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ON GLOBAL ERROR OF SYMPLECTIC SCHEMES FOR

STOCHASTIC HAMILTONIAN SYSTEMS

CRISTINA A. ANTON, YAUSHU WONG, AND JIAN DENG

Abstract. We investigate a first order weak symplectic numerical scheme for stochastic Hamil-
tonian systems. Given the solution (Xt) and a class of functions f , we derive the expansion of
the global approximation error for the computed E(f(Xt)) in powers of the discretization step
size. The present study is an extension of the results obtained by Talay and Tubaro for the ex-

plicit Euler scheme. Based on the derived global error expansion, we construct an extrapolation
method of the weak second order. The performance of the extrapolation method is demonstrated
numerically for a model simulating oscillations of the particles in storage rings.

Key words. Stochastic Hamiltonian system, symplectic methods, numerical weak schemes,
extrapolation method.

1. Introduction

In recent years, considerable progress has been made in the study of uncertainty
quantification. It is known that for some practical problems in science and engi-
neering, the effect due to random noise may lead to a significant change in the
physical response. Hence, mathematical models based on a deterministic approach
may not be sufficient, and the use of stochastic models has been receiving consid-
erable attention. To take into account the random effect, the governing equations
are usually represented by stochastic differential equations. In contrast to many
efficient and robust numerical algorithms already developed for the deterministic
differential equations, the progress on numerical methods for solving stochastic d-
ifferential equations is less mature. The most common problems associated with
computational algorithms for stochastic differential equations are the poor accuracy
and poor convergence, especially when long time solutions are required. Hence, it is
a challenging task to develop accurate and robust numerical schemes for stochastic
differential equations.

The Euler method is a popular numerical method for solving differential equa-
tions, and the scheme has been extended to stochastic equations because of its sim-
ple implementation [3]. For stochastic Hamiltonian systems, symplectic schemes [5]
are important computational methods that preserve the symplectic structure, and
their accuracy does not deteriorate even for long time computations. In this paper,
we focus on the application of the Euler method and a first order weak symplectic
scheme for approximating the solution of stochastic Hamiltonian systems.
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Let consider the autonomous stochastic differential equations (SDEs) in the sense
of Stratonovich:

dP = −∂QH0(P,Q)dt −
m
∑

r=1

∂QHr(P,Q) ◦ dwr
t , P (0) = p

dQ = ∂PH0(P,Q)dt +

m
∑

r=1

∂PHr(P,Q) ◦ dwr
t , Q(0) = q,

(1)

where P , Q, p, q are n-dimensional column vectors with the components Pi, Qi, pi,
qi, i = 1, . . . , n, and wr

t , r = 1, . . . ,m are independent standard Wiener processes.
The SDE (1) is called a Stochastic Hamiltonian Systems (SHS) ([7]). Here and in
the rest of this paper, for any function f defined on Rn × Rn, we denote by ∂P f
the column vector with components (∂f/∂Pi), 1 ≤ i ≤ n, and similarly we let ∂Qf
denote the column vector with components (∂f/∂Qi), 1 ≤ i ≤ n.

We denote the solution of the stochastic Hamiltonian system (SHS) (1) by

X0,X0

t =

(

P 0;p,q
t

Q0;p,q
t

)

, where 0 ≤ t ≤ T and X0 = (pT , qT )T is a random variable

having moments of any order and independent of any increments Wt −Ws of the
Wiener process Wt = (w1

t , . . . , w
r
t )

T . It is known that if Hj , j = 0, . . . ,m are

sufficiently smooth, then X0,X0

t is a phase flow (diffeomorphism) almost sure ([4]).
The stochastic flow (p, q) −→ (P,Q) of the SHS (1) preserves the symplectic

structure [7, Theorem 2.1] as follows:

(2) dP ∧ dQ = dp ∧ dq,

i.e. the sum of the oriented areas of projections of a two-dimensional surface onto
the coordinate planes (pi, qi), i = 1, . . . , n, is invariant. Here, we consider the
differential 2-form

dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn,

and differentiation in (1) and (2) have different meanings: in (1) p, q are fixed
parameters and differentiation is done with respect to time t, while in (2) differen-
tiation is carried out with respect to the initial data p, q. We say that a method
based on the one step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)
preserves the symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq.

Let divide the interval [0, T ] inN subintervals with a uniform time step h = T/N .

If the approximation X̄0,X0

0 = X0, X̄
0,X0

k = (P̄
(0;p,q)
k , Q̄

(0;p,q)
k ), k = 1, . . .N , of the

solution X0,X0

tk
= (P

(0;p,q)
tk

, Q
(0;p,q)
tk

), satisfies

(3) |E[f(X̄0,X0

k )]− E[f(X0,X0

tk
)]| ≤ Khj ,

for f from a sufficiently large class of functions, where tk = kh ∈ [0, T ] and the

constant K > 0 does not depend on k and h, then we say that X̄0,X0

k approximate

the solution X0,X0

tk
of (1) in the weak sense [5] with weak order of accuracy j.

To simplify the notation we define

(4) G(r,r) =

n
∑

i=1

∂Hr

∂Qi

∂Hr

∂Pi

,
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for r = 1, . . . ,m. We consider the following weak method X̄0,X0

k = (P̄
(0;p,q)
k , Q̄

(0;p,q)
k ),

P̄k+1 = P̄k − h

(

∂QH0 +
1

2

m
∑

r=1

∂QG(r,r)

)

−
√
h

m
∑

r=1

ςrk∂QHr

Q̄k+1 = Q̄k + h

(

∂PH0 +
1

2

m
∑

r=1

∂PG(r,r)

)

+
√
h

m
∑

r=1

ςrk∂PHr

(5)

where the random variables ςrk are mutually independent identically distributed
according to the law, P (ςrk = ±1) = 1/2, and everywhere the arguments are
(P̄k+1, Q̄k). Under certain conditions regarding the Hamiltonians Hi, i = 1, . . . ,m,
the implicit scheme (5) is well-defined, symplectic, and of weak order 1 (see Theorem
4.2 in [5] for α = 1/2, β = 1). Thus, for a smooth function f from R2n → R, for
the global error

(6) Err(T, h) = E[f(X0,X0

T )]− E[f(X̄0,X0

N )]

there exists a positive constant C(T ) independent of h such that

(7) |Err(T, h)| ≤ C(T )h.

In this work, we derive an error expansion for Err(T, h) of the form

(8) Err(T, h) = e1(T )h+O(h2).

We investigate the proposed symplectic scheme (5), following the same approach
and assuming similar conditions as reported in [9]. In [8], under less restrictive
assumptions, the error expansion is derived for the implicit Euler scheme and a
system with constant diffusion matrix. However, instead of the Euler scheme, we
now focus on the fully implicit symplectic scheme and derive the expansion of the
global error. The main challenge to lower the assumptions in the present study is
the fact that in addition to non-constant diffusion coefficients for the SHS (1), the
symplectic scheme (5) contains implicit terms in the stochastic part.

It is known that symplectic numerical schemes for Hamiltonian systems produce
accurate results for long term simulations ([5], [1], [2]). Recall that in the weak
formulation, both the Euler and the symplectic scheme (5) have the same order
(i.e., order 1) of accuracy. The current work was motivated by the interest to
provide a theoretical explanation for the excellent approximations obtained with
the symplectic weak scheme (5), whereas the Euler method produces a very poor
solution for the Kubo oscillator, which is a simple linear stochastic Hamiltonian
system. As will be shown shortly in Section 4.1, a clear justification could be
revealed by the derived global error expansions.

After presenting preliminary results in the next section, in Section 3 we derive the
global error expansion (8) for the first order weak symplectic scheme (5). Section
4 illustrates some applications of the error expansion. First, using the present
expansion (8) and the global error expansion for the Euler scheme given in [9], we
explain the poor accuracy of the Euler scheme compared to the symplectic scheme
(5) for the Kobo oscillator. Then, based on the global error expansion and applying
an extrapolation method, we construct a second weak order scheme and we confirm
numerically its accuracy. Conclusions and possible extensions of this approach to
higher order symplectic schemes are discussed in Section 5.
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2. Preliminary discussion

We assume that the coefficients of (1) are smooth enough to satisfy the following
global Lipschitz condition, L1 > 0

(9)

m
∑

j=0

∥

∥

∥

∥

(

∂PHj

∂QHj

)

(P,Q) −
(

∂pHj

∂qHj

)

(p, q)

∥

∥

∥

∥

≤ L1(‖P − p‖+ ‖Q− q‖).

We also suppose that Hi, i = 0, . . . ,m are C∞ functions, whose derivatives of any
order are bounded. Under these conditions we know from Theorem 4.2 in [5] that
the implicit scheme (5) is well defined and of the first weak order.

To simplify the notation, let denote

a = −∂QH0 +
1

2

m
∑

r=1

n
∑

j=1

(

∂Hr

∂Qj

∂Q

(

∂Hr

∂Pj

)

− ∂Hr

∂Pj

∂Q

(

∂Hr

∂Qj

))

b = ∂PH0 +
1

2

m
∑

r=1

n
∑

j=1

(

−∂Hr

∂Qj

∂P

(

∂Hr

∂Pj

)

+
∂Hr

∂Pj

∂P

(

∂Hr

∂Qj

))

σr = −∂QHr, γr = ∂PHr,

where everywhere the arguments are (P,Q), and a, b, σr, γr, r = 1, . . . ,m are
n−dimensional column vectors. Using the Ito stochastic integration, we rewrite
the equations (1) as

dP = a(P,Q)dt +

m
∑

r=1

σr(P,Q)dwr
t , P (0) = p(10)

dQ = b(P,Q)dt+

m
∑

r=1

γr(P,Q)dwr
t , Q(0) = q,(11)

Let L be the differential operator associated with (10)-(11) given by

L =

n
∑

j=1

(

aj
∂

∂Pj

+ bj
∂

∂Qj

)

+
1

2

m
∑

r=1

n
∑

i,j=1

(

σr
i σ

r
j

∂2

∂PiPj

+ γri γ
r
j

∂2

∂QiQj

+ 2σr
i γ

r
j

∂2

∂PiQj

)

(12)

The weak Euler scheme for the system (10)-(11) has the form X̃0,X0

k = (P̃
(0;p,q)
k ,

Q̃
(0;p,q)
k ) where

P̃k+1 = P̃k + ha(P̃k, Q̃k)−
√
h

m
∑

r=1

σr(P̃k, Q̃k)ςrk

Q̃k+1 = P̃k + hb(P̃k, Q̃k)−
√
h

m
∑

r=1

γr(P̃k, Q̃k)ςrk

(13)

where the random variables ςrk are mutually independent identically distributed
according to the law, P (ςrk = ±1) = 1/2 (see chapter 14.1 in [3]).

We define the class F to be formed with the functions f defined on R2n for which
there exists constants K > 0 and χ > 0, such that

|F (x)| ≤ K(1 + |x|)χ,
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for any x ∈ R2n. If f ∈ F , then the function u(t, x) := E[f(Xt,x
T )] verifies the

equations

(14)
∂u

∂t
+ Lu = 0, u(T, x) = f(x).

Notice that, we can express the global error as

(15) Err(T, h) = E[u(0, X0)]− E[u(T, X̄0,X0

N )].

For any multi-index α = (α1, . . . , αr) with length |α| = α1 + · · · + αr, let ∂α
denote the partial derivative of order |α|:

(16)
∂|α|

∂α1
1 · · ·∂αr

r

.

From Lemma 2 in [9], we have

Lemma 2.1. For any multi-index α there exist the constants kα(T ) > 0 and
Cα(T ) > 0 such that for any 0 ≤ t ≤ T

(17) |∂αu(t, x)| ≤ Cα(T )(1 + |x|kα(T )).

From the proof of Theorem 4.2 in [5], it is clear that for the scheme (5) we have:

Lemma 2.2. For any integer k there exist a constant Ck > 0 such that for any N
and any integer 0 ≤ j ≤ N we have

(18) E[|X̄0,x0

j |k] ≤ exp (ckT ).

3. Main results

Theorem 3.1. For the first order symplectic weak scheme given in (5), the global
error is given by

(19) Err(T, h) = −h
∫ T

0

E[φ(s,X0,X0
s )]ds+O(h2),

for some smooth function φ. Moreover, it is possible to obtain an expansion of the
form

(20) Err(T, h) = e1(T )h+ · · ·+ ej(T )h
j +O(hj+1).

Proof. The proof is similar with the proof of Theorem 1 in [9]. For simplicity we

will give only the proof for j = 1. Let X̄0,X0

0 = X0, X̄
0,X0

k = (P̄
(0;p,q)
k , Q̄

(0;p,q)
k ),

k = 1, . . .N be the approximation obtained form scheme (5) starting at t = 0 from
X0 = (p, q)T . Using equation (15) we get

Err(T, h) = E[u(0, X0)]− E[u(h, X̄0,X0

1 )] + E[u(h, X̄0,X0

1 )]− E[u(2h, X̄0,X0

2 )]

+ · · ·+ E[u((N − 1)h, X̄0,X0

N−1)]− E[u(T, X̄0,X0

N )]

(21)

For any multi-index α = (α1, · · · , α2n) and any column vector x = (x1, . . . , x2n)
T

we denote ∆xα := (∆x1)
α1 · · · (∆x2n)α2n . We compute E[u(kh, X̄0,X0

k )]−E[u((k−
1)h, X̄0,X0

k−1 )], k = 1, . . .N using the following Taylor expansion at the point

(

(k −
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1)h, X̄0,X0

k−1

)

:

u(t+ h, x+∆x) = u(t, x) + h
∂

∂t
u(t, x) +

1

2
h2

∂2

∂t2
u(t, x) + h

∑

|α|=1

∆xα
∂

∂t
(∂αu(t, x))

+
h

2

∑

|α|=2

∆xα
∂

∂t
(∂αu(t, x)) +

h

6

∑

|α|=3

∆xα
∂

∂t
(∂αu(t, x))

+
1

|α|!

5
∑

|α|=1

∆xα∂αu(t, x) +O(h3).

To compute ∆X̄0,X0

k−1 =

(

P̄k − P̄k−1

Q̄k − Q̄k−1

)

, we use the Taylor expansions repeatedly

in equations (5) (the calculations are similar with those reported in the proof of
Theorem 4.2 in [5]). Using equations (12) and (14) we get, for any integer 1 ≤ k ≤ N

E[u(kh, X̄0,X0

k )] = E[u((k − 1)h, X̄0,X0

k−1 )] + h2E
[

φ
(

(k − 1)h, X̄0,X0

k−1

)]

+ h3E[Rk].
(22)

Here the function φ(t, x) is a sum of terms of the type g(x)∂αu(t, x), where α is a
multi-index and g ∈ F (see Appendix for the exact formula for φ when n = m = 1).
The remainder term E[Rk] is a sum of terms of the type

(23) E[d(X̄0,X0

k−1 )∂αu
(

(k − 1)h, X̄0,X0

k−1 + θ(X̄0,X0

k − X̄0,X0

k−1 )
)

m
∏

r=1

ςjr
r(k−1)],

where d ∈ F and θ in a random variable taking values in (0, 1). Thus from Lemma
2.1 and Lemma 2.2, there exists the real numbers C1(T ) > 0, C2(T ) > 0 indepen-
dent of h such that for some positive integer s, for any t ∈ [0, T ] and any x ∈ R2n,
we have

(24) |φ(t, x)| ≤ C1(T )(1 + |x|s),

and for any integer 1 ≤ k ≤ N , we have

(25) E
[∣

∣

∣
φ
(

(k − 1)h, X̄0,X0

k−1

)∣

∣

∣

]

≤ C2(T ), E[|Rk|] ≤ C2(T ).

Replacing (22) in (21), we obtain

(26) Err(T, h) = −h2
N−1
∑

k=0

E
[

φ
(

kh, X̄0,X0

k

)]

− h3
N
∑

k=1

E[Rk].

Using (25) and T = hN , we rewrite

(27) Err(T, h) = −h
(

h

N−1
∑

k=0

E
[

φ
(

kh, X̄0,X0

k

)]

)

+ h2RN , ,

and there exists a real number C(T ) > 0 independent of h such that |RN | ≤ C(T ),
and

(28) h

N−1
∑

k=0

E
[
∣

∣

∣
φ
(

kh, X̄0,X0

k

)
∣

∣

∣

]

≤ C(T ).
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Thus equation (27) implies that for any function f ∈ F , there exists a real number
c1(T ) > 0 independent of h, such that

(29) E[f(X̄0,X0

T )] = E[f(X0,X0

T )] +RT (h),

with |RT (h)| ≤ hc1(T ). Hence from (24) we also have

(30) E[φ(t, X̄0,X0

T )] = E[φ(t, (X0,X0

T )] +R′
T (h),

with |R′
T (h)| ≤ hc(T ) for some real number c(T ) > 0 independent of h. Finally,

notice that
∣

∣

∣

∣

∣

h

N−1
∑

k=0

E
[

φ
(

kh, X̄0,X0

k

)]

−
∫ T

0

E
[

φ
(

s,X0,X0
s

)]

ds

∣

∣

∣

∣

∣

≤

h

N−1
∑

k=0

∣

∣

∣
E
[

φ
(

kh, X̄0,X0

k

)]

− E
[

φ
(

kh,X0,X0

hk

)]∣

∣

∣

+

∣

∣

∣

∣

∣

h
N−1
∑

k=0

E
[

φ
(

kh,X0,X0

hk

)]

−
∫ T

0

E
[

φ
(

s,X0,X0
s

)]

ds

∣

∣

∣

∣

∣

(31)

Thus, using (30), T = Nh and the fact that the function s → E
[

φ(s,X0,X0
s )

]

has
a continuous first derivative, we get

(32)

∣

∣

∣

∣

∣

h

N−1
∑

k=0

E
[

φ
(

kh, X̄0,X0

k

)]

−
∫ T

0

E
[

φ
(

s,X0,X0
s

)]

ds

∣

∣

∣

∣

∣

= O(h).

Replacing in (27), the equation (19) is derived. �

4. Applications

In this section, we report numerical simulations and present a new second weak
order scheme constructed using the Romberg extrapolation method.

4.1. Numerical tests. In [6] the Kubo oscillator based on the following SDEs
in the sense of Stratonovich is used to demonstrate the advantage of using the
stochastic symplectic scheme (5) instead of the Euler scheme (13) for long time
computations. The mathematical model for the Kubo oscillator is given by:

dP = −aQdt− σQ ◦ dwt, P (0) = p0,

dQ = aPdt+ σP ◦ dwt, Q(0) = q0,
(33)

where a and σ are constants. Even though this is a simple linear system, the Euler
method produces a very poor result compared to the symplectic scheme. It should
be noted that both numerical schemes have the same order of accuracy.

With n = m = 1, the Hamiltonian functions are given by

(34) H0(P (t), Q(t)) = a
P (t)2 +Q(t)2

2
, H1(P (t), Q(t)) = σ

P (t)2 +Q(t)2

2
.

Replacing in (4) we have G(1,1)(P (t), Q(t)) = σ2P (t)Q(t). Since (33) is a linear
system, the expectations can be computed analytically and we have

E(P t;p,q
T ) = e−

σ
2(T−t)

2 (cos (a(T − t))p− sin (a(T − t))q)(35)

E(Qt;p,q
T ) = e−

σ
2(T−t)

2 (sin (a(T − t))p+ cos (a(T − t))q).(36)

Let the values of the parameters be a = 2, σ = 0.2, and the initial values be p0 =
1, q0 = 0. The time step is taken as h = 2−5. In Fig. 1, we compare the estimations
obtained using the explicit Euler scheme and the first-order weak symplectic scheme
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(5). The numerical results are compared for Monte Carlo simulations using 100000
samples. It is clear that the Euler scheme fails even after a short term simulation.

0 10 20 30 40 50 60
−4

−2

0

2

4

t

E
[P

]

 

 

0 10 20 30 40 50 60
−2

−1

0

1

2

t

E
[P

]

 

 

(a)

(b)

Figure 1. The expected value of P (t) (a)Exact value (red dashed
line), Euler weak scheme (blue solid line) (b): Exact value (red
dashed line), first order symplectic weak scheme (blue solid line)

By comparing the error expansions for the Euler scheme and the symplectic
scheme (5), the results presented in Fig. 1 are justified. Consider

(37) f
(

(P 0;p0,q0
t , Q0;p0,q0

t )T
)

= P 0;p0,q0
t ,

then u(t, (p, q)T ) = E(P t;p,q
T ) is given in equation (35). For the symplectic scheme

(5), from Theorem 3.1 we get

(38) e1(T ) = −
∫ T

0

E[φ(s, (P 0;p0,q0
s , Q0;p0,q0

s )T )]ds.

Using the formula in appendix for φ, for σ = 0.2 and a = 2, we have

e1(T ) = exp(−0.02T )

(

−p0 sin (2T )− 0.0004Tp0 cos (2T )

+ 0.0004Tq0 sin (2T )

)

.

(39)

For the Euler scheme, the first order term in the global error expansion [9] is
given by

(40) ee1(T ) = −
∫ T

0

E[ψe(s, (P
0;p0,q0
s , Q0;p0,q0

s )T )]ds,
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Figure 2. Global error first order term (a)ee1(T )h for h = 2−5,
(b) e1(T )h for h = 2−5(c) ee1(T )h for h = 2−10

and applying the equation (9) in [9] for the formula for ψe with σ = 0.2 and a = 2,
we get

ee1(T ) = exp(−0.02T )T

(

−2p0 cos (2T ) + 2q0 sin (2T ) + 0.04p0 sin (2T )

+ 0.04q0 cos (2T )

)

.

(41)

In Fig. 2 we plot the graphs of e1(T )h and ee1(T )h for p0 = 1, q0 = 0 and two
values of the time step h. With h = 2−5, the amplitude of error based on the Euler
scheme ee1(T )h increases very rapidly to values larger than 1, and when T > 80, the
error is oscillating around 0 with a decreasing amplitude (see Fig. 2 a). In contrast,
the error for the symplectic scheme e1(T )h oscillates around 0 with a fast decaying
amplitude, the maximum error appears at the beginning with amplitude less than
0.03 (see Fig. 2 b). The error behaviors explains the results given in Fig. 1.

It is interesting to note that the error profile is independent of the time step h.
Fig. 2 c displays the Euler error with h = 2−10. Comparing the errors illustrated in
Fig. 2 a and Fig. 2 c, the profiles are essentially identical but the maximum error
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is reduced from 1.3 for h = 2−5 to less than 0.04 when h = 2−10. Clearly, the Euler
scheme will produce solutions as accurate as those resulted from the symplectic
scheme when a finer time step is adopted.

4.2. Extrapolation method. Following the idea introduced in [9], we now apply
the global error expansion in Theorem 3.1 to construct numerical results of order
h2 from results of the first weak order scheme (5).

Let X̄0,X0

k (h) and X̄0,X0

k (h/2) be the approximations obtained from the sym-
plectic first weak order scheme (5) with time steps h and h/2, respectively. Then
using (19) it is easy to verify that for the new approximation

(42) Ȳ 0,X0

k (h) = 2E
[

f
(

X̄0,X0

k (h/2)
)]

− E
[

f
(

X̄0,X0

k (h)
)]

we have

(43) E[f(X0,X0

T )]− Ȳ 0,X0

N (h) = O(h2).

In [1] we propose a symplectic second weak order scheme for the SHS (1). Com-
pared with the second order approximation given by extrapolation (42), the second
order symplectic scheme in [1] requires the computation of several extra partial
derivatives of the Hamiltonians and the generation of more random variables if
m > 1. Therefore, the second order symplectic scheme requires more calculations
and the computing time than those needed based on the extrapolation formula(42).
However, it is not obvious whether the approximation (42) has the desirable prop-
erty of preserving the symplectic structure for any general function f .

We illustrate numerically the performance of the extrapolation (42) for the fol-
lowing SHS modeling the oscillations of the particles in storage rings ([6]):

dP = −β2 sinQdt− σ1 cosQ ◦ dw1
t − σ2 sinQ ◦ dw2

t ,

dQ = Pdt.
(44)

Notice that

H0(P,Q) = −β2 cosQ+ P 2/2 = U(Q) + V (P ), H1(Q) = σ1 sinQ,

H2(Q) = −σ2 cosQ, G1,1(P,Q) = G2,2(P,Q) = 0.
(45)

Hence, the system (44) is a SHS with separable Hamiltonians [5]. The symplectic
first order scheme (5) and the symplectic second order scheme in [1] are explicit.

The mean energy E[e(P,Q)] of the system (44) is defined ([5]) as

(46) e(P,Q) = P 2/2− β2 cos(Q).

If σ1 = σ2 we have ([5])

(47) E
[

e
(

P 0;p,q
t , Q0;p,q

t

)]

= e(p, q) +
σ2

2
t.

A Monte Carlo simulation is preformed for the parameters σ1 = σ2 = 0.3, β = 4,
the initial values p0 = 1, q0 = 0, and t = 200. We estimate the 95% confidence

intervals for E
[

e
(

P 0;p0,q0
t , Q0;p0,q0

t

)]

as

(48) ē(t; 0, p0, q0)± 1.96
se(t; 0, p0, q0)√

M
,

whereM is the number of independent realizations in the Monte Carlo simulations,
ē(t; 0, p0, q0) is the sample average and se(t; 0, p0, q0) is the sample standard devia-
tion (see also formula 7.7 in [5]). In addition to the weak schemes errors, we also
have the Monte Carlo error, but the margin of error in the confidence intervals (48)
reflects the Monte Carlo error only.
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Table 1. 95% confidence intervals for E(e(P 0;1,0
200 , Q0;1,0

200 ))

h M scheme (5) approx. (42) 2nd order symplectic scheme
0.1 105 −6.229± 0.059 −6.585± 0.123 −7.147± 0.055

0.05 105 −6.419± 0.057 −6.529± 0.127 −6.609± 0.057
0.01 4 · 106 −6.501± 0.009 −6.503± 0.02 −6.502± 0.0098

The extrapolation technique can also be applied using the results from the Euler
scheme. However, the Euler scheme needs a smaller time step h < 2−10 to converge
for the system (44). Hence, we do not consider using the Euler scheme in this study.

The experiments presented in Table 1 demonstrate that the extrapolation ap-
proximation produces more accurate results than the first and second order sym-
plectic schemes for larger values of h (h = 0.1, and h = 0.05). For h ≤ 0.01, the
sample averages ē(200; 0, 1, 0) corresponding to any of the three methods considered

in Table 1 are in very good agreement with the exact solution E[e(P 0;1,0
200 , Q0;1,0

200 )] =
−6.5 obtained from (47). Moreover, the results presented here are similar with
those obtained for the symplectic schemes (7.3) and (7.5) in [5] (see Table 1 in [5]).

5. Conclusions

In this paper, we present a global error expansion for a symplectic, implicit first
weak order scheme for a stochastic Hamiltonian system. Our work is an extension
of the study of the global error expansion for the explicit and implicit Euler schemes
reported in [9] and [8]. Unlike the Euler schemes, the symplectic implicit first weak
order scheme contains implicit terms also in the stochastic part.

The global error expansion in Theorem 3.1 offer a justification for the extrapo-
lation technique that can be applied to construct a second error scheme from the
first order scheme (5). The numerical simulations reported in this paper confirm
that this new method produces accurate results and provides saving in computing
time compared to using a second order symplectic weak scheme directly. Moreover,
in general, if the expectation in equation (19) can be computed, we can use the
global error expansion to estimate the time step h such that the numerical scheme
will approximate the solution within a given precision.

The approach followed here can be also applied to determine the leading er-
ror coefficients in the global error expansion for any of the higher order implicit
symplectic weak schemes presented in [1], but the complexity of the calculations
increases with the scheme order (see also Theorem 14.6.1 in [3]).
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Appendix

φ(t, (P,Q)T ) =
1

2

∂2u(t, (P,Q)T )

∂t2
+ etp((P,Q)T )

∂2u(t, (P,Q)T )

∂t∂P

+ etq((P,Q)T )
∂2u(t, (P,Q)T )

∂t∂Q
+ etpp((P,Q)T )

∂3u(t, (P,Q)T )

∂t∂2P

+ etqq((P,Q)T )
∂3u(t, (P,Q)T )

∂t∂2Q
+ etpq((P,Q)T )

∂3u(t, (P,Q)T )

∂t∂P∂Q

+ ep((P,Q)T )
∂u(t, (P,Q)T )

∂P
+ eq((P,Q)T )

∂u(t, (P,Q)T )

∂Q

+ epp((P,Q)T )
∂2u(t, (P,Q)T )

∂2P
+ eqq((P,Q)T )

∂2u(t, (P,Q)T )

∂2Q

+ epq((P,Q)T )
∂2u(t, (P,Q)T )

∂P∂Q
+ eppp((P,Q)T )

∂3u(t, (P,Q)T )

∂3P

+ eqqq((P,Q)T )
∂3u(t, (P,Q)T )

∂3Q
+ eppq((P,Q)T )

∂3u(t, (P,Q)T )

∂2P∂Q

+ epqq((P,Q)T )
∂3u(t, (P,Q)T )

∂2Q∂P
+ epppp((P,Q)T )

∂4u(t, (P,Q)T )

∂4P

+ eqqqq((P,Q)T )
∂4u(t, (P,Q)T )

∂4Q
+ eppqq((P,Q)T )

∂4u(t, (P,Q)T )

∂2P∂2Q

+ epppq((P,Q)T )
∂4u(t, (P,Q)T )

∂3P∂Q
+ epqqq((P,Q)T )

∂4u(t, (P,Q)T )

∂P∂3Q

The formulas for the coefficients are the following (everywhere the arguments are
(P,Q)T ):

(49) etp = −∂H0

∂Q
− 1

2

∂G11

∂Q
+
∂H1

∂Q

∂2H1

∂P∂Q
,

(50) etq =
∂H0

∂P
+

1

2

∂G11

∂P
− ∂H1

∂Q

∂2H1

∂2P

(51) etpp =
1

2

∂2H1

∂2Q
, etqq =

1

2

∂2H1

∂2P
, etpq = −∂H1

∂P

∂H1

∂Q

epp =
1

8

(

∂G11

∂Q

)2

+
1

2

∂G11

∂Q

∂H0

∂Q
+

1

2

(

∂H0

∂Q

)2

− ∂H1

∂Q

∂2H1

∂P∂Q

∂G11

∂Q
− 2

∂H1

∂Q

∂2H1

∂P∂Q

∂H0

∂Q
−
(

∂H1

∂Q

)2
∂2H0

∂P∂Q

− 1

2

(

∂H1

∂Q

)2
∂2G11

∂P∂Q
+

9

2

(

∂H1

∂Q

)2(
∂2H1

∂P∂Q

)2

+
3

2

∂3H1

∂2P∂Q

(

∂H1

∂Q

)3

(52)
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ep =
∂2H0

∂P∂Q

∂H0

∂Q
+

1

2

∂2H0

∂P∂Q

∂G11

∂Q
+

1

4

∂2G11

∂P∂Q

∂G11

∂Q

+
1

2

∂2G11

∂P∂Q

∂H0

∂Q
−
(

∂2H1

∂P∂Q

)2
∂H0

∂Q
− ∂2H1

∂P∂Q

∂H1

∂Q

∂2G11

∂P∂Q

− 1

2

(

∂2H1

∂P∂Q

)2
∂G11

∂Q
− 1

4

(

∂H1

∂Q

)2
∂3G11

∂2P∂Q
− 2

∂2H1

∂P∂Q

∂H1

∂Q

∂2H0

∂P∂Q

− 1

2

(

∂H1

∂Q

)2
∂3H0

∂2P∂Q
− ∂3H1

∂2P∂Q

∂H1

∂Q

∂H0

∂Q
− 1

2

∂3H1

∂2P∂Q

∂H1

∂Q

∂G11

∂Q

+
9

2

∂2H1

∂P∂Q

∂3H1

∂2P∂Q

(

∂H1

∂Q

)2

+ 3

(

∂2H1

∂P∂Q

)3
∂H1

∂Q
+

1

2

∂4H0

∂3P∂Q

(

∂H1

∂Q

)3

(53)

eq = −1

2

∂2H0

∂2P

∂G11

∂Q
− 1

2

∂2G11

∂2P

∂H0

∂Q
− 1

4

∂2G11

∂2P

∂G11

∂Q

− ∂2H0

∂2P

∂H0

∂Q
+
∂2H1

∂2P

∂2H1

∂P∂Q

∂H0

∂Q
+

1

2

∂2H1

∂2P

∂2H1

∂P∂Q

∂G11

∂Q

+
1

2

∂3H0

∂3P

(

∂H1

∂Q

)2

+
1

2

∂2H1

∂2P

∂H1

∂Q

∂2G11

∂P∂Q
+
∂2H1

∂2P

∂H1

∂Q

∂2H0

∂P∂Q

+
∂2H0

∂2P

∂H1

∂Q

∂2H1

∂P∂Q
+

1

2

∂2G11

∂2P

∂H1

∂Q

∂2H1

∂P∂Q
+

1

2

∂3H1

∂3P

∂H1

∂Q

∂G11

∂Q

+
1

4

∂3G11

∂3P

(

∂H1

∂Q

)2

+
∂3H1

∂3P

∂H1

∂Q

∂H0

∂Q
− 3

2

∂2H1

∂2P

∂3H1

∂2P∂Q

(

∂H1

∂Q

)2

− 1

2

∂4H1

∂4P

(

∂H1

∂Q

)3

− 3
∂3H1

∂3P

(

∂H1

∂Q

)2
∂2H1

∂P∂Q
− 3

∂2H1

∂2P

(

∂2H1

∂P∂Q

)2
∂H1

∂Q

(54)

eqq =
1

8

(

∂G11

∂P

)2

+
1

2

∂G11

∂P

∂H0

∂P
+

1

2

(

∂H0

∂P

)2

− 1

2

∂G11

∂P

∂2H1

∂2P

∂H1

∂Q
− ∂2H1

∂2P

∂H1

∂Q

∂H0

∂P
− ∂H1

∂P

∂2H1

∂2P

∂H0

∂Q

− 1

2

∂H1

∂P

∂2G11

∂2P

∂H1

∂Q
− ∂H1

∂P

∂2H0

∂2P

∂H1

∂Q
− 1

2

∂H1

∂P

∂2H1

∂2P

∂G11

∂Q

+
3

2

(

∂2H1

∂2P

)2(
∂H1

∂Q

)2

+ 3
∂H1

∂P

∂2H1

∂2P

∂H1

∂Q

∂2H1

∂P∂Q
+

3

2

∂H1

∂P

∂3H1

∂3P

(

∂H1

∂Q

)2

(55)

(56) eppp = −1

2

(

∂H1

∂Q

)2
∂H0

∂Q
− 1

4

(

∂H1

∂Q

)2
∂G11

∂Q
+

3

2

(

∂H1

∂Q

)3
∂2H1

∂P∂Q

(57) eqqq =
1

2

(

∂H1

∂P

)2
∂H0

∂P
+

1

4

(

∂H1

∂P

)2
∂G11

∂P
− 3

2

(

∂H1

∂P

)2
∂2H1

∂2P

∂H1

∂Q
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epq =

(

∂H1

∂Q

)2
∂2H0

∂2P
+

1

2

∂G11

∂P

∂H1

∂Q

∂2H1

∂P∂Q
+

1

2

∂H1

∂P

∂2H1

∂P∂Q

∂G11

∂Q

+
∂H0

∂P

∂H1

∂Q

∂2H1

∂P∂Q
+

1

2

∂H1

∂P

∂H1

∂Q

∂2G11

∂P∂Q
+

1

2

(

∂H1

∂Q

)2
∂2G11

∂2P

+
∂H1

∂P

∂2H1

∂P∂Q

∂H0

∂Q
+
∂2H1

∂2P

∂H1

∂Q

∂G11

∂Q
+ 2

∂2H1

∂2P

∂H1

∂Q

∂H0

∂Q

+
∂H1

∂P

∂H1

∂Q

∂2H0

∂P∂Q
− 3

2

(

∂H1

∂Q

)3
∂3H1

∂3P
− 3

2

∂H1

∂P

∂3H1

∂2P∂Q

(

∂H1

∂Q

)2

− 3
∂H1

∂P

(

∂2H1

∂P∂Q

)2
∂H1

∂Q
− 6

∂2H1

∂2P

(

∂H1

∂Q

)2
∂2H1

∂P∂Q
− 1

2

∂G11

∂P

∂H0

∂Q

− 1

2

∂H0

∂P

∂G11

∂Q
− ∂H0

∂P

∂H0

∂Q
− 1

4

∂G11

∂P

∂G11

∂Q

(58)

eppq =
1

2

∂H1

∂P

∂H1

∂Q

∂G11

∂Q
+
∂H1

∂P

∂H1

∂Q

∂H0

∂Q
+

1

2

(

∂H1

∂Q

)2
∂H0

∂P

+
1

4

(

∂H1

∂Q

)2
∂G11

∂P
− 3

2

(

∂H1

∂Q

)3
∂2H1

∂2P
− 3

∂H1

∂P

(

∂H1

∂Q

)2
∂2H1

∂P∂Q

(59)

epqq = −1

2

∂H1

∂P

∂H1

∂Q

∂G11

∂P
− ∂H1

∂P

∂H1

∂Q

∂H0

∂P
− 1

2

(

∂H1

∂P

)2
∂H0

∂Q

− 1

4

(

∂H1

∂P

)2
∂G11

∂Q
+

3

2

(

∂H1

∂P

)2
∂2H1

∂P∂Q

∂H1

∂Q
+ 3

∂H1

∂P

(

∂H1

∂Q

)2
∂2H1

∂2P

(60)

(61) epppp =
1

8

(

∂H1

∂Q

)4

, eqqqq =
1

8

(

∂H1

∂P

)4

, eppqq =
3

8

(

∂H1

∂P

)2(
∂H1

∂Q

)2

(62) epppq = −1

2

∂H1

∂P

(

∂H1

∂Q

)3

, epqqq = −1

2

∂H1

∂Q

(

∂H1

∂P

)3
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