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ON ITERATIVE IMPES FORMULATION FOR TWO-PHASE

FLOW WITH CAPILLARITY IN HETEROGENEOUS POROUS

MEDIA

JISHENG KOU AND SHUYU SUN

Abstract. This work is a continuation of Kou and Sun [36] where we present an efficient im-
provement on the IMplicit Pressure Explicit Saturation (IMPES) method for two-phase immiscible
fluid flow in porous media with different capillarity pressures. In the previous work, we present
an implicit treatment of capillary pressure appearing in the pressure equation. A linear approx-
imation of capillary function is used to couple the implicit saturation equation into the pressure
equation that is solved implicitly. In this paper, we present an iterative version of this method. It
is well-known that the fully implicit scheme has unconditional stability. The new method can be
used for solving the coupled system of nonlinear equations arisen after the fully implicit scheme.
We follow the idea of the previous work, and use the linear approximation of capillary function
at the current iteration. This is different from iterative IMPES that computes capillary pressure
by the saturations at the previous iteration. From this approximation, we couple the saturation
equation into the pressure equation, and establish the coupling relation between the pressure and
saturation. We employ the relaxation technique to control the convergence of the new method,
and we give a choice of relaxation factor. The convergence theorem of our method is established
under the natural conditions. Numerical examples are provided to demonstrate the performance
of our approach, and the results show that our method is efficient and stable.
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1. Introduction

Two-phase fluid flow model in porous media is a coupled system of nonlinear
time-dependent partial differential equations. We often use two different types of
time discretization schemes: the fully implicit and the IMplicit-EXplicit (IMEX).
The fully implicit scheme [5,21,23,54,66] implicitly treats with all terms including
capillary pressure, and hence has unconditional stability and maintains the inherent
coupling of two-phase flow model. This scheme results in a system of nonlinear
equations. IMEX [4, 7, 31, 35, 37] generally treats the linear terms implicitly and
evaluates the others explicitly, and consequently, it is conditionally stable. One
advantage of IMEX is to eliminate the nonlinearity of original equations.

There are two different approaches [41,60] used for solving the coupled system of
nonlinear equations arisen after the fully implicit scheme. One is the fully coupled
approach that simultaneously solves all variables and equations by a Newton-type
method. Consequently, the pressures and saturations can be easily coupled at each
iterative step. However, the computational cost and memory requirement will be
particularly expensive, especially when the size of problems becomes large. This
restricts the applications of the fully coupled approach to a certain extent. The
other approach is the simulator coupling scheme that splits the entire problem into
some sub-problems. These sub-problems may be solved independently by different
approaches, and they are coupled by data exchanges at each iteration. Thus, the
simulator coupling approach is more flexible than the fully coupled approach. If the
simulator coupling approach reaches the full convergence of the iterative algorithm,
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the computed solution is the same as that of the fully coupled approach. The main
advantage of the simulator coupling approach is to reduce the computational cost
and memory requirement compared to the fully coupled approach [47].

To reduce the computational cost of Newton-type simultaneous methods, a num-
ber of improved approaches are presented and discussed in [3, 44, 48, 67, 72]. The
reduced degree of freedom method presented in [67] uses an approximation of the
Jacobian matrix in the Newton-Raphson iteration to partition the coupled system
of equations into a solution of some selected primary variables plus a back substi-
tution procedure for the solution of the other variables. A phase-based potential
ordering is presented in [44] to reduce the nonlinear algebraic system arisen from
the fully implicit scheme into one with only pressure dependence, and then New-
ton’s method is applied to solve the reduced system. On the other hand, various
precondition techniques are used to to increase the convergence of the Newton-type
methods, for example, [9, 10, 41].

Operator splitting [1, 25, 30, 40, 46, 58] can reduce a complex time-dependent
physical problem into some simpler problems based on the time-lag of dimension
or physics. By operator-splitting approach, we can construct iterative operator-
splitting methods [30, 32, 42], which may be used to solve the nonlinear system
arisen after the fully implicit scheme.

The IMplicit Pressure Explicit Saturation (IMPES) approach is viewed as an
IMEX method, which employs a splitting approach based on physics. IMPES solves
the pressure equation implicitly and updates the saturation explicitly. In IMPES,
we substitute the saturation constraint and Darcy’s law into the sum of the two
mass conservation laws to obtain the pressure equation, and explicitly treat all other
variables in the pressure equation to eliminate its nonlinearity. After the pressure is
obtained, we explicitly compute Darcy’s velocity and two-phase saturations. As a
time discretization scheme, the IMPES method is conditionally stable, and hence it
must take very small time step size, especially for highly heterogeneous permeable
media where the capillary pressure affects substantially on the path of fluid flow.
The instability of the IMPES method [20] results from the explicit treatment of
the capillary pressure and the decoupling between the pressure equation and the
saturation equation.

There are numerous improved versions of IMPES for two-phase flow, for exam-
ple, [16,52,68,70]. Iterative IMPES is to use IMPES as an iterative scheme for full
implicit systems instead of Newton iteration. This approach splits the whole equa-
tion system into a pressure and a saturation equation that are solved in the sequence
as IMPES. An iterative scheme developed in [45, 50, 51] solves a pressure implic-
itly and an implicit saturation equation in each iteration. This implicit saturation
equation is derived from the implicit capillary pressure introduced in the original
saturation equation. As an iterative method, the computational cost and memory
required by iterative IMPES method is smaller than the fully coupled approach
at each iterative step, which is more pronounced for very large size computational
problems. Iterative coupling is also popular in the simulation of single-phase and
two-phase flow and reactive transport [2, 24, 27, 63–65,71].

In this work, we pay attention to two-phase flow in heterogeneous media. Hetero-
geneity in capillary pressure is a computational chanllege as it may have a significant
influence on flow paths [6, 8, 22, 26, 34, 38, 39, 43, 53, 56, 59, 69]. For the rocks with
different permeability types, we employ the different capillary pressure functions;
that is, the capillary pressure functions are discontinuous on the interfaces of rocks.
In this case, the discontinuity of saturation results from the continuity of capillary
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pressure [38]. The classical fractional flow formulation used in [11–14,28] may not
be suitable for highly heterogeneous media because of its inconsistency [38]. The
wetting-phase pressure is always continuous as long as none of the phases is im-
mobile, and can correctly describe discontinuities in saturation due to continuity
of capillary pressure and discontinuities of different capillary pressure functions on
the interface of regions. Based on this conception, a two-phase flow formulation
has been proposed in [38,39], which will be employed in this paper. Because of the
discontinuity of saturation across rock interface, the methods that need the gradi-
ent of saturation in spacial dimension can not be well used to the case of different
capillary pressure functions for multiple rock types.

Theoretically, the full implicit scheme is unconditionally stable and allows a large
time step size, but practically a nonlinear solver may restrict the size of time step
to guarantee the convergence. The main disadvantage of iterative IMPES method
is the decoupling of pressure and saturation equations, which results from the ex-
plicit treatment for capillary pressure. In highly heterogenous media, the capillary
pressure forces may change the saturation distributions of two phase in a very short
time, and hence for stability, iterative IMPES still requires a much smaller time
step size. One approach to improve the stability is to treat the capillary pressure
implicitly. In our previous work [36], we present an implicit treatment of capillary
pressure in the pressure equation. A linear approximation of capillary function is
introduced to couple the implicit saturation equation into pressure equation. We
solve the coupled pressure equation implicitly and then explicitly update the sat-
uration. Comparison shows that our proposed method is more efficient and stable
than the classical IMPES approach.

In this paper, we present an iterative version of our previous method proposed
in [36]. The new method is viewed as a simulator coupling approach for solving
the coupled system of nonlinear equations arisen after the fully implicit scheme.
Unlike iterative IMPES, capillary pressure is not computed by the saturations at
the previous iteration, and we use the linear approximation of capillary function
at the current iteration, which is constructed by the saturations at the current and
previous iterations. From this, we couple the saturation equation into pressure
equation, and establish the coupling relation between the pressure and saturation.
The used approximation of capillary pressure is always well-behaved, our method
is suitable not only to homogenous but also to heterogenous media. A relaxation
approach is used to control the convergence of our method, and we introduce a
choice of relaxation factor. We prove the convergence theorem of our method under
the natural conditions.

This paper is organized as follows. In section 2, we describe the mathematical
model of two-phase incompressible flow. In section 3, we present our new method
and describe the implement based on the cell-centered finite difference (CCFD)
method for spatial discretization. In section 4, we analyze the convergence of the
new method. In section 5, we discuss the choice of relaxation factor. In Section 6,
we give some numerical examples to show the performance of the proposed method
and compare it with iterative IMPES. Finally, we summarize this work.

2. Two-phase incompressible flow

In this paper, we follow the two-phase flow formulation [38, 43, 53]. The flu-
ids considered here are incompressible and immiscible. In the following model,
we indicate the wetting phase and non-wetting phase by the subscripts w and n,
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respectively. The mass conservation within each phase is described by

(1) φ
∂Sα

∂t
+∇ · uα = qα, α = w, n,

where φ is the porosity of the medium and Sα, qα, and uα are the saturation, the
external mass flow rate, and Darcy’s velocity of each phase α, respectively. Darcy’s
velocity for each phase α is determined by Darcy’s law:

(2) uα = −krα
µα

K(∇pα + ραg∇z), α = w, n,

where K is the absolute permeability tensor in the porous medium, g is the gravity
acceleration, z is the depth, and each phase has its own relative permeability krα,
viscosity µα, pressure pα and density ρα.

The saturations of the two fluids are constrained by the relation

(3) Sw + Sn = 1.

The capillary pressure is the deference between the wetting phase and non-wetting
phase pressures, i.e.

(4) pc(Sw) = pn − pw.

In this work, the absolute permeability tensor is chosen as K = kI, where I is
the identity matrix and k is a positive real number. One typical capillary pressure
function [38] is given by

(5) pc(Sw) = −Bc log(Se),

where Bc is a positive parameter and it is inversely proportional to
√
k. Here, the

normalized saturation Se is given by

(6) Se =
Sw − Srw

1− Srw − Srn

,

where Srw and Srn are the residual saturations for the wetting and non-wetting
phases, respectively. In numerical simulation, we may set the minimum Semin for
the normalized saturation Se; that is, Se will be taken equal to Semin if Se ≤ Semin.
This treatment not only accords with the physical property, but also makes the cap-
illary pressure function sufficiently regular for helping to carry out the theoretical
analysis. Besides, we can see that the values of Bc vary with the different absolute
permeabilities, and as a result, the different capillary pressure functions are applied
for the heterogeneous porous media.

One typical formulation for relative permeability of each phase is given by

(7) krw = Sβ
e ,

(8) krn = (1− Se)
β ,

where β is a positive integer number. Here, the relative permeabilities of two phases
are functions of the wetting-phase saturation, and 0 ≤ krw ≤ 1, 0 ≤ krn ≤ 1.

We now describe the governing equations used in [38, 43, 53] as

(9) ∇ · (ua + uc) ≡ −∇ · λtK∇Φw −∇ · λnK∇Φc = qw + qn,

and

(10) φ
∂Sw

∂t
− qw = −∇ · (fwua) ≡ ∇ · λwK∇Φw,
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where Φw = pw + ρwgz, Φc = pc + (ρn − ρw)gz, λα = krα

µα

, λt = λw + λn, and

fw = λw/λt. The two velocity variables ua and uc are given by

(11) ua = −λtK∇Φw,

and

(12) uc = −λnK∇Φc.

By the definition of ua, the wetting-phase velocity is expressed as

(13) uw = fwua.

To complete the formulation of the model, the boundary and initial conditions
are required. Let the boundary ∂Ω of the computational domain Ω be decomposed
into the Dirichelt part ΓD and Newmann part ΓN where ∂Ω = ΓD

⋃
ΓN and

ΓD
⋂
ΓN = φ. We use the following boundary conditions

(14) pw(or pn) = pD on ΓD,

(15) (ua + uc) · n = qN on ΓN ,

where n is the outward unit normal vector to ∂Ω, pD the pressure on ΓD and qN

the imposed inflow rate on ΓN , respectively. The saturations on the boundary are
subject to

(16) Sw(or Sn) = SN on ΓN .

At the same time, the saturation of the wetting phase at the beginning of the flow
displacing process is initially defined by

(17) Sw = S0
w in Ω.

3. New iterative IMPES method

Let the total time interval [0, T ] be divided into N time steps as 0 = t0 < t1 <
· · · < tN = T . Define the time step length △ti = ti+1 − ti. We use the backward
Euler time discretization for the pressure and saturation equations, and obtain

(18) −∇ · λt(S
i+1
w )K∇Φi+1

w −∇ · λn(S
i+1
w )K∇Φc(S

i+1
w ) = qi+1

w + qi+1
n ,

and

(19) φ
Si+1
w − Si

w

∆ti
− qi+1

w = −∇ · (f i+1
w ui+1

a ) ≡ ∇ · λw(S
i+1
w )K∇Φi+1

w ,

where the superscript (i + 1) represents the current time step. The above sys-
tem is fully implicit and coupled, but it can not be solved directly because of its
nonlinearity. Hence, iterative methods are often employed to solve such systems.

3.1. Classical iterative IMPES method. The classical iterative IMPES for-
mulation for solving the equations (18) and (19) is given by

(20) −∇ · λt(S
i+1,j
w )K∇Φi+1,j+1

w −∇ · λn(S
i+1,j
w )K∇Φc(S

i+1,j
w ) = qi+1

w + qi+1
n ,

and

(21) φ
Si+1,j+1
w − Si

w

∆ti
−qi+1

w = −∇· (f i+1,j
w ui+1,j+1

a ) ≡ ∇·λw(S
i+1,j
w )K∇Φi+1,j+1

w ,

where the superscript (i+1) represents the current time step, and the superscripts
j and (j + 1) represent the iterative steps within the current time step.

In each iteration of the classical iterative IMPES method, the capillary potential
Φc is calculated using the saturation from the previous iteration and the capillary
pressure functions. The other variables λw, λn, λt and fw in the pressure and
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saturation equations are also computed by the saturation at the previous iteration.
These treatments can linearize the pressure and saturation equations.

In each iterative procedure, we firstly solve the pressure equation (20) to com-
pute the wetting-phase pressure at the current iteration, and once the pressure is
obtained, Darcy’s velocity can be evaluated and then the saturation of the current
iteration is calculated explicitly from (21). This procedure is repeated until the
convergence criterion of material balance errors has been satisfied. From the proce-
dure, we can see that iterative IMPES is a splitting approach. When computing the
pressure, we do not use the information of the saturation at the current iteration;
that is, the pressure is not coupled with the saturation in each iteration step.

3.2. New iterative IMPES formulation. As mentioned previously, in the clas-
sical iterative IMPES formulation, the pressure and saturation are not coupled
within each iteration step. Therefore this approach weakens the inherent coupling
of the system given by (18) and (19). In this work, we attempt to overcome this
disadvantage and speedup the convergence of iterative IMPES.

We now derive our method. It is like iterative IMPES that our method uses
the saturation from the previous iteration to compute the variables λw, λn, λt and
fw in the pressure and saturation equations. The capillary potentials Φc, however,
employs the saturation at the current iteration step instead of the previous iteration,
and then its nonlinearity can be reduced by a linear approximation

(22) Φc(S
i+1,j+1
w ) ≃ Φc(S

i+1,j
w ) + Φ′

c(S
i+1,j
w )(Si+1,j+1

w − Si+1,j
w ).

These treatments can linearize the pressure and saturation equations and keep
their coupling relationship. Note that in the above approximation, the derivative
of Φc is in fact viewed as the changing quantity of Φc when the saturation at each
spatial point is changing in response to changes along with iterations. Therefore
this approximation of capillary pressure is always well-behaved.

The relaxation approach is often applied to control the convergence of nonlinear
iterative solvers. This approach is also introduced in our method. We now give the
formulation of the new iterative method as

(23) −∇ · λt(S
i+1,j
w )K∇Φi+1,j+1

w −∇ · λn(S
i+1,j
w )K∇Φ̃c(S̃

i+1,j+1
w ) = qi+1

w + qi+1
n ,

(24) Φ̃c(S̃
i+1,j+1
w ) = Φc(S

i+1,j
w ) + Φ′

c(S
i+1,j
w )(S̃i+1,j+1

w − Si+1,j
w ),

(25) φ
S̃i+1,j+1
w − Si

w

∆ti
−qi+1

w = −∇· (f i+1,j
w ui+1,j+1

a ) ≡ ∇·λw(S
i+1,j
w )K∇Φi+1,j+1

w ,

and

(26) Si+1,j+1
w = Si+1,j

w + θ(S̃i+1,j+1
w − Si+1,j

w ),

where θ ∈ (0, 1] is a relaxation factor. The choice of relaxation factor will be
discussed in Section 5.

3.3. Spatial discretization. In this work, the cell-centered finite difference (CCFD)
method [33,49,54] is employed for the spatial discretization, although our approach
can be also extended to the systems arisen from the other spatial discretization
schemes.

Applying CCFD scheme to (18), we obtain the discretization of the fully implicit
pressure equation given by

Aa(S
i+1
w )Φi+1

w +Ac(S
i+1
w )Φc(S

i+1
w ) = Qi+1

ac .(27)
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We apply the upwind CCFD method for the spatial discretization of the fully
implicit saturation equation

(28) φ
Si+1
w − Si

w

∆ti
+∇ · (f i+1

w ui+1
a ) = qi+1

w ,

and obtain that

(29) M
Si+1
w − Si

w

∆ti
+As(S

i+1
w ,Φi+1

w )fw(S
i+1
w ) = Qi+1

s .

Note that As depends on Sw and Φw by the definition of Darcy’s velocity.
The discretization form of classical iterative IMPES is written as

Aa(S
i+1,j
w )Φi+1,j+1

w +Ac(S
i+1,j
w )Φc(S

i+1,j
w ) = Qi+1

ac .(30)

and

(31) M
Si+1,j+1
w − Si

w

∆ti
+As(S

i+1,j
w ,Φi+1,j+1

w )fw(S
i+1,j
w ) = Qi+1

s .

We now describe the formulation of our method. The discretization form of
pressure equation in the new method is given by

(32) Aa(S
i+1,j
w )Φi+1,j+1

w +Ac(S
i+1,j
w )Φ̃c(S̃

i+1,j+1

w ) = Qi+1
ac ,

where Φ̃c(S̃
i+1,j+1

w ) is the approximation of capillary pressure Φc(S
i+1,j+1
w ) at Si+1,j

w ,
i.e.

(33) Φ̃c(S̃
i+1,j+1

w ) = Φc(S
i+1,j
w ) + Φ′

c(S
i+1,j
w )(S̃

i+1,j+1

w − Si+1,j
w ).

Here, Φ′
c(Sw) = diag(Φ′

c(Sw,k)), k = 1, 2, · · · , Nc, and Nc is the total number of all
cells. The relation between the wetting-phase saturation and pressure is described
by the saturation equation

(34) φ
S̃i+1,j+1
w − Si

w

∆ti
−∇ · λw(S

i+1,j
w )K∇Φi+1,j+1

w = qi+1
w ,

which may be approximated by CCFD method as

(35) M
S̃
i+1,j+1

w − Si
w

∆ti
+Aw(S

i+1,j
w )Φi+1,j+1

w = Qi+1
w .

Note that this form of the saturation equation will be coupled into the pressure
equation, but not to be used to update the wetting-phase saturation.

Substituting (33) and (35) into (32), we obtain the coupled pressure equation

(36) At(S
i+1,j
w )Φi+1,j+1

w = Qt(S
i+1,j
w ),

where

(37) At(S
i+1,j
w ) = Aa(S

i+1,j
w )−∆tiAc(S

i+1,j
w )Φ′

c(S
i+1,j
w )M−1Aw(S

i+1,j
w ),

and

Qt(S
i+1,j
w ) = Qi+1

ac −Ac(S
i+1,j
w )

(
Φc(S

i+1,j
w ) + Φ′

c(S
i+1,j
w )(Si

w − Si+1,j
w )

)

−∆tiAc(S
i+1,j
w )Φ′

c(S
i+1,j
w )M−1Qi+1

w .(38)

Note that in the above processes, M is a diagonal matrix arisen from the porosity,
and hence its inverse is not expensive.

In order to update the saturation, we consider the following form of saturation
equation

(39) φ
S̃i+1,j+1
w − Si

w

∆ti
+∇ · (f i+1,j

w ui+1,j+1
a ) = qi+1

w .
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We apply the upwind CCFD method for the spatial discretization of the saturation
equation (39) and obtain the matrix-vector form

(40) M
S̃
i+1,j+1

w − Si
w

∆ti
+As(S

i+1,j
w ,Φi+1,j+1

w )fw(S
i+1,j
w ) = Qi+1

s .

Each iteration step of our method consists of three substeps. In the first substep
of each iteration, we solve the linear system (36), along with (37) and (38), to obtain
the pressure Φi+1,j+1

w and then compute the the velocity ui+1,j+1
a by Darcy’s Law.

The pressure obtained from (36) contains the change of saturation by the coupling of
pressure and saturation. In the second substep, we compute the saturations by (40),
but need not to solve any linear system. In the third substep, the updated saturation
at each iteration is obtained from (26), which requires a suitable relaxation factor.
From computational procedure, we only solve one linear system with the same size
to the classical iterative IMPES at each iteration, and the computational cost and
size are much less than the simultaneous methods.

4. Convergence analysis

In this section, we consider the convergence of our new method based on the sys-
tem arisen after the cell-centered finite difference scheme for spatial discretization,
but it may be also extended to the other discretization schemes.

Let Mm = ‖M−1‖. From the physical property, each element of saturation
vector Sw lies in [0, 1]. The terms Qw,Qac and Qs are naturally bounded, which
are arisen from the boundary conditions and the injection/extraction to the interior
of the domain. The absolute permeabilities have upper and lower bounds. The
equations we consider are all nonlinear, and therefore we assume that the following
conditions hold.
(A1) The matrix functionAa(Sw) is invertible for any Sw, and its inverse is bounded

(41)
∥∥Aa(Sw)

−1
∥∥ ≤ Ma,

where Ma > 0.
(A2) The matrix functions Aa(Sw), Aw(Sw) and Aw(Sw) are Lipschitz continuous;
that is, there exist three positive real numbers Ca, Cw and Cc such that for any
Sw,Sw, we have

(42)
∥∥Aa(Sw)−Aa(Sw)

∥∥ ≤ Ca

∥∥Sw − Sw

∥∥ ,

(43)
∥∥Aw(Sw)−Aw(Sw)

∥∥ ≤ Cw

∥∥Sw − Sw

∥∥ ,

(44)
∥∥Ac(Sw)−Ac(Sw)

∥∥ ≤ Cc

∥∥Sw − Sw

∥∥ .
(A3) The matrix function As(Sw,Φw) and the vector function fw are Lipschitz
continuous, i.e. for any saturations Sw,Sw and any pressures Φw,Φw,

(45)
∥∥As(Sw,Φw)−As(Sw,Φw)

∥∥ ≤ Cs

∥∥Sw − Sw

∥∥ ,

(46)
∥∥As(Sw,Φw)−As(Sw,Φw)

∥∥ ≤ Cp

∥∥Φw − Φw

∥∥ ,

(47) ‖fw(Sw)− fw(Sw)‖ ≤ Cf‖Sw − Sw‖,
where Cs, Cp, Cf are positive real numbers.
(A4) The capillary potential is bounded for Sw ∈ [0, 1]

(48) ‖Φc(Sw)‖ ≤ Mpc.
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Moreover, its derivative is bounded and Lipschitz continuous, i.e.,

(49) ‖Φ′
c(Sw)‖ ≤ Npc,

(50)
∥∥Φ′

c(Sw)− Φ′
c(Sw)

∥∥ ≤ Cpc

∥∥Sw − Sw

∥∥ , Sw, Sw ∈ [0, 1].

We now give some remarks on the above assumptions. It is obtained by physical
property that for any Sw ∈ [0, 1], the total motion λt has the positive supremum and
infimum, and the functions λt, λw, λn are very smooth in general. Consequently,
the assumptions (A1)-(A3) are not restricted, and in fact, they are natural. As
mentioned in Section 2, if the minimum Semin is set for Se, the capillary pressure
function is sufficiently smooth and regular, and hence it satisfies assumption (A4).

From the above assumptions, we have the following lemmas.

Lemma 1. The matrices Aw(Sw) and Ac(Sw) are bounded for any saturation
vector Sw, i.e.

(51) ‖Aw(Sw)‖ ≤ Mw,

(52) ‖Ac(Sw)‖ ≤ Mc,

where Mw and Mc are all positive real numbers. For any Sw, the matrix At(Sw)
is invertible if ∆ti < 1/(MaMwMcMmNpc), and in this case, we have

(53)
∥∥At(Sw)

−1
∥∥ ≤ Ma

1−∆tiMaMwMcMmNpc

.

Proof. By the assumption (A2), it follows that

‖Aw(Sw)‖ ≤ ‖Aw(0)‖+ ‖Aw(Sw)−Aw(0)‖
≤ ‖Aw(0)‖+ Cw ‖Sw‖
≤ ‖Aw(0)‖+ Cw,(54)

Letting Mw = ‖Aw(0)‖+ Cw, we obtain (51). In the same way, we can get (52).
If ∆ti < 1/(MaMwMcMmNpc), then we have ‖At(Sw)−Aa(Sw)‖‖Aa(Sw)

−1‖ <
1, and it follows by Banach Lemma that At(Sw) is invertible and satisfies (53). �

Lemma 2. At(Sw) and Qt(Sw) are Lipschitz continuous, i.e. for any Sw,Sw,

(55)
∥∥At(Sw)−At(Sw)

∥∥ ≤ (Ca +∆tiCt)‖Sw − Sw‖,

‖Qt(Sw)−Qt(Sw)‖ ≤ (Cq1 +∆tiCq1)‖Sw − Sw‖,(56)

where Ct, Cq1 and Cq2 are all positive real numbers.
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Proof. By the assumptions (A2), (A4) and Lemma 1, we have
∥∥Ac(Sw)Φ

′
c(Sw)M

−1Aw(Sw)−Ac(Sw)Φ
′
c(Sw)M

−1Aw(Sw)
∥∥

≤
∥∥Ac(Sw)−Ac(Sw)

∥∥ ‖Φ′
c(Sw)M

−1Aw(Sw)‖
+
∥∥Ac(Sw)

∥∥ ‖Φ′
c(Sw)M

−1Aw(Sw)− Φ′
c(Sw)M

−1Aw(Sw)‖
≤ MwMmNpcCc‖Sw − Sw‖+Mc‖Φ′

c(Sw)M
−1Aw(Sw)

−Φ′
c(Sw)M

−1Aw(Sw)‖
≤ MwMmNpcCc‖Sw − Sw‖+Mc

[
‖Φ′

c(Sw)− Φ′
c(Sw)‖‖M−1Aw(Sw)‖

+‖Φ′
c(Sw)‖‖M−1‖‖Aw(Sw)−Aw(Sw)‖

]

≤ MwMm(NpcCc +McCpc)‖Sw − Sw‖
+MmMcNpc‖Aw(Sw)−Aw(Sw)‖

≤ [MwMm(NpcCc +McCpc) +MmMcNpcCw]‖Sw − Sw‖.(57)

We obtain (55) by substituting (57) into
∥∥At(Sw)−At(Sw)

∥∥ ≤
∥∥Aa(Sw)−Aa(Sw)

∥∥+∆ti‖Ac(Sw)Φ
′
c(Sw)M

−1Aw(Sw)

−Ac(Sw)Φ
′
c(Sw)M

−1Aw(Sw)‖,(58)

and letting Ct = MwMm(NpcCc +McCpc) +MmMcNpcCw.
It is obtained from (50) that [57]

‖Φc(Sw)− Φc(Sw)− Φ′
c(Sw)(Sw − Sw)‖

≤ 1

2
Cpc‖Sw − Sw‖2 ≤ 1

2
Cpc‖Sw − Sw‖.(59)

Therefore, it follows from the assumptions (A2), (A4) and Lemma 1 that

‖Qt(Sw)−Qt(Sw)‖
=

∥∥∥Ac(Sw)
(
Φc(Sw) + Φ′

c(Sw)(S
i
w − Sw) + ∆tiΦ′

c(Sw)M
−1Qi+1

w

)

−Ac(Sw)
(
Φc(Sw) + Φ′

c(Sw)(S
i
w − Sw) + ∆tiΦ′

c(Sw)M
−1Qi+1

w

)∥∥∥

≤ ‖Ac(Sw)−Ac(Sw)‖‖Φc(Sw) + Φ′
c(Sw)(S

i
w − Sw) + ∆tiΦ′

c(Sw)M
−1Qi+1

w ‖
+‖Ac(Sw)‖

[
‖Φc(Sw)− Φc(Sw)− Φ′

c(Sw)(Sw − Sw)‖

+‖Φ′
c(Sw)− Φ′

c(Sw)‖(‖Si
w − Sw‖+∆ti‖M−1Qi+1

w ‖)
]

≤ (Cq1 +∆tiCq1)‖Sw − Sw‖,
where Cq1 = Cc(Mpc+Npc)+

3
2
McCpc and Cq2 ≥ (CcNpc+McCpc)Mm‖Qi+1

w ‖. �

Lemma 3. The pressure potential Φw and the matrix As at the time step (i + 1)
are all bounded, i.e.

(60) ‖Φi+1
w ‖ ≤ Mpw,

‖As(S
i+1
w ,Φi+1

w )‖ ≤ Ms,(61)

where Mpw > 0,Ms > 0.

Proof. It is obtained by (A1), (A4), (27) and Lemma 1 that

‖Φi+1
w ‖ ≤

∥∥Aa(S
i+1
w )−1

∥∥ [‖Ac(S
i+1
w )Φc(S

i+1
w )‖+ ‖Qi+1

ac ‖
]

≤ Ma(McMpc + ‖Qi+1
ac ‖).(62)
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Letting Mpw ≥ Ma(McMpc + ‖Qi+1
ac ‖), we obtain (60). Moreover, we have (61)

from the Lipschitz continuation. �

Based on the above lemmas, we can prove the following convergence theorem.

Theorem 1. Assume that the conditions A(1)-A(4) hold. Suppose that for any

time step (i + 1) (i ≥ 0), there exist a solution of saturation Si+1
w and pressure

potential Φi+1
w such that the pressure and saturation equations hold. If the satura-

tion of previous time step Si
w is chosen as the initial approximation Si+1,0

w of the

exact saturation Si+1
w , then there exists a suitable time step size ∆ti such that the

sequences Si+1,j
w and Φi+1,j

w generated by the new method converges to Si+1
w and

Φi+1
w , respectively.

Proof. We now choose the saturations of previous time step Si
w as the initial ap-

proximation Si+1,0
w of the exact saturations Si+1

w . Since the values of the saturation
lie in [0, 1], we have

(63) ‖Si+1,0
w − Si+1

w ‖ = ‖Si
w − Si+1

w ‖ ≤ 1.

Let

γ = 1− θ + θ∆tiMm

[
MsCf + Cs +

CpMa

[
MpwCa + Cq1 +∆ti(MpwCt + Cq2)

]

1−∆tiMaMwMcMmNpc

]
.

For any given θ ∈ (0, 1], it is easy to obtain that 0 ≤ γ < 1 as ∆ti = 0, and γ is
increasing with respect to ∆ti ∈ (0, 1/(MaMwMcMmNpc)). Therefore there exists
at least a time step size ∆ti > 0 such that 0 ≤ γ < 1. Now we take such a time
step size ∆ti > 0 such that 0 < γ < 1.

In the following, we will prove that
∥∥Si+1,j

w − Si+1
w

∥∥ ≤ γj‖Si
w − Si+1

w ‖ ≤ 1, j ≥ 0.(64)

The case of j = 0 is justified by the choice of initial approximation of saturation.
We suppose that (64) holds for j ≥ 0, and now we prove the case j + 1.

Apparently, the exact saturation Si+1
w and pressure potential Φi+1

w satisfy

At(S
i+1
w )Φi+1

w = Qt(S
i+1
w ).(65)

Subtracting (65) from (36), we obtain

(66) At(S
i+1,j
w )Φi+1,j+1

w −At(S
i+1
w )Φi+1

w = Qt(S
i+1,j
w )−Qt(S

i+1
w ),

which is equivalent to

At(S
i+1,j
w )(Φi+1,j+1

w − Φi+1
w ) = (At(S

i+1
w )−At(S

i+1,j
w ))Φi+1

w

+Qt(S
i+1,j
w )−Qt(S

i+1
w ).(67)

By the assumptions and Lemmas 1-3, we have
∥∥Φi+1,j+1

w − Φi+1
w

∥∥

≤ ‖At(S
i+1,j
w )−1‖

[
‖At(S

i+1
w )−At(S

i+1,j
w )‖‖Φi+1

w ‖

+‖Qt(S
i+1,j
w )−Qt(S

i+1
w )‖

]

≤ Ma

[
MpwCa + Cq1 +∆ti(MpwCt + Cq2)

]

1−∆tiMaMwMcMmNpc

‖Si+1,j
w − Si+1

w ‖.(68)
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On the other hand, in the same way to obtain (66), we get

M
S̃
i+1,j+1

w − Si+1
w

∆ti
= As(S

i+1
w ,Φi+1

w )fw(S
i+1
w )

−As(S
i+1,j
w ,Φi+1,j+1

w )fw(S
i+1,j
w ),(69)

and then it follows that
∥∥∥S̃

i+1,j+1

w − Si+1
w

∥∥∥

≤ ∆tiMm

∥∥As(S
i+1
w ,Φi+1

w )fw(S
i+1
w )−As(S

i+1,j
w ,Φi+1,j+1

w )fw(S
i+1,j
w )

∥∥

≤ ∆tiMm

[
‖As(S

i+1
w ,Φi+1

w )‖‖fw(Si+1
w )− fw(S

i+1,j
w )‖

+‖As(S
i+1
w ,Φi+1

w )−As(S
i+1,j
w ,Φi+1,j+1

w )‖‖fw(Si+1,j
w )‖

]

≤ ∆tiMm

[
(MsCf + Cs)‖Si+1,j

w − Si+1
w ‖+ Cp

∥∥Φi+1,j+1
w − Φi+1

w

∥∥
]
.(70)

From (68) and (70), we obtain
∥∥∥S̃

i+1,j+1

w − Si+1
w

∥∥∥ ≤ ∆tiMm‖Si+1,j
w − Si+1

w ‖
[
MsCf + Cs

+
CpMa

[
MpwCa + Cq1 +∆ti(MpwCt + Cq2)

]

1−∆tiMaMwMcMmNpc

]
.(71)

It follows that
∥∥Si+1,j+1

w − Si+1
w

∥∥ ≤ (1− θ)
∥∥Si+1,j

w − Si+1
w

∥∥+ θ
∥∥∥S̃

i+1,j+1

w − Si+1
w

∥∥∥

≤ γ‖Si+1,j
w − Si+1

w ‖.(72)

Because of the supposition that (64) holds for the case j, we further obtain
∥∥Si+1,j+1

w − Si+1
w

∥∥ ≤ γj+1‖Si
w − Si+1

w ‖ ≤ 1.(73)

From this, it is induced that the inequality (64) is true for any j ≥ 0.

Therefore it is concluded by γ < 1 that as j → ∞, the sequence Si+1,j
w converges

to Si+1
w , and by (68), Φi+1,j

w converges to Φi+1
w . �

5. Choice of relaxation factor

In practical computation, we usually make the relaxation factor large to speedup
the convergence when the approximate solutions are sufficiently close to the exact
solutions, and otherwise, we need a small relaxation factor to guarantee that the
iterative process can be convergent. However, it is difficult to choose a best relax-
ation factor for a given problem. In the following, we will introduce a practical
choice strategy for relaxation factor.

Define the residual of the wetting-phase mass conservative equation by
∥∥Ri+1,j+1

w

∥∥ =
∥∥∥Si+1,j

w − Si
w

+∆tiM−1
[
As(S

i+1,j
w ,Φi+1,j+1

w )fw(S
i+1,j
w )−Qi+1

s

]∥∥∥,(74)

where j ≥ 0. In order to guarantee the convergence of the iterative process, the
relaxation factor θ should be chosen such that the residual defined by (74) is de-
creasing with respect to iterations, i.e.

∥∥Ri+1,j+1
w

∥∥ <
∥∥Ri+1,j

w

∥∥ .(75)
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It is obtained from (40) and (74) that

∥∥Ri+1,j+1
w

∥∥ =
∥∥∥S̃

i+1,j+1

w − Si+1,j
w

∥∥∥ =
1

θ

∥∥Si+1,j+1
w − Si+1,j

w

∥∥ , j ≥ 0.(76)

Therefore, from (75) and (76), we need to choose a suitable relaxation such that
∥∥Si+1,j+1

w − Si+1,j
w

∥∥ ≤ ρ‖Si+1,j
w − Si+1,j−1

w ‖, j ≥ 1,(77)

where ρ ∈ (0, 1).
Theoretically, it is a nonlinear problem to find such relaxation factor, and hence

it is practically feasible to compute the relaxation factor adaptively in the iterative
process. We denote the relaxation factor at jth iteration step by θj , and in this
case, we have

Si+1,j+1
w = Si+1,j

w + θj+1

(
S̃
i+1,j+1

w − Si+1,j
w

)
.(78)

For the first iteration, θ1 needs to be given in advance. We can determine θj+1,
j ≥ 1, by

max



ρ

∥∥Si+1,j
w − Si+1,j−1

w

∥∥
∥∥∥S̃

i+1,j+1

w − Si+1,j
w

∥∥∥
, θmin



 ≤ θj+1 ≤ min



ρ

∥∥Si+1,j
w − Si+1,j−1

w

∥∥
∥∥∥S̃

i+1,j+1

w − Si+1,j
w

∥∥∥
, θmax



 ,

(79)

where θmin, θmax ∈ (0, 1] are the minimum and maximum of relaxation factor θ set
in advance, respectively.

Finally, we give a theoretical remark on the above choice of relaxation factor. If
(77) holds, then we can obtain that

∥∥Si+1,j+1
w − Si+1,j

w

∥∥ ≤ ρj‖Si+1,1
w − Si

w‖, j ≥ 1.(80)

It follows that for any n,m > 1,

∥∥Si+1,n+m
w − Si+1,n

w

∥∥ ≤
n+m−1∑

j=n

∥∥Si+1,j+1
w − Si+1,j

w

∥∥

≤ ‖Si+1,1
w − Si

w‖
n+m−1∑

j=n

ρj ,

≤ ρn

1− ρ
‖Si+1,1

w − Si
w‖.(81)

This indicates that the sequence {Si+1,j
w } is a Cauchy sequence and hence it will

converges to {Si+1
w }.

6. Numerical tests

In this section, we test some examples to show the performance of the new
method presented in this work. We also carry out the comparison to the classical
iterative IMPES scheme.

6.1. Physical and computational data used in numerical tests. In this
work, we present two numerical examples. In these examples, we consider two-
phase fluid flow in a horizontal layer with heterogeneous permeabilities. With
media being horizontal, the effect of gravity is neglected in all examples. The void
of medium is initially fully saturated with oil and then we flood the system by water
at the left end. The production end is the right-hand side. The other boundaries
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Figure 1. Heterogeneous permeabilities: Example 1.

are impermeable; that is, the normal component of the Darcy velocity on these
boundaries vanishes. There is no injection/extraction to the interior of the domain.

We use the absolute permeability tensor as K = kI, where I is the identity
matrix and k is a positive real number. We employ the capillary pressure function
and relative permeabilities given in Section 2. It is chosen to be zero for the
residual saturations of water and oil; that is, Se = Sw. In computation, we take
the minimum of saturation as Swmin = 10−4.

For both the classical iterative IMPES method and our new method, we choose
the saturation at previous time step as the saturation approximation of the first
iteration. The relaxation factor has some effects on the stability and efficiency
of iterative method. The classical iterative IMPES method without relaxation
factor may often require more iterations. In the following tests, the relaxation
approach, along with the choice strategy of relaxation factor mentioned in Section
5, is applied for both methods. For two methods, θ1 is computed from (79) where

we take ‖Si+1,0
w −Si+1,−1

w ‖ = 1. The iteration loop of both methods continues until
‖Si+1,j+1

w −Si+1,j
w ‖ < Swmin. In our tests, we use 2-norm for vectors and matrices.

6.2. Example 1: Regular heterogenous permeabilities. In example 1, the
tested medium with the domain dimensions 210 m × 150 m × 1 m consists of three
subdomains with different configurations for the distribution of permeability, which
is shown in Figure 1. The porosity of this medium is 0.2. We use the quadratic
relative permeabilities, namely, β = 2. The viscosities of water and oil are 1 cP and
0.35 cP, respectively. The capillary pressure parameter Bc is taken as 70 bar when
the absolute permeability k is equal to 1 md. The injection rate is 0.2 PV/year.

The total number of mesh elements is 3500 uniform rectangles for example 1.
For the choice of relaxation factor discussed in Section 5, we take three parameters
in (79) as θmin = 0.2, θmax = 0.9 and ρ = 0.5. This choice of relaxation factor is
applied for both the classical iterative IMPES method and New method.

We calculate the saturation until 0.5 pore volume injection (PVI). We test two
different time step sizes. One time step size (called Case 1 here) is taken as the
maximum time step size required by iterative IMPES to guarantee the conver-
gence. The other (Case 2) is a larger time step size, in which iterative IMPES can
not converge. Our new method can converge for the two time step sizes. The com-
putational results are displayed in Table 1, in which ”Total iterations” represents
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Figure 2. Wetting-phase saturation profiles at 0.5 PVI by itera-
tive IMPES (Case 1): Example 1.

the sum of iterations in all time steps, and ”Average iterations” represents the av-
erage iteration number in each time step. Figures 2,3 and 4 show the distributions
for water saturation at T = 0.5 PVI computed by the iterative IMPES and New
method, respectively.

Table 1. Comparison for Example 1
Iterative IMPES (Case 1) New (Case 1) New (Case 2)

Time step size (days) 2.2812 2.2812 6.0833
Total iterations 17771 2504 1704
Average iterations 44.4275 6.26 11.36

In this example, the domain is highly heterogenous and hence the two different
capillary pressure functions are made on the different subdomains. Capillary pres-
sure forces may push the water flowing into the areas with the low permeability.
The distributions for water saturation computed by the two methods are close and
accurate, but the computational performance of new method is distinguished. We
can see from Table 1 that the average iteration number of the new method is far
less than that of iterative IMPES in the same time step size. Moreover, we can take
a larger time step size for the new method, and in this case, the total iterations
may be further reduced, although the average iterations increase. This indicates
the new method has better stability and efficiency than iterative IMPES.

6.3. Example 2: Random permeabilities. In example 2, the domain dimen-
sion of tested medium is 150 m × 150 m × 1 m. This medium has random dis-
tribution of permeability as shown in Figure 5. The porosity of this medium is
0.2. The viscosities of water and oil are 1 cP and 0.3 cP, respectively. The relative
permeabilities are quadratic. We take the capillary pressure parameter as Bc = 35
bar when the absolute permeability k is equal to 1 md. The injection rate is 0.15
PV/year.

The computational domain is divided into 2500 uniform rectangles in this exam-
ple. The choice of relaxation factor given by (79) is applied for both iterative IMPES
and New Method, and the three parameters are taken as θmin = 0.2, θmax = 0.9
and ρ = 0.2.

We calculate the saturation until 0.5 PVI. It is like example 1 that we take two
different time step sizes; that is, Case 1 is taken as the maximum time step size
required for the convergence of iterative IMPES, and Case 2 is a larger time step
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Figure 3. Wetting-phase saturation profiles at 0.5 PVI by New
Method (Case 1): Example 1.
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Figure 4. Wetting-phase saturation profiles at 0.5 PVI by New
Method (Case 2): Example 1.
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Figure 5. Heterogeneous permeabilities ( the unit is md)): Ex-
ample 2.

size. Our new method can converge for the two time step sizes, while iterative IM-
PES can not converge in Case 2. The computational results are displayed in Table
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Figure 6. Wetting-phase saturation profiles at 0.5 PVI by itera-
tive IMPES (Case 1): Example 2.

2, in which the representations of the row names, ”Total iterations” and ”Aver-
age iterations”, are the same to Table 1. Figures 6,7 and 8 show the distributions
for water saturation at T = 0.5 PVI computed by the iterative IMPES and New
method, respectively.

The permeabilities of this example are random distributed, and vary in a large
scope, as shown in Fig. 5. In this case, there are multiple different capillary pres-
sure functions made on the domain. The contrast arisen from capillary pressure
functions may distribute in the whole domain, and hence we can see the disconti-
nuity of saturations almost everywhere. In this case, capillary pressure forces may
have a great influence on the flow path of the above fluids. We can see from the
distributions for water saturation that the two methods can simulate two-phase
flow well. The average iteration number of the new method is far less than that
of iterative IMPES in the same time step size. This performance conforms with
Example 1. When we double the time step size for the new method, the average
iterations increase only more than 1, and hence the total iterations may be reduced
largely. This strongly indicates that our method can achieve excellent performance
for random distributed permeability.

Table 2. Comparison for Example 2
Iterative IMPES (Case 1) New (Case 1) New (Case 2)

Time step size (days) 1.2167 1.2167 2.4333
Total iterations 11909 4097 2719
Average iterations 11.909 4.097 5.438

7. Conclusions

Based on our previous method proposed in [36], we have developed an iterative
scheme to solve the coupled system of nonlinear equations arisen after the fully
implicit scheme for two-phase fluid flow in porous media. In our method, we use
the linear approximation of capillary function at the current iteration, which is
constructed by the saturations at the current and previous iterations. This treat-
ment allows us to couple the saturation equation into pressure equation, and also
maintains the inherent coupling relation between the pressure and saturation. The
proposed method is suitable not only to homogenous but also to heterogenous me-
dia.
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Figure 7. Wetting-phase saturation profiles at 0.5 PVI by New
Method (Case 1): Example 2.
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Figure 8. Wetting-phase saturation profiles at 0.5 PVI by New
Method (Case 2): Example 2.

We use the relaxation approach to control the convergence of our method, and
give a practical choice of relaxation factor that is suitable for two-phase flow model.
We prove the convergence theorem of our method under the natural conditions.

We have tested two examples to shows the stability and efficiency of the new
method. In our tested cases, for the same time step sizes, our method requires
much less iteration steps than iterative IMPES. Moreover, the new method is able
to converge for the time step sizes that are larger than the maximum one by iterative
IMPES. When a large time step size is employed, the computational cost of our
method may be further reduced.

In future work, we will extend the proposed approach to the compressible fluid
flow, three-phase flow and compositional flow in porous media [55], and study the
convergence of the corresponding methods.
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