(

aij(ξ, τ) + ail(ξ, τ)
∂Nj(ξ, τ)

∂ξl

)

dξdτ.

For the Crank-Nicolson-Galerkin method, we have

(50) âhij =
1

τ0

N
∑

m=1

τm

∫

Q

[

aij(ξ, τ
m−1/2) + ail(ξ, τ

m−1/2)
∂N

m−1/2
j,h

∂ξl

]

dξ,

where τm−1/2 = (τm−1 + τm)/2, N
m−1/2
j,h = (Nm

j,h + Nm−1
j,h )/2. For the backward

Euler-Galerkin method, we have

(51) âhij =
1

τ0

N
∑

m=1

τm

∫

Q

[

aij(ξ, τ
m) + ail(ξ, τ

m)
∂Nm

j,h

∂ξl

]

dξ.

For τ ∈ (τm−1, τm], m = 1, 2, · · · , N , τN ≥ τ0, τm = τm − τm−1, where τ0 is a
time period, Nm

j,h is the fully discrete approximation of Nj. Therefore, in practice,
we need to solve the following modified homogenized parabolic equation:

(52)



















∂ũ0(x, t)

∂t
−

∂

∂xi

(

âhij
∂ũ0(x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω× (0, T )

ũ0(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T )

ũ0(x, 0) = u0(x), x ∈ Ω.

Remark 3.2 For cases k = 0, 1, 3, it is not difficult to verify that (âhij) is a
symmetric, positive-definite matrix. Therefore, the modified homogenized parabolic
equation has a unique weak solution in L2(0, T ;H1(Ω)).
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Proposition 3.3 For the case k = 2, we now prove that the modified homoge-
nized coefficients matrix (âhij) satisfies the following conditions:

(53)






âhij = âhji, for the Crank-Nicolson-Galerkin method,

|âhij − âhji| ≤ C
(

τ−1
maxh

4 + h2 + τmax

)

, for the backward Euler-Galerkin method,

(54) âhijηiηj ≥ µ̄|η|2, |η|2 = ηiηi, ∀ (η1, · · · , ηn) ∈ R
n,

where C and µ̄ > 0 are positive constants independent of h and τmax; h is the mesh
size and τmax = max

1≤m≤N
τm is the largest time-step size.

Proof. For the Crank-Nicolson-Galerkin method, we get
(55)

〈∂̄mNm
j,h, vh〉+

(

A(τm−1/2)∇N
m−1/2
j,h +Aj(τ

m−1/2),∇vh
)

= 0, ∀vh ∈ Vm
per,

where A(τm−1/2) = (aij(ξ, τ
m−1/2)) and N

m−1/2
j,h = (Nm

j,h +Nm−1
j,h )/2. By setting

vh = N
m−1/2
i,h ∈ V m

per , we get

(56)
∫

Q

(Nm
j,h −Nm−1

j,h )

τm
N

m−1/2
i,h dξ +

∫

Q

apl(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl

∂N
m−1/2
i,h

∂ξp
dξ = 0.

We observe that
(57)
∫

Q

apl(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl

∂(N
m−1/2
i,h + ξi)

∂ξp
dξ

=

∫

Q

apl(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl

∂N
m−1/2
i,h

∂ξp
dξ +

∫

Q

ail(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl
dξ

= −

∫

Q

(Nm
j,h −Nm−1

j,h )

τm
N

m−1/2
i,h dξ +

∫

Q

ail(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl
.

Hence, we have

(58)

âhij =
1

τ0

N
∑

m=1

τm

∫

Q

ail(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl
dξ

=
1

τ0

N
∑

m=1

τm

∫

Q

apl(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl

∂(N
m−1/2
i,h + ξi)

∂ξp
dξ

+
1

τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )N
m−1/2
i,h dξ.

Let l(τ) = (τ − τm−1)/τm and Nj,h(ξ, τ) = l(τ)Nm
j,h + (1 − l(τ))Nm−1

j,h . One can

directly verify that
∂Nj,h(ξ, τ)

∂τ
=

(Nm
j,h −Nm−1

j,h )
τm . Furthermore, we get

(59)
1

τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )N
m−1/2
i,h dξ =

1

τ0

∫ τ0

0

∫

Q

∂Nj,h(ξ, τ)

∂τ
Ni,h(ξ, τ)dξdτ.
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Since

(60)

n
∑

i,j=1

1

τ0

[

∫ τ0

0

∫

Q

∂Nj,h(ξ, τ)

∂τ
Ni,h(ξ, τ)dξdτ

] ∂2ũ0

∂xi∂xj

=
n
∑

i,j=1

1

τ0

∂2ũ0

∂xi∂xj

∫

Q

dξ
{1

2

∫ τ0

0

∂Nj,h

∂τ
Ni,hdτ +

1

2

∫ τ0

0

∂Ni,h

∂τ
Nj,hdτ

}

=

n
∑

i,j=1

1

2τ0

∂2ũ0

∂xi∂xj

∫

Q

dξ

∫ τ0

0

∂Nj,hNi,h

∂τ
dτ

=

n
∑

i,j=1

1

2τ0

∂2ũ0

∂xi∂xj

∫

Q

dξ
(

Nj,hNi,h(τ0)−Nj,hNi,h(0)
)

= 0,

we have

(61) âhij =
1

τ0

N
∑

m=1

τm

∫

Q

apl(ξ, τ
m−1/2)

∂(N
m−1/2
j,h + ξj)

∂ξl

∂(N
m−1/2
i,h + ξi)

∂ξp
dξ.

The fact that apl = alp implies that âhij = âhji.

For the backward Euler-Galerkin method, by setting vh = Nm
i,h ∈ V m

per in (38),
we get

(62)

∫

Q

(Nm
j,h −Nm−1

j,h )

τm
Nm

i,hdξ +

∫

Q

apl(ξ, τ
m)

∂(Nm
j,h + ξj)

∂ξl

∂Nm
i,h

∂ξp
dξ = 0.

Similarly to (57) and (58), we have
(63)

âhij =
1

τ0

N
∑

m=1

τm

∫

Q

ail(ξ, τ
m)

∂(Nm
j,h + ξj)

∂ξl
dξ

=
1

τ0

N
∑

m=1

τm

∫

Q

apl(ξ, τ
m)

∂(Nm
j,h + ξj)

∂ξl

∂(Nm
i,h + ξi)

∂ξp
dξ.

+
1

τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )Nm
i,hdξ

=
1

τ0

N
∑

m=1

τm

∫

Q

apl(ξ, τ
m)

∂(Nm
j,h + ξj)

∂ξl

∂(Nm
i,h + ξi)

∂ξp
dξ

+
1

τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )
(Nm

i,h +Nm−1
i,h )

2
dξ

+
1

τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )
(Nm

i,h −Nm−1
i,h )

2
dξ

=
1

τ0

N
∑

m=1

τm

∫

Q

apl(ξ, τ
m)

∂(Nm
j,h + ξj)

∂ξl

∂(Nm
i,h + ξi)

∂ξp
dξ

+
1

τ0

∫ τ0

0

∫

Q

∂Nj,h

∂τ
Ni,hdξdτ +

1

2τ0

N
∑

m=1

∫

Q

(Nm
j,h −Nm−1

j,h )(Nm
i,h −Nm−1

i,h )dξ.

It is obvious that

N
m
j,h −N

m−1
j,h = (Nm

j,h −Nj(ξ, τ
m))+ (Nj(ξ, τ

m)−Nj(ξ, τ
m−1))+ (Nj(ξ, τ

m−1)−N
m−1
j,h ).



MULTISCALE ANALYSIS AND COMPUTATION FOR PARABOLIC EQUATIONS 63

It follows from Proposition 3.2 that

‖(Nm
j,h −Nj(ξ, τ

m))‖L2(Q) ≤ Ch2

∫ τm

0

‖∂τNj(·, τ)‖H2(Q)dτ

+Cτmax

∫ τm

0

‖∂ττNj(·, τ)‖L2(Q)dτ,

‖(Nm−1
j,h −Nj(ξ, τ

m−1))‖L2(Q) ≤ Ch2

∫ τm−1

0

‖∂τNj(·, τ)‖H2(Q)dτ

+Cτmax

∫ τm−1

0

‖∂ττNj(·, τ)‖L2(Q)dτ,

where C is a positive constant independent of h and τmax; h and τmax are the mesh
size and the largest time-step size, respectively. We observe that

‖Nj(ξ, τ
m)−Nj(ξ, τ

m−1)‖L2(Q) = τm
(

∫

Q

(∂τNj(τ̃
m))2dξ

)1/2
≤ Cτmax.

We thus have

(64)

1

2τ0

N
∑

m=1

|

∫

Q

(Nm
j,h −Nm−1

j,h )(Nm
i,h −Nm−1

i,h )dξ|

≤
1

2τ0

N
∑

m=1

‖Nm
j,h −Nm−1

j,h ‖L2(Q)‖N
m
i,h −Nm−1

i,h ‖L2(Q)

≤ C

N
∑

m=1

(

h2 + τmax

)2
= CN

(

h2 + τmax

)2

≤ C
{

τ−1
maxh

4 + h2 + τmax

}

.

Similarly to (60) and (61), using (64), we obtain

(65) |âhij − âhji| ≤ C
(

τ−1
maxh

4 + h2 + τmax

)

.

It remains to prove (54). Here, we only consider the backward Euler-Galerkin
method, since the Crank-Nicolson Galerkin method is similar. We observe that

(66)

|âij − âhij | =
1

τ0

N
∑

m=1

∫ τm

τm−1

∫

Q

[

aij(ξ, τ) − aij(ξ, τ
m)

+ail(ξ, τ)
∂Nj(ξ, τ)

∂ξl
− ail(ξ, τ

m)
∂Nm

j,h

∂ξl

]

dξdτ

=
1

τ0

N
∑

m=1

∫ τm

τm−1

∫

Q

[

(aij(ξ, τ) − aij(ξ, τ
m))(1 +

∂Nj(ξ, τ)

∂ξl
)

+ail(ξ, τ
m)

∂(Nj(ξ, τ) −Nm
j,h)

∂ξl

]

dξdτ.

It follows from Proposition 3.2 that

(67)

|âij − âhij | ≤ Cτmax

∫ τ0

0

‖∂τaij‖L2(Q)dτ‖Nj‖L2(0,τ0;H1
per(Q))

+Ch

∫ τ0

0

‖∂τNj(·, τ)‖H2(Q)dτ

+Cτmax

∫ τ0

0

‖∂ττNj(·, τ)‖L2(Q)dτ.

Since (âij) is a symmetric and positive-definite matrix, from (67), we complete the
proof of (54).
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Next, we present the error estimates between u0(x, t) and ũ0(x, t), where u0(x, t)
and ũ0(x, t) are the solutions of (3) and (52), respectively.

Proposition 3.4 For k = 2, let u0(x, t) and ũ0(x, t) be the weak solutions of (3)
and (52), respectively. Under the assumptions (A1) − (A4), if f ∈ L2(Ω × (0, T )),
g ∈ L2(0, T ;H1/2(∂Ω)), ū0 ∈ H1(Ω) , then we have the following error estimate:

(68)
sup

0≤t≤T

∫

Ω

(u0(x, t)− ũ0(x, t))2dx+

T
∫

0

‖u0(·, t)− ũ0(·, t)‖2H1(Ω)dt

≤ C(h2 + τ2qmax)
{

‖f‖2L2(Ω×(0,T )) + ‖g‖2L2(0,T ;H1/2(∂Ω)) + ‖ū0‖
2
H1(Ω)

}

,

where C is a positive constant independent of h and τmax; h and τmax are the mesh
size and the largest time-step size, respectively. Note that q = 1 for the backward
Euler-Galerkin method; and q = 2 for the Crank-Nicolson Galerkin method.

Proof. By setting w(x, t) = ũ0(x, t)− u0(x, t) and r̂ij = âij − âhij , we have

(69)



















∂w(x, t)

∂t
−

∂

∂xi

(

âhij
∂w(x, t)

∂xj

)

=
∂

∂xi

(

r̂ij
∂u0(x, t)

∂xj

)

, (x, t) ∈ Ω× (0, T )

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

w(x, 0) = 0, x ∈ Ω.

Multiplying by w(x, t) to both sides of (69) and by integration by parts in Ω× (0, t)
with t ∈ (0, T ), it gives

1

2

∫ t

0

∫

Ω

∂w2(x, t)

∂t
dxdt+

∫ t

0

∫

Ω

âhij
∂w(x, t)

∂xj

∂w(x, t)

∂xi
dxdt

=

∫ t

0

∫

Ω

r̂ij
∂u0(x, t)

∂xj

∂w(x, t)

∂xi
dxdt.

By using Propositions 3.2, 3.3 and the trace theorem, we have

1

2

∫

Ω

w2(x, t)dx + µ̄

∫ t

0

‖w(·, t)‖2H1(Ω)dt

≤ C

∫ t

0

(

h+ τqmax

)

‖u0(·, t)‖H1(Ω)‖w(·, t)‖H1(Ω)dt.

By means of the Young’s inequality, we get

1

2

∫

Ω

w2(x, t)dx + µ̄

∫ t

0

‖w(·, t)‖2H1(Ω)dt ≤ C
(

h2 + τ2qmax

)

∫ t

0

1

4λ
‖u0(·, t)‖2H1(Ω)dt

+λ

∫ t

0

‖w(·, t)‖2H1(Ω)dt.

Choosing a sufficiently small λ > 0 such that λ <
µ̄
2 , it yields

1

2

∫

Ω

w2(x, t)dx +
µ̄

2

∫ t

0

‖w(·, t)‖2H1(Ω)dt ≤ C
(

h2 + τ2qmax

)

∫ t

0

‖u0(·, t)‖2H1(Ω)dt.

Using the Gronwall’s inequality and the regular estimates of the solution u0(x, t) of
the homogenized parabolic equation (3), we complete the proof of Proposition 3.4.

Remark 3.3 For cases k = 0, 1, 3, one can derive similar results to those of
Proposition 3.4.

By the virtue of the interior estimates for second order parabolic equations (see
[14], p.351), we can prove the following proposition without any difficulty.

Proposition 3.5 Let u0(x, t) and ũ0(x, t) be the weak solutions of the ho-
mogenized equation (3) and the modified homogenized equation (52), respectively.
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Under the assumptions (A1)− (A4), if f ∈ L2(Ω× (0, T ))
⋂

H1(0, T ;Hs(Ω′′)), g ∈
L2(0, T ;H1/2(∂Ω)) , ū0 ∈ H1(Ω)

⋂

Hs+1(Ω′′), s = 1, 2, where Ω0 ⊂⊂ Ω′′ ⊂⊂ Ω,
then it holds

(70)

sup
0≤t≤T

‖u0(x, t)− ũ0(x, t))‖2s+1,Ω0
+

∫ T

0

‖u0(·, t)− ũ0(·, t)‖2s+2,Ω0
dt

≤ C
(

h2 + τ2qmax

)

{

‖f‖2H1(0,T ;Hs(Ω′′)) + ‖ū0‖
2
Hs+1(Ω′′)

+‖f‖2L2(Ω×(0,T )) + ‖g‖2L2(0,T ;H1/2(∂Ω)) + ‖ū0‖
2
H1(Ω)

}

,

where C is a positive constant independent of h and taumax; h and τmax are re-
spectively the mesh size and the largest time-step size. Note that q = 1 and 2 for
the backward Euler-Galerkin method and the Crank-Nicolson Galerkin method,
respectively.

Next we discuss the finite element computation for the modified homogenized
parabolic equation (52). Based on the numerical results by the standard finite ele-
ment method, we introduce the finite element post-processing technique presented
in [18, 19]. Let J h1 be a regular family of subdivisions of Ω, where h1 is the mesh
size, and satisfy the following properties:

(1) The elements are uniform hexahedrons in the interior subdomain Ω0 ⊂⊂ Ω.
(2) The elements are regular tetrahedron in region Ω1 = Ω\Ω0 , and the elements

are tetrahedrons near the boundary ∂Ω.
(3) Any face of the element K1 is either a subset of the boundary ∂Ω, or a face

of another element K2 in the subdivision.
Define a r− th finite element space:

(71) Sh1(Ω) = {v ∈ C(Ω) : v|K ∈ P r(K), v|∂Ω = 0} ⊂ H1
0 (Ω),

where

P r =

{

Qr, K is a hexahedron
Pr, K is a tetrahedron,

and Qr and Pr are bi r-th and r-th finite elements, respectively.
The semi-discrete scheme for solving problem (52) is given as follows:

(72) 〈
d

dt
ũ0
h1
, vh1〉+ aΩ(ũ

0
h1
, vh1) = 〈f, vh1〉, ∀vh1 ∈ Sh1(Ω), t ∈ (0, T ),

where 〈u, v〉 =
∫

Ω uvdx, aΩ(u, v) =
∫

Ω âhij
∂u
∂xj

∂u
∂xi

dx.

We consider the Crank-Nicolson fully discrete approximation with variable time

steps for (72). Let κm be the step size for the m−th time-step and set tm =
m
∑

i=1

κi.

We define Um
h1

∈ Sh1(Ω) recursively for m ≥ 1 by
(73)






〈∂̄tU
m
h1
, vh1〉+ aΩ(

1

2
(Um

h1
+ Um−1

h1
), vh1) = 〈f(tm−1/2), vh1〉, ∀vh1 ∈ Sh1(Ω),

U0
h1

= ū0,h1 ,

where ∂̄tU
m
h1

= (Um
h1
−Um−1

h1
)/κm, f(tm−1/2) = f(x, (tm+tm−1)/2), ū0,h1 ∈ Sh1(Ω)

is some approximation of ū0(x).
Remark 3.4 Under some regularity hypotheses, one can derive the error es-

timates of the Crank-Nicolson Galerkin method for problem (52). We refer the
reader to additional references, see, e.g., [6, 15, 25].

In order to improve the numerical accuracy of approximate solutions, we intro-
duce the finite element post-processing technique presented in [18, 19]. The key
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Figure 2. (a)Triangular mesh ; (b) rectangular mesh

step of the method is to construct a bi-2r-th (2r-th) interpolation operator at a
new larger element with respect to a coarse mesh as shown in Fig.2 (a), (b), by

using the nodal values of the bi-r-th (r-th )finite element solution. Denote by I
(2r)
2h1

the bi-2r-th ( 2r-th) order interpolation operator, where h1 is the mesh size to solve
problem (52).

Lemma 3.1 ([19]) Let Ih1 : H1(Ω) → Sh1(Ω) be the usual Lagrange’s interpola-

tion operator. Then the interpolation operators Ih1 and I
(2r)
2h1

satisfy the following
properties:

(74) ‖I
(2r)
2h1

u‖σ,p ≤ C‖u‖σ,p 1 ≤ p ≤ ∞, σ = 0, 1, ∀u ∈ Sh1(Ω),

(75)







(I
(2r)
2h1

)2 = I
(2r)
2h1

, I
(2r)
2h1

Ih1 = I
(2r)
2h1

,

I
(2r)
2h1

u(Pi) = Ih1u(Pi) = u(Pi), ∀Pi ∈ T h1, u ∈ C(Ω),

(76)

{

‖u− I
(2r)
2h1

u‖σ,p,E ≤ Ch2r+1−σ
1 ‖u‖2r+1,p,E,

∀u ∈ W 2r+1,p(E), σ = 0, 1, 1 ≤ p ≤ +∞, ∀E ∈ J2h1 |Ω,

where C > 0 is a positive constant independent of h1, T
h1 denotes the set of nodal

points of J h1 of a domain Ω.
After the fully discrete approximate solution Um

h1
for problem (52) is computed,

we then employ the post-processing technique to the solution. Next we show the
following convergence results for this method.

Theorem 3.1 Let ũ0(x, t) be the unique weak solution of problem (52), and
let Um

h1
∈ Sh1(Ω) be the fully discrete approximation of ũ0(x, t) at time t = tm by

using the Crank-Nicolson Galerkin method. Suppose that Ω0 ⊂⊂ Ω′′ ⊂⊂ Ω, and
Ω0, Ω

′′ are covered by a uniform mesh. Under the assumptions of Proposition 3.5,
we have the following error estimates:
(77)

‖I
(2r)
2h1

Um
h1

− ũ0(x, tm)‖H1(Ω0) ≤ Chr+1
1

(

‖ū0(x)‖Hr+1(Ω′′) + ‖ũ0(x, tm)‖Hr+2(Ω′′)

+

∫ tm

0

‖∂tũ
0‖Hr+1(Ω)dt

)

+ Cκ2

∫ tm

0

(

‖∂tttũ
0‖L2(Ω) + ‖∂ttũ

0‖H2(Ω)

)

dt,

where C is a positive constant independent of h1 and κ; h1 and κ are the mesh size
and the largest time-step size, respectively. ∂tũ

0 denotes the derivative of ũ0 with
respect to time t. r ≥ 1 is the degree of piecewise polynomials in the finite element

space Sh1(Ω), I
(2r)
2h1

is the higher order interpolation operator.
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Proof. Observe that

ũ0(x, tm)− I
(2r)
2h1

Um
h1

= ũ0(x, tm)− I
(2r)
2h1

Rh1 ũ
0(x, tm)

+I
(2r)
2h1

Rh1 ũ
0(x, tm)− I

(2r)
2h1

Um
h1

= θm + ηm,

where Rh1 is an elliptic type projection operator, see [6, 15, 25]. It follows from
Lemma 3.1 that

‖θm‖H1(Ω0) ≤ Chr+1
1 ‖ũ0(x, tm)‖Hr+2(Ω′′) + ‖ũ0(x, tm)− Rh1 ũ

0(x, tm)‖H−γ (Ω′′)

≤ Chr+1
1

(

‖ū0(x)‖Hr+1(Ω′′) + ‖ũ0(x, tm)‖Hr+2(Ω′′)

)

+ Chr+2+γ
1 ‖ũ0(x, tm)‖Hr+2(Ω′′)

≤ Chr+1
1

(

‖ū0(x)‖Hr+1(Ω′′) + ‖ũ0(x, tm)‖Hr+2(Ω′′)

)

, γ ≥ 0.

On the other hand,

ηm = I
(2r)
2h1

Rh1 ũ
0(x, tm)− I

(2r)
2h1

Um
h1

= I
(2r)
2h1

(

Rh1 ũ
0(x, tm)− Um

h1

)

.

Thanks to (Rh1 ũ
0(x, tm)− Um

h1
) ∈ Sh1(Ω), it follows from Lemma 3.1 that

‖I
(2r)
2h1

(

Rh1 ũ
0(x, tm)− Um

h1

)

‖H1(Ω0) ≤ C‖Rh1 ũ
0(x, tm)− Um

h1
‖H1(Ω0)

We employ the superconvergence estimates (see, e.g., Theorem 13.3.4 of [5], also
see [25]), and obtain

‖ηm‖H1(Ω0) ≤ C‖Rh1 ũ
0(x, tm)− Um

h1
‖H1(Ω0) ≤ Chr+1

1 (

∫ tm

0

‖∂tũ
0‖2Hr+1(Ω′′)dt)

1
2

+Cκ2
(

∫ tm

0

‖∂ttũ
0‖H2(Ω′′) + ‖∂tttũ

0‖2L2(Ω′′)

)
1
2

.

Therefore, we complete the proof of Theorem 3.1.

3.3. Novel algorithm for boundary layer solutions. In this section, we present
the numerical algorithm for solving the boundary layer equations (4). For the case
k = 0, we employ the backward Euler-Galerkin method or the Crank-Nicolson
Galerkin method. Next, we consider when k = 1, 2, 3. In practice, we need to solve
the following modified boundary value problems:
(78)































∂ũε,b
s (x, t)

∂t
−

∂

∂xi

(

aij(
x

ε
,
t

εk
)
∂ũε,b

s (x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω1 × (0, T )

ũε,b
s (x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

ũε,b
s (x, t) = Ũ0

h1
(x, t) (x, t) ∈ (∂Ω0 ∩ ∂Ω1)× (0, T )

ũε,b
s (x, 0) = ū0(x), x ∈ Ω1,

where Ũ0
h1
(x, t) = l̄(t)I

(2r)
2h1

Um
h1

+ (1 − l̄(t))I
(2r)
2h1

Um−1
h1

for t ∈ (tm−1, tm], l̄(t) =

(t − tm−1)/κm, κm = (tm − tm−1), Um
h1
, Um−1

h1
∈ Sh1(Ω) are the fully discrete

approximations for the modified homogenized parabolic equation (52), the interpo-

lation operator I
(2r)
2h1

has been defined in (74), also see [18, 19].

Let Th2 be a regular family of tetrahedron for subdomain Ω1 = Ω \Ω0, where h2

is the mesh size for Ω1. Define a linear finite element space

(79) Wh2(Ω1) = {v ∈ C(Ω1) : v|∂Ω0∩∂Ω1 = 0, v|K ∈ P1(K), v|∂Ω = 0}.



68 L. CAO, F. ZHAI, AND Y. WONG

The semi-discrete problem of (79) is to find ũε,b
s,h2

− Ũ0
h1

∈ L2(0, T ;Wh2(Ω1)) with

ũε,b
s,h2

(0) = ū0,h2 and

(80)

〈
d

dt
ũε,b
s,h2

, vh2〉Ω1 + aεΩ1
(ũε,b

s,h2
, vh2) = 〈f, vh2〉Ω1 , ∀vh2 ∈ Wh2(Ω1), t ∈ (0, T ),

where 〈u,w〉Ω1 =
∫

Ω1
uwdx, aεΩ1

(u,w) =
∫

Ω1
aij(

x
ε ,

t
εk

) ∂u
∂xj

∂w
∂xi

dx. Let {φj(x)}
n2

i=1

be a basis of Wh2(Ω1), and ũε,b
s,h2

=
n2
∑

i=1

ζi(t)φi(x). Then for any fixed t ∈ (0, T ) ,

(80) is equivalent to

(81)

n2
∑

j=1

〈φj , φi〉Ω1

dζj(t)

dt
+

n2
∑

j=1

aεΩ1
(φj , φi)ζj(t) = 〈f(x, t), φi〉Ω1 , i = 1, 2, · · · , n2.

Denoting by Âε
h2

:= (aεΩ1
(φj , φi)) the stiffness matrix, by Bε

h2
:= (〈φj , φi〉Ω1) the

mass matrix, and by βh2(t) := (〈f(x, t), φi〉Ω1), we obtain for ζh2 := (ζi(t)) the
following system of linear ordinary differential equations:

(82)

{

Bε
h2

d
dt
ζh2(t) + Âε

h2
ζh2(t) = βh2(t), t ∈ (0, T )

ζh2(0) = ζ0h2 .

Since the matrix Bε
h2

is symmetric and positive definite, it can be factored as

Bε
h2

= (Eε
h2
)TEε

h2
. Introducing the new variable wε

h2
:= Eε

h2
ζh2(t), system (82) can

be rewritten as follows:

(83)







d

dt
wε

h2
+Aε

h2
wε

h2
= qh2(t), t ∈ (0, T )

wε
h2
(0) = Eε

h2
ζ0h2 ,

whereAε
h2

:= (Eε
h2
)−T Âε

h2
(Eε

h2
)−1 is anRn2×n2-elliptic matrix and qh2 := (Eε

h2
)−Tβh2 .

It should be emphasized that since the elements of the matrix Aε
h2
(t) are rapidly

oscillating with respect to time t , it is difficult to directly solve the linear differential
system (83) by the standard numerical methods such as Runge-Kutta methods,
since it will require a large computational scaling.

Let τ = ε−kt, k = 1, 2, 3 and Ah2(
t
εk

) = Ah2(τ) be τ0-periodic in τ , i.e. Ah2(τ +

τ0) = Ah2(τ). Then Aε
h2
(t) is t0ε = εkτ0 -periodic in t, but qh2(t) is not a periodic

function in t. Therefore, problem (83) is not a usual non-homogeneous linear system
of differential equations with real periodic coefficients(see, e.g., [9, 13]). Suppose
that yεh2

(t) is the solution of the following homogeneous linear system with real
periodic coefficients:

(84)

{

d

dt
yεh2

(t) = −Aε
h2
(t)yεh2

(t)

yεh2
(0) = wε

h2
(t0ε)− wε

h2
(0), t ∈ (0, T ).

Lemma 3.2 ([1]) If ‖∂tqh2‖0,∞ ≤ K, where K is a constant, then it holds

(85) ‖wε
h2
(t+mt0ε)−wε

h2
(t+(m− 1)t0ε)− yεh2

(t+mt0ε)‖0,∞ ≤ C(t0ε)
2, t ∈ (0, t0ε),

where C is a constant independent of t0ε; m = 1, 2, · · · .



MULTISCALE ANALYSIS AND COMPUTATION FOR PARABOLIC EQUATIONS 69

Lemma 3.3 ([1]) Let t = Nεt
0
ε + t′, Nε = 0, 1, 2, · · · , 0 ≤ t′ < t0ε, t

0
ε = εkτ0.

Under the assumptions of Lemma 3.2, we have
(86)

wε
h2
(t)− wε

h2
(0) =

∫ t

0 qh2(σ)dσ −
Nε−1
∑

m=1

m
∑

j=1

∫ t0ε
0 Aε

h2
(σ′)yεh2

(σ′ + jt0ε)dσ
′

−
∫ t′

0 Aε
h2
(σ′)wε

h2
(σ′)dσ′ −

∫ t′

0 Aε
h2
(σ′)yεh2

(σ′ + (Nε − 1)t0ε)dσ
′

+ O(εk),

where k = 1, 2, 3.
From Lemma 3.3, in order to compute wε

h2
(t), t ∈ (0, T ) in (83), we present a

numerical algorithm as follows:
Step I: Compute wε

h2
(t) of (83) in a time period [0, t0ε).

Step II: Solve the homogeneous linear system (84) of the differential equations
with real periodic coefficients.

The computation on Step I is similar to that of the function ũ0(x, t), see (52).
However, the error estimates are different, due to the following lemma.

Lemma 3.4 ([1]) Suppose that Ω1 = Ω \ Ω0 ⊂ Rn is illustrated in Fig.1:(b).
Let uε,b

s (x, t), s = 1, 2 be the weak solutions of the boundary layer equations (4)
with pure Dirichlet boundary conditions. Under the assumptions (A1) − (A4),
if aij(ξ, τ) ∈ C1(Q × [0, τ0]), ∇paij(ξ, τ) ∈ L2(0, τ0;L

∞(Q)), p = ξ, τ,∇2
ξτaij ∈

L2(0, τ0;L
∞(Q)), ξ = ε−1x, τ = ε−kt, τ0 is a time period, f ≡ 0 for t < t0, where

t0 = const > 0 , and f, ∂kf/∂tk ∈ L2(Ω1 × (0, T )), and g(x, t) ≡ 0, ū0(x) ≡ 0, then
we conclude that uε,b

s ∈ C2(0, T ;H1(Ω1)), and

(87)
‖∂ttu

ε,b
s ‖L2(0,T ;L2(Ω1)) ≤ Cε−k−1{‖f‖C1(t0,T ;L2(Ω)) + ‖u0‖L2(0,T ;H3(Ω))

+ ‖∂tu
0‖L2(0,T ;H1(Ω))}, k = 1, 2, 3,

where C is a constant independent of ε, u0(x, t) is the unique weak solution of the
homogenized parabolic equation (3).

Remark 3.5 We would like to state that the regularity assumptions for the co-
efficients aij(ξ, τ) in Lemma 3.4 can be extended into the following case: aij(ξ, τ) ∈
C1(0, τ0;L

∞(Q)). It is well known that C∞(Q) are not dense in L∞(Q). To this
end, we introduce q such that 1/q + 1/r = 1/2. For any fixed τ ∈ (0, τ0], we can

find a sequence of smooth functions a
(β)
ij (ξ, τ) ∈ C∞(Q) such that (see [2], p.104)

(88) ‖a
(β)
ij (ξ, τ) − aij(ξ, τ)‖Lq(Q) → 0, as β → +∞.

Let uε,b
s,(β)(x, t) be the solutions of the boundary layer equations (4) by replacing

aij(
x
ε ,

t
εk

) with a
(β)
ij (xε ,

t
εk

). One can directly verify that

(89)

sup
0≤t≤T

∫

Ω1

(uε,b
s,(β)(x, t)− uε,b

s (x, t))2dx+
T
∫

0

‖uε,b
s,(β)(x, t) − uε,b

s (x, t)‖2H1(Ω1)
dt

≤ C(T )
τ0
∫

0

‖a
(β)
ij (ξ, τ)− aij(ξ, τ)‖

2
Lq(Q)dτ → 0, as β → +∞.

Following the lines of proof of Theorem 7.31 in ([12], p.338) and using Lemma 3.4,
we have the following error estimates for the boundary layer solutions.

Proposition 3.6 Let ũε,b
s (x, t), s = 1, 2 be the weak solutions of the boundary

layer equations (78), and let Uε,b,m
s,h2

be the fully discrete solutions using the one-step

Theta method for problem (78)(see, e.g., [18]). Under the assumptions of Lemma
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3.4, we have

(90) ‖ũε,b
s (x, t′m)− Uε,b,m

s,h2
‖0,p,Ω1 ≤ C(p)

{

ε−2h2−δ0
2 + εk−1 τ20

N2

}

,

where δ0 =
(q − 2)n

2q , q > 2, 1/p+ 1/q = 1, 1 ≤ p < 2, t0ε = εkτ0, k = 1, 2, 3, τ0 is

the time period with respect to τ = ε−kt. The time interval (0, t0ε) is subdivided
into N subintervals, the time-step size ∆t′ = t0ε/N , h2 is the mesh size in Ω1 for
the boundary layer equations (78), C(p) is a constant independent of ε, h2 and ∆t′,
but dependent of p.

In the linear system (84), set τ = ε−kt, k = 1, 2, 3 and Aε
h2
(t) = Ah2(

t
εk

) =

Ah2(τ). Assume that the n2 × n2 matrix Ah2(τ + τ0) = Ah2(τ), i.e. A
ε
h2
(t+ t0ε) =

Aε
h2
(t). Denote by Y ε

h2
(t) the matrix which satisfies the equation given by

(91)

{

dY ε
h (t)
dt

= −Aε
h(t)Y

ε
h (t)

Y ε
h (0) = I,

where I is the unit matrix. The n2 columns of this matrix represents n2 linearly
independent solutions of equation (84). The solution yεh(t) of equation (84) provided
with the initial value yεh2

(0) = wε
h2
(t0ε)− wε

h2
(0) can be expressed by means of the

matrix Y ε
h2
(t) in the form yεh2

(t) = Y ε
h2
(t)yεh2

(0). For convenience, we rewrite the
linear system as follows:

(92)

{

dY (t)
dt

= A(t)Y (t)

Y (0) = I,

where Y (t) = Y ε
h2
(t), A(t) = −Aε

h2
(t), A(t+ t0ε) = A(t), t0ε = εkτ0.

Lemma 3.5 (see Theorem 6.1.3 of [13], p.136) Let t0ε > 0. If the function
A : R → Mn2(C) is continuous and satisfies A(t + t0ε) = A(t) for t ∈ R, then a
function P : R → Mn2(C) and the matrix W ∈ Mn2(C) exists such that

P (t+ t0ε) = P (t), for t ∈ R,

Y (t) = exp(Wt)P (t), for t ∈ R.

It should be emphasized that Lemma 3.5 does not hold in the real domain, i.e. if
we replace the set C by the set R in general cases. But in the real domain the
following lemma holds which is obtained from Lemma 3.5 by a slight modification:

Lemma 3.6 (see Theorem 6.1.5 of [13], p.138) Let t0ε > 0. If the function
A : R → Mn2(R) is continuous and satisfies A(t + t0ε) = A(t) for t ∈ R, then a
function P : R → Mn2(R) and a matrix W ∈ Mn2(R) exist such that

P (t+ 2t0ε) = P (t), for t ∈ R,

Y (t) = P (t)exp(Wt), for t ∈ R.

The proof of Lemma 3.6 and the detailed constructions of W ∈ Mn(R) in the
special cases can be found in ([13], p.142). Set P (t) = Y (t)exp(−Wt), then P (t) ∈
Mn2(R), due to Y (t) ∈ Mn2(R) in [13]. Note that only the existence of P (t) ∈
Mn2(R) was stated, but no detail was given on its construction. In this study, we
present the constructions of P (t), W ∈ Mn2(R) for specific cases. How to construct
P (t) in general cases remains an open question.

Let A(t) in (92) be a continuous periodic matrix with period t0ε in the interval
0 ≤ t < T . Then we obtain the matrix Y (t) that is normalized at the point t = 0
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in the form

Y =

∞
∑

k=0

Yk(t), Y0(t) = I,

where I is the unit matrix, and

(93) Yk(t) =

∫ t

0

A(t)Yk−1(t)dt.

It can be proved that the series converges uniformly in the interval 0 ≤ t < T (see,
[9], p.45). From a property of fundamental systems of solutions of linear differential
equations, Y (t+ t0ε) can be expressed in terms of Y (t) by the equation

Y (t+ t0ε) = V Y (t),

where V is a constant matrix with nonzero determinant for t = 0. From this, we
have Y (t0ε) = V and

V =

∞
∑

k=0

Yk(t
0
ε), Y0(t) = I,

where Yk(t) has been defined in (93). Consider the system with a real parameter λ
as follows:

(94)
dY (t)

dt
= A(t)Y (t)λ.

Now, we seek a solution of the system (94) in the following form:

(95) Y (t) = P (t)exp(Wt),

whereW is a real constant matrix and P (t) is a real periodic matrix with a period t0ε.
Assuming the characteristic numbers of the integral substitution V are all positive,
then we have

(96) W =
1

t0ε
lnV =

∞
∑

k=1

Wkλ
k,

where Wk will be defined shortly.
It can be shown that the series converges for |λ| ≤ 1 (see Theorem 2.1 of [9],

p.22).

P (t) = (
∞
∑

k=0

Yk(t)λ
k)exp

(

−
∞
∑

k=1

Wkλ
kt
)

, Y0 = I.

Set

(97) P (t) = I +
∞
∑

k=1

Pk(t)λ
k.

Substituting (95) into (94) and multiplying on the right by exp(−Wt), then we get

(98)
dP (t)

dt
= A(t)P (t)λ − P (t)W.

Putting (96) and (97) into (98), and equating coefficients of the same power of λ,
it gives

(99)
dPk(t)

dt
= A(t)Pk−1(t)−Wk −

k−1
∑

l=1

Pk−l(t)Wl,

(100)
dP1(t)

dt
= A(t)−W1.
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From (99) and (100), we obtain

(101) Wk =
1

t0ε

∫ t0ε

0

[

A(t)Pk−1(t)−

k−1
∑

l=1

Pk−l(t)Wl

]

dt,

and

Pk(t) =

∫ t

0

[

A(t)Pk−1(t)−

k−1
∑

l=1

Pk−l(t) ·Wl

]

dt−Wkt.

In particular, from (101), it gives W1 = 1
t0ε

∫ t0ε
0 A(t)dt. Hence, we have a solution of

the system (93) by setting λ = 1 in (96) and (97). Therefore, Y (t) = P (t)exp(Wt),
where W is a real constant matrix, and P (t) is a real periodic matrix with a period
t0ε. In real applications, we need to replace P (t) and W by using the truncated
solutions Pm(t) and Wm, m ≥ 1, respectively.

4. Multiscale Numerical Algorithm

To summarize the above results, we conclude that the multiscale method for
parabolic equations with rapidly oscillating coefficients consists of the following
parts:

Part I: Compute the cell functions Nα1 and Nα1α2 , α1, α2 = 1, 2, · · · , n.
Part II: Solve the modified homogenized parabolic equation (52) with constant

coefficients in the whole domain Ω×(0, T ) using coarse mesh and with a larger time-
step.

Part III: Compute the boundary layer solutions in a subdomain Ω1 × (0, T )
with a fine mesh, see (78).

Part IV: Compute the derivatives
∂ũ0(x, t)
∂xα1

and
∂2ũ0(x, t)
∂xα1∂xα2

by means of the

finite difference method. In this paper the first-order difference quotients are defined
as

(102) δxjU
m
h1
(Np, tm) =

1

τ(Np)

∑

K∈σ(Np)

[
∂Um

h1

∂xj
]K(Np, tm),

where σ(Np) is the set of elements with node Np; τ(Np) is the number of elements of

σ(Np); [
∂Um

h1

∂xj
]K(Np, tm) is the value of the derivative

∂Um
h1

∂xj
at node Np associated

with element K at time t = tm. Similarly, the second-order difference quotients are
defined as follows:

(103) δ2xlxk
Um
h1
(Np, tm) =

1

τ(Np)

∑

K∈σ(Np)

[

d
∑

j=1

δxl
Um
h1
(Pj , tm)

∂χj

∂xk
]K(Np, tm),

where d is the number of nodes on K, Pj are the nodes of K, χj(x) are Lagrange’s
type shape functions.

For simplicity, we present a unified multiscale numerical scheme only for the case
k = 2. Similar schemes can be developed for other cases.
(104)

U
ε,h,h1
1,h2

(Np, tm) =







Um
h1
(Np, tm) + ε

n
∑

α1=1

Nm
α1,h

δxα1
Um

h1
(Np, tm), (Np, tm) ∈ Ω0 × (0, T )

U
ε,b,m
1,h2

(Np, tm), (Np, tm) ∈ Ω1 × (0, T ),
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(105)

U
ε,h,h1
2,h2

(Np, tm) =























Um
h1
(Np, tm) + ε

n
∑

α1=1

Nm
α1,h

δxα1
Um

h1
(Np, tm)

+ε2
n
∑

α1,α2=1

Nm
α1α2,h

δ2xα1xα2
Um

h1
(Np, tm), (Np, tm) ∈ Ω0 × (0, T )

U
ε,b,m
2,h2

(Np, tm), (Np, tm) ∈ Ω1 × (0, T ),

where Um
h1
(Np, tm), Uε,b,m

1,h2
(Np, tm), Uε,b,m

2,h2
(Np, tm) are the fully discrete approx-

imations associated with problems (52), (78) at the nodal point Np and at time
t = tm, respectively. Nm

α1,h
and Nm

α1α2,h
are the fully discrete approximations asso-

ciated with the cell problems (33) and (34), respectively. Note that h, h1, h2 are
respectively the mesh sizes of domains Q, Ω and Ω1.

In order to improve the numerical accuracy, we introduce the post-processing
technique given by
(106)

PUε,h,h1

1,h2
(x, t) =







PUh1(x, t) + ε
n
∑

α1=1
Nα1,hδxα1

PUh1(x, t), (x, t) ∈ Ω0 × (0, T )

Uε,b
1,h2

(x, t), (x, t) ∈ Ω1 × (0, T ),

(107)

PUε,h,h1

2,h2
(x, t) =























PUh1(x, t) + ε
n
∑

α1=1
Nα1,hδxα1

PUh1(x, t)

+ε2
n
∑

α1,α2=1
Nα1α2,hδ

2
xα1xα2

PUh1(x, t), (x, t) ∈ Ω0 × (0, T )

Uε,b
2,h2

(x, t), (x, t) ∈ Ω1 × (0, T ),

where

PUh1(x, t) = l̄(t)I
(2r)
2h1

Um
h1
(x, tm) + (1 − l̄(t))I

(2r)
2h1

Um−1
h1

(x, tm−1),

Uε,b
s,h2

(x, t) = l̄(t)Uε,b
s,h2

(x, tm) + (1− l̄(t))Uε,b
s,h2

(x, tm−1), s = 1, 2,

Nα1,h(ξ, τ) = l(τ)Nm
α1,h

(ξ, τm) + (1− l(τ))Nm−1
α1,h

(ξ, τm−1),

Nα1α2,h(ξ, τ) = l(τ)Nm
α1α2,h

(ξ, τm) + (1− l(τ))Nm−1
α1α2,h

(ξ, τm−1),

l̄(t) = (t− tm−1)/κm, l(τ) = (τ − τm−1)/τm, ξ = ε−1x, τ = ε−2t,

κm, τm are the time-step sizes for solving the modified homogenized parabolic
equation (52) and the cell problems (14) and (15), respectively.

Remark 4.1 Combining Theorems 2.1, 2.2, Propositions 3.2,3.4,3.5 and Theo-
rem 3.1, we obtain the final error estimates for the first-order and the second-order

multiscale approximate solutions Uε,h,h1

s,h2
(x, t), PUε,h,h1

s,h2
(x, t), s = 1, 2. Due to space

limitation, we omit their proofs.

5. Numerical Examples

To validate the convergence results presented in this paper, we consider the
following test cases.

Example 5.1. Consider the second order parabolic equations with rapidly
oscillating coefficients given by

(108)















∂uε(x, t)
∂t

− ∂
∂xi

(

aεij(x, t)
∂uε(x, t)

∂xj
) = f(x, t), (x, t) ∈ Ω× (0, T )

uε(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

uε(x, 0) = 0, x ∈ Ω
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Figure 3. (a) The whole domain Ω; (b) the reference cell Q.

where the domain Ω is shown in Fig.3 (a), which is the union of periodic cells and

the reference cell Q = (0, 1)3 as illustrated in Fig.3 (b). Here, aεij(x, t) = aij(
x
ε ,

t
εk

),

k = 0, 1, 2, 3, and ε = 1
4.

Numerical simulations are carried out for the following cases:
Case 1: k = 0, aij0 = (200+ 100 sin(2πt))δij , aij1 = (2 + sin(2πt))δij , T = 1.0,

f(x, t) = 100.
Case 2: k = 1, aij0 = (200 + 100 sin(2πt/ε))δij , aij1 = (2 + sin(2πt/ε))δij ,

T = 1.0, f(x, t) = 100(2 + sin(2πt))(x2 + y2).
Case 3: k = 2, aij0 = (200 + 100 sin(2πt/ε2))δij , aij1 = (2 + sin(2πt/ε2))δij ,

T = 1.0, f(x, t) = 100(2 + cos(2πt)).
Case 4: k = 3, aij0 = (200 + 100 sin(2πt/ε3))δij , aij1 = (2 + sin(2πt/ε3))δij ,

T = 1.0, f(x, t) = 100(2 + sin(2πt)).
Note that δij is the Kronecker symbol, aij1 denote the coefficients inside the

ellipsoids, and aij0 represent the coefficients on the other part.
Since it is difficult to derive the exact solution of (108), uε(x, t) is taken from

the numerical solution computed using a fine mesh. We implement the tetrahedron
partition for Ω in a fine mesh, in which the discontinuities of the coefficients aεij(x, t)
approximately coincide with the faces of the tetrahedron, and linear Lagrangian
elements are used to solve problem (108). In order to solve the cell problems
and the homogenized equation (52) numerically, we implement respectively the
tetrahedron partitions for Q and Ω, and then employ linear Lagrangian elements.
Since the whole domain Ω is the union of entire unit cells, we do not need to define
the boundary layer solutions. Comparisons of the computational costs are listed in
Tables 1 and 2.

Table 1. Comparison of the numbers of elements and nodes

original equation cell problems homogenized equation
number of elements 129002 2006 24576
number of nodes 25044 461 4913

For simplicity and without confusion, let ũ0(x, t) denote the finite element solu-
tion for the modified homogenized equation (52) in a coarse mesh, and Uε

1 (x, t), U
ε
2 (x, t)

are the first-order and the second-order multiscale numerical solutions based on
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Table 2. Comparison of the time-step size for cases k=0,1,2,3

original equation homogenized equation cell problem
k=0 0.001 0.001
k=1 0.001 0.001
k=2 0.00025 0.00625 0.001
k=3 0.000125 0.003125

(104)-(105). Set e0 = uε(x, t) − ũ0(x, t), e1 = uε(x, t) − Uε
1 (x, t), e2 = uε(x, t) −

Uε
2 (x, t).
The numerical results are reported in Table 3. For convenience, we introduce

the notation: ‖u‖(0) =
( ∫ T

0
‖u‖2L2(Ω)dt

)1/2
, and ‖u‖(1) =

( ∫ T

0
‖u‖2H1(Ω)dt

)1/2
. The

Table 3. Comparison of computational results

‖e0‖(0)

‖u0‖(0)

‖e1‖(0)

‖Uε
1 ‖(0)

‖e2‖(0)

‖Uε
2 ‖(0)

‖e0‖(1)

‖u0‖(1)

‖e1‖(1)

‖Uε
1 ‖(1)

‖e2‖(1)

‖Uε
2 ‖(1)

Case 1 0.356047 0.358712 0.0259064 3.12531 3.03234 0.191436
Case 2 0.777564 0.781666 0.370077 4.55738 4.45790 0.221588
Case 3 0.703128 0.705362 0.392032 3.91941 3.81342 0.225665
Case 4 0.703245 0.705473 0.394334 3.90867 3.80290 0.232405

numerical results for Case 3 (i.e. k = 2 ) at the section z = 0.625 at time T = 1.0
are shown in Fig4: (a)-(d).

Remark 5.1 From the computed solutions illustrated in Table 3, we conclude
that if the contrast between different parts of the reference cell Q for coefficients
aij(

x
ε ,

t
εk
), k = 0, 1, 2, 3 are large, then the numerical results obtained by the ho-

mogenization method and the first-order multiscale method are not satisfactory.
However, the second-order multiscale method is capable of producing more accu-
rate solutions.

In order to demonstrate the efficiency of the proposed method for treating multi-
ple time scales, for simplicity, we focus numerical simulations for the 1-D case. The
case k = 0 is routine, so we will consider other cases k = 1, 2, 3. We select the refer-
ence cell Q = (0, 1), a0, a1 are the coefficients on two different parts,respectively,i.e.

a(xε ,
t
εk ) = a0, x ∈ (0, 13) ∪ (23 , 1); a(

x
ε ,

t
εk ) = a1, x ∈ (13 ,

2
3).

Example 5.2. For the initial-boundary value problem (108), we consider the
following numerical experiments:

Case 5: k = 1, a0 = (200+100 sin(2πt/ε))δij , a1 = (2+sin(2πt/ε))δij , T = 0.1,
f(x, t) = 100(2 + sin(2πt))x, ε = 10−2.

Case 6: k = 2, a0 = (200 + 100 sin(2πt/ε2))δij , a1 = (2 + sin(2πt/ε2))δij ,
T = 0.1, f(x, t) = 100(2 + cos(2πt))x2, ε = 10−2.

Case 7: k = 3, a0 = (200 + 100 sin(2πt/ε3))δij , a1 = (2 + sin(2πt/ε3))δij ,
T = 0.1, f(x, t) = 100(2 + sin(2πt)), ε = 10−2.

Tables 4 and 5 compare the computational costs.
Symbols ũ0, Uε

1 , U
ε
2 , e0, e1, e2 have been defined in Example 5.1. Let

‖v‖0 =
( ∫ 1

0
|v(x, t)|2dx

)1/2
, ‖v‖1 =

( ∫ 1

0
(|v(x, t)|2 + |∇v(x, t)|2)dx

)1/2
at time t =

T . The computational results are reported in Table 6.
Remark 5.2 Table 6 clearly confirms that the first-order and the second-

order multiscale methods produce more accurate numerical solutions, whereas the
homogenization method may not be satisfactory for some cases.
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Figure 4. (a)Case 3: ũ0; (b)Case 3: Uε
1 ; (c) Case 3: Uε

2 ;
(d)Case 3: uε.
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Table 4. Comparison of the numbers of elements and nodes

original equation cell problems homogenized equation
number of elements 1200 36 600
number of nodes 1201 37 601

Table 5. Comparison of the time-step sizes for cases k = 1, 2, 3

original equation homogenized equation cell problems
k=1 0.0001 0.001
k=2 0.00001 0.001 0.001
k=3 0.0000001 0.001

Table 6. Comparison of computational results

‖e0‖(0)

‖ũ0‖(0)

‖e1‖(0)

‖Uε
1 ‖(0)

‖e2‖(0)

‖Uε
2‖(0)

‖e0‖(1)

‖ũ0‖(1)

‖e1‖(1)

‖Uε
1 ‖(1)

‖e2‖(1)

‖Uε
2 ‖(1)

Case 5 0.0398570 0.0393782 0.0393853 1.32722 0.0652034 0.0650771
Case 6 0.0101555 0.00779333 0.00782594 1.32668 0.0115531 0.0102391
Case 7 0.00824699 0.00571813 0.00574223 1.31402 0.00715503 0.00606501

Remark 5.3 The relative errors of the approximate solutions versus time t in
Examples 5.2 for k = 1, 2, 3 are plotted in Fig.5 with the x- axis in time t and the
y- axis for the relative error. Fig.5 shows that the present multiscale method is
stable and efficient for solving problems (108).
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