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THE FINEST LEVEL ACCELERATION OF MULTILEVEL

AGGREGATION FOR MARKOV CHAINS

CHUN WEN, TING-ZHU HUANG, DE-AN WU, AND LIANG LI

Abstract. In this paper, we consider a class of new accelerated multilevel aggregation methods
using two polynomial-type vector extrapolation methods, namely the reduced rank extrapolation
(RRE) and the generalization of quadratic extrapolation (GQE) methods. We show how to
combine the multilevel aggregation methods with the RRE and GQE algorithms on the finest
level in order to speed up the numerical computation of the stationary probability vector for an
irreducible Markov chain. Numerical experiments on typical Markov chain problems are reported
to illustrate the efficiency of the accelerated multilevel aggregation methods.

Key words. Markov chains, multilevel aggregation, acceleration, vector extrapolation methods.

1. Introduction

The use of Markov chains is of interest in a wide range of applications, including
information retrieval and web ranking [12, 28, 29, 32], queueing systems [16] and
stochastic automata networks [14], as well as performance modeling of computer
and communication systems, dependability and security analysis, and analysis of
biological systems [40].

In this paper, we study a class of new accelerated multilevel aggregation meth-
ods which are efficient for computation of the stationary probability vector of an
irreducible Markov chain. Mathematically, the problem to be solved is given by

(1) Bx = x, xi ≥ 0 ∀i, ||x||1 = 1,

where B = (bij) ∈ R
n×n is a column stochastic matrix, i.e., 0 ≤ bij ≤ 1 ∀i, j and

eTB = eT, with e the column vector with all elements as one, and x ∈ R
n is the

stationary probability vector of Markov chains. In fact, if B is irreducible [5, 40],
which is equivalent to the existence of a directed path from any vertex i to any
other vertex j in the directed graph of B, then x is the unique solution to the linear
system (1). Moreover, the stationary probability vector x of the Markov chains
satisfies the inequality xi > 0 ∀i.

For convenience, we rewrite the equation (1) as

(2) Ax = 0,

with

(3) A = I −B,

where I is an identity matrix, and A is a singular M -matrix with diagonal elements
being the negative column sums of its off-diagonal elements. Hence, our interest is
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to solve the n × n homogeneous linear system (2) corresponding to an irreducible
Markov chain.

Iterative procedures are commonly used numerical methods to compute the sta-
tionary probability vector for an irreducible Markov chain. Examples of iterative
techniques include the power methods for calculating the dominant eigenvector of
the matrix B [26–28, 33, 38], the Gauss-Seidel, SOR and SSOR iteration methods
based on splitting of the matrix A [33, 34], the iterative aggregation/disaggregation
algorithms for Markov chains [30, 31, 36, 41], the hybrid algorithm for queueing
systems [48], and the well-known Krylov subspace methods such as the Arnoldi’s
algorithms [23, 45], BiCGSTAB and GMRES methods [33–35].

However, the iteration methods are likely to suffer from a slow convergence for
some linear systems, for example, computing the principal eigenvector for Google
matrix. Thus it is necessary to employ the idea of preconditioning. Philippe, Saad
and Stewart considered three different incomplete factorizations: ILU0, ILUTH
and ILUK as preconditioners for numerical solutions of Markov chain modelling in
[33]. Virnik presented an algebraic multigrid preconditioner for M -matrices in [44].
Benzi and Uçar developed the block triangular and product preconditioners based
on the alternating iteration [1] for M -matrices and the Markov chain problems in
[2] and [3], respectively. In addition, the applications of circulant preconditioners
for Markov chains had been report in [14, 15].

Recently, multilevel methods based on aggregation of the Markov states have
been studied in the literature [17–20, 24, 25]. Isensee and Horton considered
multi-level methods for the steady state solution of a continuous-time (CTMC)
and discrete-time (DTMC) Markov chains in [25] and [24], respectively. De Sterck,
Manteuffel, Mccormick, Nguyen and Ruge proposed a multilevel adaptive aggre-
gation (MAA) method to calculate the stationary probability vector of Markov
matrices in [18]. As already showed in [18], the multilevel method is a special case
of the adaptive smoothed aggregation [8] and adaptive algebraic multigrid methods
[7] for sparse linear systems.

Thereafter, De Sterck et al. proposed several strategies to accelerate the con-
vergence of the multilevel aggregation methods. Such strategies include the appli-
cation of a smoothing technique to the interpolation and restriction operators [17],
and analyzing a recursive accelerated multilevel aggregation method by computing
quadratic programming problems with inequality constraints[20]. In particular, a
top-level acceleration of adaptive algebraic multilevel method was considered by
finding a linear combination of previous fine-level iterates, so that it minimizes a
functional over a subset of the probability vectors in [19]. The active set method
from matlab’s quadprog function [22] was used in their implementations.

Here, we consider a class of new accelerated multilevel aggregation methods by
the use of two polynomial-type vector extrapolation methods: the reduced rank ex-
trapolation (RRE) and the generalization of quadratic extrapolation (GQE) meth-
ods proposed by Sidi[38]. In fact, the idea to improve iteration methods by com-
bining with vector extrapolation methods is not new; see [10, 11, 28, 39, 45]. This
paper shows how to combine the multilevel aggregation methods with RRE and
GQE algorithms on the finest level in order to speed up the numerical calculation
of the stationary probability vector for an irreducible Markov chain. In numerical
experiments, the accelerated multilevel aggregation methods are tested using three
representative Markov chain problems. The problems include the nearly completely
decomposable (NCD) Markov chains, which are difficult to solve since they consist
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of groups of states that are strongly interacted among each other but weakly inter-
acted among the groups themselves. In particular, the necessary iteration counts
increase rapidly with the size of the weak interactions approaching zero [24, 25].

The remainder of this paper is organized as follows. In Section 2, we briefly
review the multilevel aggregation methods for the Markov chains [6, 42, 43]. Pro-
cedures to combine the multilevel aggregation methods with GQE and RRE algo-
rithms on the finest level are presented in Section 3. Numerical simulations for three
Markov chain problems are given in Section 4. Finally, conclusions are reported in
Section 5.

2. Multilevel aggregation for Markov chains

In this section, we briefly review the multilevel aggregation methods to compute
the stationary probability vector of Markov chains [6, 42, 43]. The main idea of
a multilevel aggregation method is to transfer a large linear system into a smaller
one by some aggregation strategies so that the numerical solution can be computed
in an efficient way.

The basic multigrid algorithm for solving linear equations Ax = b has been pre-
sented in [6, 42, 43]. Clearly, system (2) is a special case with b = 0. Using the
same notations as in [6, 42, 43], let Pl be the full rank prolongation matrices of size
nl × nl+1, and Rl be the restriction operators of size nl+1 × nl, l = 1, · · · , L − 1.
Here, the operators Pl and Rl are created by an automatic coarsening process, in
which the coarse-level matrices are constructed by Al+1 = RlAlPl, where A1 = A.
It is natural to number the levels so that the finest level is 1 and the coarsest level
is L. Therefore, starting from the descriptions of the basic multigrid method for
Ax = b, we have the following multilevel aggregation method for Markov chains,
which is similar to that reported in [17–20].

Algorithm 1: Multilevel Aggregation Method, x← MA(A, x, ν1, ν2, α)

(1) Pre-smoothing: Apply ν1 times x← N(Relax(A, x)).
(2) Construct Q according to the automatic coarsening process described here.

Obtain R← QT and P ← diag(x)Q.
(3) Form the coarse-level matrix Ac ← RAP , and compute xc ← QTx.
(4) If on the coarsest level, solve Acxc = 0 by a direct method. Otherwise apply

α iterations of this algorithm xc ← MA(Acdiag(Q
Tx)−1, xc, ν1, ν2, α).

(5) Coarse-level correction: x← P (diag(QTx)−1)xc.
(6) Post-smoothing: Apply ν2 times x← N(Relax(A, x)).

In Algorithm 1, A = A1 is given in (2), x is an initial guess vector, Ac denotes
the coarse-level matrix, and xc is the corresponding coarse-level vector, Q is the
aggregation matrix generated by the aggregation method, P and R are the prolon-
gation and restriction operators, respectively. For the pre- and post-smoothing, the
following weighted Jacobi method with weight ω is employed. Let the matrix A in
(2) is split into the form

A = D − L− U,

where D is the diagonal part of A with dii > 0 ∀i, L, U are the negative strictly
lower- and upper-triangular parts of A, respectively. Then the weighted Jacobi
relaxation method can be written as

(4) x← N((1 − ω)x+ ωD−1(L + U)x)

with the weight ω ∈ (0, 1). Here, we let N(·) denote the normalization operator
defined by N(x) := x/‖x‖1 ∀x 6= 0. Note that, a normalization is performed after
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each relaxation process to ensure that the fine-level iterates xi can be interpreted
as approximations to the stationary probability vector.

It is necessary to apply the direct solver for the coarsest level. The direct method
used at step 4 of Algorithm 1 is based on the following theorem.

Theorem 1 (Theorem 4.16 in [4]). If A is an irreducible singular M -matrix,
then each of its principal submatrices other than A itself is a nonsingular M -matrix.

If AL is the coarsest-level operator, then we use the direct method presented in
the coarsest-level algorithm below to solve the coarsest-level equation ALxL = 0.

Coarsest-level algorithm
Step 1. Compute NL := size(AL, 1);
Step 2. Determine ALp := AL(1 : NL − 1, 1 : NL − 1);
Step 3. Determine bLp := −AL(1 : NL − 1, NL);
Step 4. Compute xLp := ALp \ bLp; let xLp(NL) = 1; and set the coarsest-level

solution xL = xLp/‖xLp‖1.
It is of vital importance to understand how the nodes are aggregated in step 2

of Algorithm 1, that is, we need to understand which nodes should be aggregated
into a block and which nodes should be split between their neighbors. Here, we
apply a neighborhood-based technique as our aggregation method since it is able to
provide well-balanced aggregates of approximately equal size, and leads to a more
regular coarsening throughout the automatic coarsening process; see [19, 20, 43].

Note that the neighborhood-based aggregation for Markov chains is based on the
matrix scaled by the current iterate, i.e., A = Adiag(xk), rather than the original
coefficient matrix A (for details see [18, 24, 25]), where diag(·) denotes a diagonal
matrix formed with the current iterate xk. Here, a node i is said to be strongly
connected to node j in the graph of A if

(5) −aij ≥ θmax
k 6=i
{−aik} or − aji ≥ θmax

k 6=j
{−ajk},

where θ is a strength of connection parameter. Suppose Ni is the set of all points
which are strongly connected to i in the graph of A including node i itself. Then
the neighborhood-based algorithm is given as follows [19, 20].

Algorithm 2: Neighborhood-Based Aggregation, {Qj}Jj=1 ← NBA(A, θ)

(1) Set R = {1, · · · , n} and J = 0.
(2) Assign entire neighborhoods to aggregates:

for i ∈ {1, · · · , n}, construct strong neighborhoods Ni based on (5),

if Ni ⊂ R then J ← J + 1, QJ ← Ni, Q̃J ← Ni, R← R \ Ni.
(3) Determine the remaining points in the most connected aggregates:

while R 6= ∅, pick i ∈ R and set j = argmax
k=1,··· ,J

card(Ni ∩ Q̃k),

set Qj ← Qj ∪ {i} and R← R \ {i}.
(4) Construct the aggregation matrix Q:

if i ∈ Qj, j = 1, · · · , J , then Qij = 1, otherwise Qij = 0.
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Note that the aggregation matrix Q in Algorithm 2 has the following form

(6) Q =




1 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .



n×J

,

where J denotes the number of aggregates. Clearly, from (6), the matrix Q has the
properties that there exists only one element Qij = 1 in each row, but each column
may have several elements Qij = 1, and the sum of the elements in the jth column
denotes the number of the nodes combined into the jth aggregate.

3. Accelerated multilevel aggregation for Markov chains

In this section, we first give a short introduction to two polynomial-type vector
extrapolation methods: the reduced rank extrapolation (RRE) and the generaliza-
tion of quadratic extrapolation (GQE) methods. The key idea of our work is then
presented. Finally, we show how to combine the multilevel aggregation methods
with RRE and GQE algorithms.

Various kinds of vector extrapolation methods have been discussed in [39], and
this includes the polynomial-type vector extrapolation methods such as the minimal
polynomial extrapolation (MPE) of Cabay and Jackson [13] and RRE method of
Eddy [21], and the epsilon vector extrapolation methods utilizing the scalar and
vector epsilon methods of Wynn [46, 47], and the topological epsilon method of
Brezinski [9].

It should be noted that the starting point of the vector extrapolation algorithms
is to accelerate the convergence of the sequences {xj} generated from a fixed-point
iterative method of the form

(7) xj+1 = F (xj), j = 0, 1, · · · ; F : Rn −→ R
n,

where x0 is an initial guess. In recent years, applications of the vector extrapolation
methods to compute the stationary probability vector of Markov chains have been
reported in [10, 11, 28, 38, 45]. Numerical simulations have also illustrated that the
polynomial-type methods are in general more economic than the epsilon vector ex-
trapolation methods with respect to the computing time and storage requirements.
Therefore, two polynomial-type vector extrapolation methods, the RRE and GQE
methods proposed in [38], are considered in this paper.

Here we give the definition of the RRE method.
Definition 1 (see [38]). Let {xj} be a given sequence in R

n, and uj = xj+1 −
xj, choose k ≤ n arbitrarily and define a matrix U via U = [u0, u1, · · · , uk] ∈
R

n×(k+1). Let z be the least squares solution to the linear system Uz = 0 subject to

the constraint
∑k

j=0 zj = 1; this means that z is the solution to the problem

(8) min
z0,z1,...,zk

‖
k∑

j=0

zjuj‖2, subject to

k∑

j=0

zj = 1.
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Then the RRE approximation for the exact solution of system (2) is given by

(9) x̂k =

k∑

j=0

zjxj .

Clearly, the approximate solution x̂k = Xz has the property

‖x̂k‖1 =

n∑

i=0

(x̂k)i =

n∑

i=1

k∑

j=0

Xijzj =

k∑

j=0

zj

n∑

i=1

Xij =

k∑

j=0

zj = 1

once it is checked to satisfy the condition that x̂k ≥ 0. This implies that the
updated iterate is also a probability vector of Markov chains. Hence, starting from
this point, we find that both the acceleration process considered in this paper and
that reported in [1] are based on a linear combination of previous fine-level iterates,
i.e., x̂k = Xz, which is similar in principle to a preconditioned flexible Krylov
wrapper applied to an additive iteration for a linear problem. The main difference
between these accelerated methods lies in the computation of the vector z.

Note that the definition of RRE here is the most direct approach for our com-
putational purposes. It is different from the original definition in [21]. We give the
algorithm of RRE as follows [38].

Algorithm 3: The Reduced Rank Extrapolation Method (RRE)

(1) Input vectors x0, x1, · · · , xk+1.
(2) Compute ui = xi+1 − xi, i = 0, 1, · · · , k, and set Uk = [u0, u1, · · · , uk].

Compute the QR-factorization of Uk, namely, Uk = QkRk.
Determine Rk−1 := Rk(1 : k, 1 : k), Qk−1 := Qk(:, 1 : k).

(3) Solve the linear system
RT

k Rkd = e, d = [d0, d1, · · · , dk]T, e = [1, 1, · · · , 1]T ∈ Rk+1.

Set λ =
∑k

i=0 di, compute γ = [γ0, γ1, · · · , γk]T by γi = di/λ, i = 0, 1, · · · , k.
(4) Compute ξ = [ξ0, ξ1, · · · , ξk−1]

T by
ξ0 = 1− γ0, ξj = ξj−1 − γj , j = 1, · · · , k − 1.
Comput x̂k+1 = x0 +Qk−1(Rk−1ξ).

Next, we investigate another vector extrapolation method - the quadratic ex-
trapolation method presented by Kamvar, Haveliwala, Manning and Golub for ac-
celerating the computations of the dominant eigenvector for the PageRank; see [28].
Wu and Wei discussed the close connection with the Arnoldi’s method [23] based
on Ritz values in [45]. Moreover, Sidi reported that it was closely related to the
MPE of Cabay and Jackson [13] and proposed a generalization of the quadratic
extrapolation method along with the implementation of MPE; see [38]. Thus, for
completeness, the algorithm of GQE is provided as follows [38].

Algorithm 4: The Generalization of Quadratic Extrapolation (GQE)

(1) Input the vectors x0, x1, · · · , xk+1.
(2) Compute ui = xi+1 − x0, i = 0, 1, · · · , k, set Uk = [u0, u1, · · · , uk].

Compute the QR-factorization of Uk, namely, Uk = QkRk.
Determined Rk−1 := Rk(1 : k, 1 : k), Qk−1 := Qk(:, 1 : k).

(3) Solve the linear system Rk−1d = −QT
k−1uk, d = [d0, d1, · · · , dk−1]

T.

(4) Set dk = 1 and compute c = [c0, c1, · · · , ck]T by ci =
k∑

j=i

dj , i = 0, 1, · · · , k.
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(5) Compute x̂k+1 = (
k∑

i=0

ci)x0 +Qk(Rkc).

Sidi has given the numerically fast, stable and efficient storage MPE and RRE
algorithms in [37]. A common feature of the Algorithms 3 and 4 is that they
both contain a QR-factorization in step 2 for Uk = QkRk, where Qk ∈ R

n×(k+1) is
unitary, and Rk ∈ R

(k+1)×(k+1) is an upper triangular matrix with positive diagonal
elements. Precisely, we have

Qk = (q0, q1, · · · , qk) ∈ R
n×(k+1), QT

kQk = I(k+1)×(k+1).

Rk =




r00 r01 r02 · · · r0k
r11 r12 · · · r1k

r22 · · · r2k
. . .

...
rkk




, rii > 0 ∀i.

To develop an efficient implementation for the QR-factorization, we apply the modi-
fied Gram-Schmidt process (MGS) to vectors u0, u1, · · · , uk , see [37, 38]. The MGS
algorithm is given as follows.

MGS algorithm
Step 1. Compute r00 = (u0, u0)

1/2, and set q0 = u0/r00;

Step 2. For j = 1 : k, set u
(0)
j = uj;

Step 3. For i = 1 : j, compute rij = (qi, u
(i)
j ) and u

(i+1)
j = u

(i)
j − rijqi;

Step 4. Compute rjj = (u
(j)
j , u

(j)
j )1/2 and qj = u

(j)
j /rjj .

From Algorithms 3 and 4, we observe that the updated iterate x̂k+1 is given
only in terms of the previous iterates xj , j = 0, 1, · · · , k + 1, and no other input
is required. This is similar to the analytic properties of RRE and GQE methods
[28, 38]. Hence, RRE and GQE methods can be used as effective accelerators to
improve the convergence of the vector sequence {xj}. In particular, given the vec-
tors x0, x1, · · · , xk+1 and the QR-factorization in the MGS algorithm, the operation
counts of Algorithms 3 and 4 consist of 1

2 (k
2 +5k+2) vector additions, 1

2 (k
2 +5k)

scalar-vector multiplications and 1
2 (k

2 + 3k + 2) inner products [38].
The present work is motivated from the study of the excellent papers in [19, 20,

38]. In particular, De Sterck, Miller, Manteuffel and Sanders have improved the
convergence of the multilevel aggregation methods by selecting a linear combination
of previous iterates to minimize a functional within the space of probability vector
(for details see [19]). Similar to the theoretical analysis in [19], we suppose there is
a sequence of iterates {xi}∞i=1 obtained by Algorithm 1, where xi ≥ 0. Then at the
kth outer iteration, let

X = [xk, xk−1, · · · , xk−m+1] ∈ R
n×m

be a matrix consisting of the last m iterates with xk being the newest, where m
is called the window size. As mentioned above, all the probability vectors xi are
nonnegative, thus the matrix X has the following properties:

xi ≥ 0 and ‖xi‖1 = 1, i = 1, 2, · · · .

Combining with Definition 1, the problem to be solved has been transformed into
computing the vector z satisfing

∑m
i=1 zi = 1. Thus we obtain an updated probabil-

ity vector x̂k = Xz = z1xk+z2xk−1+· · ·+zmxk−m+1, which is a linear combination
of the last m iterates. It has been reported in [19] that computing the vector z is
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equivalent to solving a small quadratic programming problem (QPP) for any win-
dow size m ≥ 2, in which the active set method from matlab’s quadprog function
[22] has been used in the implementations.

Therefore, it is natural to consider a new accelerated multilevel aggregation
method for the window size m ≥ 2. Our main contribution is to show how to
combine the multilevel aggregation method with RRE and GQE algorithms on the
finest level to accelerate the numerical computation of the stationary probability
vector for the Markov chains.

Algorithm 5: Accelerated Multilevel Aggregation Methods by RRE
and GQE, x← AMA(A, x̂0,m, ǫ)

(1) Set k = 1, if no initial guess is given, choose x̂0.
(2) Implement the multilevel aggregationmethod, xk ← MA(A, x̂k−1, ν1, ν2, α).
(3) Set m← min{M,k}.
(4) Set X ← [xk, xk−1, · · · , xk−m−1].
(5) Apply RRE and GQE algorithms to obtain x̂k from X , respectively.
(6) If ‖Ax̂k‖1 > ‖Axk‖1, then x̂k ← xk.
(7) Check convergence, if ‖Ax̂k‖1/‖Ax̂0‖1 < ǫ, then x̂k ← x̂k/‖x̂k‖1, otherwise

set k ← k + 1 and go to step 2.

Note that, in Algorithm 5 m is the window size and ǫ is a prescribed tolerance.
In particular, there exists a difference in constructing the matrix X between our
Algorithm 5 and the algorithm of [1]. From Algorithms 3 and 4, the RRE and GQE
methods require k + 2 vectors x0, x1, · · · , xk+1 as inputs. That is to say, when the
window size is m = 2, four approximate probability vectors given in the matrix
X = [x0, x1, x2, x3] ∈ R

n×4 are needed as input in the GQE and RRE algorithms.
The window size m = 2 corresponds to the quadratic vector extrapolation method
presented in [28]. Hence, the matrix X is given as the form of the step 4 in
Algorithm 5. The efficiency of the accelerated multilevel aggregation algorithms
will be demonstrated shortly.

4. Numerical simulations

In this section, we report numerical results obtained using a Matlab 7.0.1 imple-
mentation on Window-XP with 2.93GHz 64-bit processor and 2GB memory. The
main goal is to examine the new accelerated multilevel aggregation algorithms and
to show the speed up for numerical solutions of stationary probability vector for the
Markov chains. Here we set the window size as m = 2, 3, 4. Three typical Markov
chain problems studied in [17, 24, 25] have been used in our experiments. We com-
pare the efficiency of the unaccelerated V-cycles (α = 1 in Algorithm 1) and the
unaccelerated W-cycles (α = 2 in Algorithm 1). For convenience, we let W GQE
and W RRE denote the applications of GQE and RRE methods with W-cycles.

Without loss of generality, special sets of the parameters are employed and they
are taken from [17, 19, 20]. As mentioned early, the weighted Jacobi method is
used as the pre- and post-smoothing in Algorithm 1. Let ν1 = ν2 = 1 and set
the relaxation parameter ω = 0.7 in the experiments. Note that, even though
the values work well for all tests considered here, they are likely to be problem-
dependent. The coarsest-level solution is implemented by the coarsest-level algo-
rithm and the strength of connection parameter is chosen as θ = 0.25. The initial
guess in Algorithm 5 is generated by random sampling with a uniform (0,1) distri-
bution and normalized to one in the one norm. All iterations are terminated when
res = ‖Axk‖1/‖Ax0‖1 ≤ 10−5 with xk the current approximate solution.
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Numerical results for various accelerated multilevel aggregation methods are now
reported, where “n” is the problem size, “lev” is the number of levels in the multi-
level aggregation methods, “it” denotes the iteration counts less than 100, “CPU”
denotes the computing time, and “Cop” is the operator complexity of the last cycle,
which is defined as the sum of the nonzero entries in all operators on all levels,

divided by the nonzero entries in the fine-level operator, i.e., Cop =
∑

L
l=1

nnz(Al)

nnz(A1)

with nnz(A) is the number of nonzero entries in A. In addition, if the convergence
factor for the kth iteration is defined by γk := ‖Axk‖1/‖Axk−1‖1, then the effective
convergence factor can be defined by γeff := γ1/Cop , where γ is the geometric mean
of the sequence {γk}.

The first problem is a one-dimensional (1D) Markov chain with identical tran-
sition rates, which often results from a M/M/1 queueing system with identical
arrival and service rates. The simplest graph of this test problem is illustrated in
Fig. 1. In fact, the iteration counts needed to solve this problem increases sharply
when the problem size is increasing, since in principle the probability has to be
distributed evenly throughout the chain and a number of iterations are required to
propagate [24, 25]. Numerical results are presented in Tables 1, 2 and 3.

Fig. 1: Graph for one-dimensional Markov chain with identical transition rates.

V-cycles W-cycles
n lev Cop γeff it res Cop γeff it res
243 2 1.5007 0.7138 20 9.6963e-6 2.0014 0.7766 20 9.6963e-6
729 3 1.7506 0.9177 64 9.9026e-6 3.0018 0.9231 41 9.0712e-6
2187 4 1.8754 0.9570 >100 2.8835e-5 4.0017 0.9602 58 9.5623e-6
4374 5 1.9378 0.9641 >100 9.1344e-5 5.0015 0.9789 87 9.7252e-6

Table1: Unaccelerated V-cycles and W-cycles for one-dimensional Markov chain.

From Table 1, we observe that the unaccelerated W-cycles is more effective than
the unaccelerated V-cycles, and it requires less iterations for the one-dimensional
Markov chain. In addition, the convergence factor of the W-cycles is comparable
to that of the V-cycles, but the operator complexity of the W-cycles is larger than
that of the V-cycles.

Table 2 presents the numerical results of the accelerated W-cycles with GQE
and RRE methods for the one-dimensional Markov chain with the window size m:
m = 2, 3, 4. Clearly, both the effective convergence factor and the iteration counts
of the acceleratedW-cycles are less than those based on the unacceleratedW-cycles.
However, the operator complexities are identical. In particular, window size m = 3
and m = 4 provide the most effective acceleration for the GQE and RRE methods.
The accelerated W-cycles with GQE method is superior to that with RRE method.
For instance, when the problem size is 2187 or 4374, comparing with the results
using the unaccelerated W-cycles shown in Table 1, the iterations has been reduced
by 63% for W GQE, and 57% for W RRE. Hence, we conclude that the accelerated
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Method Window size
W GQE 2 3 4

n lev Cop γeff it γeff it γeff it
243 2 2.0014 0.7014 12 0.6716 11 0.6818 12
729 3 3.0018 0.8342 18 0.8553 21 0.8523 19
2187 4 4.0017 0.9162 28 0.9041 24 0.8947 22
4374 5 5.0015 0.9573 43 0.9606 47 0.9450 33

W RRE 2 3 4
n lev Cop γeff it γeff it γeff it
243 2 2.0014 0.6733 13 0.6943 13 0.7014 14
729 3 3.0018 0.8569 22 0.8449 20 0.8592 22
2187 4 4.0017 0.9239 30 0.9070 25 0.9014 23
4374 5 5.0015 0.9569 42 0.9517 37 0.9519 37

Table 2: Accelerated W-cycles with GQE and RRE methods for one-dimensional
Markov chain.

W-cycles W GQE W RRE
n lev CPU 2 3 4 2 3 4
27 2 0.2500 0.2030 0.1870 0.2030 0.2030 0.2030 0.2030
81 2 0.5470 0.3600 0.3590 0.3280 0.3750 0.3590 0.4540
243 2 1.3280 0.8440 0.7810 0.8440 0.9060 0.9060 0.9690
486 3 14.890 6.5470 6.9070 6.1720 7.9530 6.9070 7.6410
729 3 33.016 14.953 17.359 15.766 18.156 16.562 18.109
1458 4 293.30 142.49 137.47 113.53 166.49 132.22 112.63

Table 3: CPU of unaccelerated W-cycles and accelerated W-cycles with GQE and
RRE methods for one-dimensional Markov chain.

multilevel aggregation methods with GQE and RRE produce faster convergence
than that of the unaccelerated methods.

In Table 3, we report the CPU time using the unaccelerated W-cycles and ac-
celerated W-cycles with GQE and RRE methods. It is clear that compared to the
unaccelerated W-cycles, significant saving in computing time ranging from 20%–
62% is achieved using the accelerated W-cycles with GQE and RRE methods.

For the second test problem, we consider a birth-death chain with invariant
birth and death rates as shown in Fig. 2. Generally speaking, this kind of birth-
death chain is used in the study of demographics, queueing theory, performance
engineering or in biology [5, 40]. This test problem has also been discussed in [17,
24, 25]. Here, we choose µ = 0.96 in the simulations. Numerical results for this
problem are given in Tables 4, 5 and 6.

Fig. 2: Graph for a birth-death chain with µ = 0.96.
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V-cycles W-cycles
n lev Cop γeff it res Cop γeff it res
27 2 1.5063 0.7163 21 6.8180e-6 2.0127 0.7791 21 6.8180e-6
81 3 1.7552 0.9259 69 9.9695e-6 3.0166 0.9288 43 8.9192e-6
243 4 1.8831 0.9648 >100 1.3287e-4 4.0481 0.9695 75 9.4890e-6
1024 5 1.9355 0.9704 >100 3.0908e-4 7.0430 1.5757 92 8.9849e-6
2048 7 1.9827 0.9694 >100 2.0776e-4 17.625 1.1949 >100 0.5676

Table 4: Unaccelerated V-cycles and W-cycles for the birth-death chain with
µ = 0.96.

Method Window size
W GQE 2 3 4
n lev Cop γeff it Cop γeff it Cop γeff it
27 2 2.0127 0.6678 12 2.0127 0.6691 11 2.0127 0.6601 9
81 3 3.0166 0.8308 17 3.0166 0.8419 18 3.0166 0.8376 16
243 4 4.0481 0.9149 25 4.0261 0.8967 20 4.0481 0.8925 19
1024 5 4.9831 0.9611 45 7.0430 1.5757 92 4.9935 0.9607 40
2048 7 7.0443 0.9724 46 7.6734 0.9811 56 16.483 0.9974 93
W RRE 2 3 4
n lev Cop γeff it Cop γeff it Cop γeff it
27 2 2.0127 0.6619 12 2.0127 0.6854 12 2.0127 0.6521 11
81 3 3.0166 0.8501 20 3.0166 0.8299 17 3.0166 0.8398 18
243 4 4.0481 0.9241 31 4.0481 0.9294 28 4.0481 0.9067 24
1024 5 4.9831 0.9636 49 5.1160 0.9804 74 4.9831 0.9612 40
2048 7 6.9922 0.9815 62 6.9922 0.9814 62 7.1172 0.9849 63

Table 5: Accelerated W-cycles with GQE and RRE methods for the birth-death
chain.

The numerical simulations presented in Tables 4 - 6 for the birth-death chain
problem clearly demonstrate the effectiveness and improvement using the acceler-
ated W-cycles method compared with the unaccelerated version. It is observed that
the operator complexity increases when the problem size is increasing. For a fixed
and large problem size, the window sizem could affect the complexity. For example,
when n = 2048, the operator complexity for the accelerated W-cycles with GQE
method is given by 7.04, 7.67 and 16.48 for m = 2, 3, 4 respectively. The computing
time listed in Table 6 also reveals that more time are required for the accelerated
W-cycles with GQE and RRE methods when m = 3 compared to those needed
with m = 2 and 4. For this test problem, the accelerated W-cycles with GQE and
RRE using m = 4 produce the most efficient results, and significant reduction in
CPU time is achieved compared to those needed using the unaccelerated W-cycles.

The final test problem is displayed in Fig. 3, which is a uniform chain with two
weak links in the middle. The problem consists of groups of nodes that are strongly
connected among each other but have two weak links in the middle of this chains.
This is a typical nearly completely decomposable (NCD) Markov chain problem,
and it has been discussed in [17, 24, 25]. Let τ = 1e−3 in the numerical simulation,
and the results are given in Tables 7, 8 and 9.

From Table 7, we note that the number of iterations of the unaccelerated W-
cycles is less than that of the unaccelerated V-cycles. In addition, the effective
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W-cycles W GQE W RRE
n lev CPU 2 3 4 2 3 4
27 2 0.2500 0.2030 0.2030 0.1870 0.2030 0.2030 0.2030
81 3 1.9070 0.8440 0.8910 0.8120 0.9690 0.8440 0.8900
243 4 13.906 4.8590 4.0310 3.8280 5.9850 5.3910 4.7500
486 4 37.953 17.500 22.344 13.562 16.937 22.844 14.656
729 4 66.640 36.687 55.343 34.766 34.969 56.250 29.891
1024 5 272.97 119.06 272.55 106.27 129.33 192.92 105.92

Table 6: CPU of unaccelerated W-cycles and accelerated W-cycles with GQE and
RRE for the birth-death chain.

Fig. 3: Graph for a uniform chain with two weak links in middle(τ = 1e− 3).

V-cycles W-cycles
n lev Cop γeff it res Cop γeff it res
64 2 1.4947 0.7337 22 8.0129e-6 1.9895 0.7924 22 8.0129e-6
256 3 1.7467 0.9139 61 9.6932e-6 2.9896 0.9213 40 8.8346e-6
1024 4 1.8736 0.9575 >100 3.3384e-5 3.9928 0.9624 62 9.4829e-6
4096 5 1.9370 0.9639 >100 8.8132e-5 4.9958 0.9784 85 9.8224e-6
6144 6 1.9683 0.9652 >100 1.0263e-4 5.9938 0.9852 >100 1.2875e-6

Table 7: Unaccelerated V-cycles and W-cycles for the uniform chain with two
weak links in middle (τ = 1e− 3).

convergence factor of the unaccelerated W-cycles is comparable to that of the un-
accelerated V-cycles, but the operator complexity of the unaccelerated W-cycles
increases linearly as the number of levels in the multilevel aggregation methods is
increasing.

Table 8 gives the numerical results of the accelerated W-cycles with GQE and
RRE methods for the uniform chain with two weak links in the middle. The effective
convergence factor and the iteration counts of the accelerated W-cycles are less than
those of the unaccelerated W-cycles, but their operator complexities are identical.
The most effective acceleration for the accelerated W-cycles with GQE and RRE
methods corresponds when the window size m = 4.

Based on the CPU reported in Table 9, we observe that the computing time
of the unaccelerated W-cycles has been reduced tremendously by about 27%–61%
when the accelerated W-cycles with GQE and RRE methods are employed.

5. Conclusions

In this paper, we present a new approach for the finest level acceleration of mul-
tilevel aggregation methods for the solution of the stationary probability vector
of an irreducible Markov chain. Our work is inspired by the excellent papers re-
ported in[19, 20, 38]. Using a linear combination of the previous fine-level iterates,
we construct a class of new accelerated methods to improve the convergence of
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Method Window size
W GQE 2 3 4

n lev Cop γeff it γeff it γeff it
64 2 1.9895 0.6863 12 0.6636 11 0.6638 10
256 3 2.9896 0.8227 17 0.8324 18 0.8175 16
1024 4 3.9928 0.9165 28 0.9137 24 0.9071 24
4096 5 4.9958 0.9586 43 0.9530 39 0.9568 41
6144 6 5.9938 0.9818 79 0.9764 63 0.9715 53

W RRE 2 3 4
n lev Cop γeff it γeff it γeff it
64 2 1.9895 0.7137 14 0.6794 12 0.7044 13
256 3 2.9896 0.8442 20 0.8368 19 0.8317 18
1024 4 3.9928 0.9322 33 0.9164 27 0.9348 31
4096 5 4.9958 0.9588 44 0.9587 43 0.9503 36
6144 6 5.9938 0.9732 55 0.9722 52 0.9690 47

Table 8: Accelerated W-cycles with GQE and RRE methods for the uniform
chain with two weak links in middle (τ = 1e− 3).

W-cycles W GQE W RRE
n lev CPU 2 3 4 2 3 4
64 2 0.5310 0.3600 0.3440 0.3280 0.3910 0.3590 0.3750
128 2 0.8910 0.5470 0.5460 0.5160 0.5780 0.6090 0.5470
256 3 6.5930 2.9680 3.1090 2.7810 3.4380 3.2650 3.1100
512 3 17.375 7.8130 8.2350 7.7970 9.9850 8.2500 8.2500
1024 4 146.25 68.313 58.688 58.812 79.281 65.500 76.110
2048 5 1.21e+3 653.52 599.98 475.50 649.00 580.64 554.45

Table 9: CPU of unaccelerated W-cycles and accelerated W-cycles with GQE and
RRE methods for the uniform chain with two weak links in middle (τ = 1e− 3).

the unaccelerated V-cycles and W-cycles methods. Here, we consider two vector
extrapolation methods: the reduced rank extrapolation (RRE) [38] and the general-
ized quadratic extrapolation (GQE) methods [28, 38]. We discuss how to efficiently
combine the multilevel aggregation methods with the RRE and GQE algorithms
on the finest level. To validate and to demonstrate the effectiveness of the devel-
oped accelerated multilevel aggregation methods, numerical simulations are carried
out for three typical Markov chain problems. The computational results confirm
that the accelerated W-cycles method is very efficient, and it provides a significant
saving in computing time compared to the corresponding unaccelerated method.
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