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MULTISCALE NUMERICAL ALGORITHM FOR 3-D

MAXWELL’S EQUATIONS WITH MEMORY EFFECTS IN

COMPOSITE MATERIALS

YA ZHANG, LIQUN CAO, WALTER ALLEGRETTO, AND YANPING LIN

Abstract. This paper discusses the multiscale method for the time-dependent Maxwell’s equa-
tions with memory effects in composite materials. The main difficulty is that one cannot use the
usual multiscale asymptotic method (cf. [25, 4]) to solve this problem, due to the complication
of the memory terms. The key steps addressed in this paper are to transfer the original integro-
differential equations to the stationary Maxwell’s equations by using the Laplace transform, to
employ the multiscale asymptotic method to solve the stationary Maxwell’s equations, and then to
obtain the computational solution of the original problem by employing a quadrature formula for
computing the inverse Laplace transform. Numerical simulations are then carried out to validate
the multiscale numerical algorithm in the present paper.

Key words. time-dependent Maxwell’s equations, memory effects, multiscale asymptotic expan-
sion, Laplace transform, composite materials.

1. Introduction

The classical macroscopic electromagnetic field is described by four vector-valued
functions of position x ∈ R3 and time t ∈ R denoted by E, D, H, B. The funda-
mental field vectorsE, H are the electric and magnetic field intensities, respectively.
The vector-valued functions D, B denote the electric displacement and magnetic
induction, respectively. The classical macroscopic Maxwell’s equations are given
by:

(1)





∇×E+
∂B

∂t
= 0,

∇×H− ∂D

∂t
= J,

∇ ·D = ρ,

∇ ·B = 0,

where ρ(x, t), J(x, t) are the electric charge density and the source current density,
respectively.

The general form of the constitutive laws are the following:

(2) D = ǫE+

∫ t

0

{
σE(x) + νE(x, t− τ)

}
E(x, τ)dτ

(3) B = µH+

∫ t

0

{
σH(x) + νH(x, t− τ)

}
H(x, τ)dτ,

where ǫ = (ǫij) and µ = (µij) are the electric permittivity and the magnetic perme-
ability of the media, respectively; σE = (σE

ij), ν
E(x, t) are the electric conductivity
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Figure 1. (a) Domain Ω; (b) the reference cell Q.

that characterizes the current density and the displacement susceptibility kernel
function, respectively;
σH = (σH

ij ), ν
H(x, t) are the magnetic conductivity that characterizes the current

density and the magnetic susceptibility, respectively. These are 3 × 3 positive-
definite matrix-valued functions of position x ∈ R3 in heterogeneous media. In the
homogeneous case they are independent of x. In the isotropic case these parameters
are scalars or diagonal matrices.

In this paper, we assume that σH = νH = 0. From (1)-(3), by eliminating the
magnetic field H, we obtain

(4)
ǫ(x)

∂2E(x, t)

∂t2
+ (σE(x) + νE(x, 0))

∂E(x, t)

∂t
+∇× (µ−1(x)∇×E)

+
∂νE

∂t
(x, 0)E(x, t) +

∫ t

0

∂2νE(x, t− τ)

∂t2
E(x, τ)dτ = − ∂

∂t
J(x, t),

where µ−1(x) denotes the inverse matrix of µ(x).
Suppose that Ω ⊂ R3 is a bounded polygonal convex domain or a smooth do-

main with a Lipschitz continuous boundary ∂Ω with a periodic microstructure as
illustrated in Fig.1 (a) and (b). For convenience, we replace ∇×u with curl u. We
then consider the following Maxwell’s equations with rapidly oscillating coefficients:

(5)





B(
x

ε
)
∂2Eε(x, t)

∂t2
+ C(

x

ε
)
∂Eε(x, t)

∂t
+G(

x

ε
)Eε(x, t) + curl(A(

x

ε
)curlEε)

+

∫ t

0

K(
x

ε
, t− τ)Eε(x, τ)dτ = f(x, t), (x, t) ∈ Ω× (0, T )

Eε × n = 0, (x, t) ∈ ∂Ω× (0, T )

Eε(x, 0) = E0(x),
∂Eε(x, 0)

∂t
= E1(x),

Here ε denotes a small periodic parameter, which is the relative size of the unit
cell. The matrix-valued functions A(xε ), B(xε ), C(

x
ε ), G(

x
ε ), K(xε , t− τ), and the

vector-valued functions f(x, t), E0(x), E1(x) are known functions, n = (n1, n2, n3)
is the outward unit normal to ∂Ω.

We first define the curl of a distribution u = (u1, u2, u3) of D′(Ω)3 by

curl u = (
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2
).
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Let the space H(curl; Ω) be

H(curl; Ω) = {u ∈ (L2(Ω))3; curl u ∈ (L2(Ω))3}
with the norm

‖u‖H(curl;Ω) = {‖u‖2(L2(Ω))3 + ‖curl u‖2(L2(Ω))3}1/2,
and

H0(curl; Ω) = closure of (C∞
0 (Ω))3 in H(curl; Ω),

or

H0(curl; Ω) = {u ∈ H(curl; Ω);u× n|∂Ω = 0}.
Set S = {(t, s) ∈ [0, T ]2; s ≤ t} and SD = {(t, t); t ∈ [0, T ]}. We introduce the

following Sobolev spaces

W1,p(S;X) = {φ ∈ Lp(S;X);
∂φ
∂t

∈ Lp(S;X), φ|SD
∈ Lp(0, T ;X)},

W2,p(S;X) = {φ ∈ W1,p(S;X);
∂φ
∂t

∈ W1,p(S;X), φ|SD
∈ W1,p(0, T ;X)},

where X is a Banach space, the space W1,p(S;X) and W2,p(S;X) are respectively
equipped with the norms

‖φ‖1,p,X = ‖∂φ
∂t

‖Lp(S;X) + ‖φ|SD
‖Lp(0,T ;X),

‖φ‖2,p,X = ‖∂φ
∂t

‖1,p,X + ‖φ|SD
‖W1,p(0,T ;X).

We make the following assumptions:
(A1) Let ξ = ε−1x, and assume that the elements of the matricesA(ξ), B(ξ), C(ξ),

G(ξ), K(ξ, t− τ) are 1-periodic in ξ.
(A2) The matrices A(ξ) and B(ξ) are symmetric and positive-definitive.
(A3) A, B, C, G ∈ L∞(Ω;R3×3), K ∈ W2,p(S;L∞(Ω;R3×3)), and

f ∈ W1,1(0, T ;L2(Ω;R3)), E0 ∈ H0(curl; Ω), E1 ∈ (L2(Ω))3.
Lemma 1.1 (see [3], Proposition 1) Under the assumptions of (A2)−(A3), prob-

lem (5) has a unique solution Eε ∈ W1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H0(curl; Ω))
that satisfies the following bounds:

(6)
‖Eε‖L∞(0,T ;H0(curl;Ω)) + ‖∂tEε‖L∞(0,T ;L2(Ω;R3))

≤ C
(
‖f‖H0(curl;Ω) + ‖E0‖H0(curl;Ω) + ‖E1‖L2(Ω))3

)
,

where C is a constant independent of ε, ∂tE
ε denotes the derivative of Eε with

respect to t.
Since problems (5) is an integro-differential equations with rapidly oscillating

coefficients, a direct computation of (5) is extremely difficult, because it would re-
quire both a fine mesh and a lot of memory storage. Homogenization is a process
in which the composite materials having a microscopic structure are replaced with
an equivalent material having macroscopic properties. In this process of homoge-
nization the rapidly oscillating coefficients are replaced by new effective constant
coefficients. For the homogenization method of the Maxwell’s equations in different
media, there are a number of theoretical results, see [3, 11, 13, 23, 24]. Numerous
numerical results have shown that the numerical accuracy of the homogenization
method may not be satisfactory if ε is not sufficiently small. We can expect that
the multiscale method for Maxwell’s equations in composite materials is of crucial
interest (see, e.g. [25, 3, 4, 5]). However, generally speaking, we can not directly
use the classical multiscale asymptotic expansions to solve problem (5), due to
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the emergence of the memory terms. Sheen et al.([21], [14], [15]) employ Laplace
transforms to solve an integro-differential equation of parabolic type, and develop
a numerical method for computing the inverse Laplace transform. In engineering
applications, Tzou [22] also presents a quadrature formula for calculating the in-
verse Laplace transform. Numerous numerical results show Tzou’s method remains
competitive with other methods, see [22, 26].

This paper discusses the multiscale computation for problem (5) in specific case,
see Section 2. The key steps addressed in the present paper are the application of
the Laplace transform to convert problem (5) into stationary Maxwell’s equations,
to present the multiscale asymptotic expansion for the latter case, then to use
the inverse Laplace transform to obtain the approximate solution of (5), where we
employ Tzou’s method for computing the inverse Laplace transform.

We organize this paper as follows. In Section 2, we develop the multiscale asymp-
totic expansion of the solution for the stationary Maxwell’s equations by applying
a Laplace transform to problem (5). Section 3 is devoted to the finite element
computations for related problems and the multiscale finite element method for
the stationary Maxwell’s equations. In Section 4, we introduce the inverse Laplace
transform and the Riemann-sum approximation, then obtain the multiscale ap-
proach for the original problem (5). Finally, numerical case studies are reported,
and the simulations confirm the validity of the multiscale numerical algorithm pre-
sented in this paper.

Throughout the paper the Einstein summation convention on the repeated in-
dices is adopted. By C we denote a positive constant independent of ε without
distinction.

2. Stationary Maxwell’s equations and the Multiscale Asymptotic Ex-
pansion

2.1. Stationary Maxwell’s equations. To begin, we introduce the Laplace trans-
form ĝ(p) = L(g) =

∫∞

0 g(t)e−ptdt for any function g ∈ L1(0,∞), Re(p) > 0, where
Re(p) denotes the real part of p. Thanks to Lemma 1.1, there exists a constant
p0 > 0 that depends only on the data such that the solution Eε(x, t) to problem
(5) has a Laplace transform for all p ≥ p0 > 0. Therefore, we apply the Laplace
transform on both sides of (5) and obtain
(7)



(
p2B(

x

ε
) + pC(

x

ε
) +G(

x

ε
) + K̂(

x

ε
, p)

)
Êε(x, p) + curl (A(

x

ε
)curl Êε(x, p))

= f̂(x, p) + (1 + p)E0(x) +E1(x), x ∈ Ω

Êε(x, p)× n = 0, x ∈ ∂Ω, p ≥ p0 > 0,

where Êε(x, p) = L(Eε(x, t)), f̂(x, p) = L(f(x, t)), K̂(xε , p) = L(K(xε , t)).
Remark 2.1 Existence and uniqueness of the solution for problem (7) can be

determined for any fixed p ≥ p0 > 0 based on Proposition 5 of [3]. Furthermore,
we have
Êε ∈ L∞(p0,∞;H0(curl; Ω)) and the uniform bounds

‖Êε(x, p)‖L2(Ω) ≤
C

p
, ‖curl Êε(x, p)‖L2(Ω) ≤ C, ∀p ≥ p0 > 0,

where C is a constant independent of p.

2.2. Multiscale asymptotic expansion. In this section, we will study the mul-
tiscale asymptotic expansion of the solution to problem (7). We state that this is a
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considerable challenge in general cases, in particular the determination of higher-
order multiscale correctors. For more details, please refer to [3]. In this paper, we
present the multiscale asymptotic expansion of the solution to problem (7) in the
following specific case: B, C, G, K are independent of the space variable x ∈ Ω.

For simplicity, let B(xε ) = C(xε ) = G(xε ) ≡ I3, K̂(xε , p) ≡ K̂(p) without loss of
generality, where I3 is an 3 × 3 identity matrix. Under this assumption, problem
(7) reduces to the following problem:

(8)





curl (A(
x

ε
)curl Êε(x, p)) + (p2 + p+ 1 + K̂(p))Êε(x, p)

= f̂(x, p) + (1 + p)E0(x) +E1(x), x ∈ Ω

Êε(x, p) × n = 0, x ∈ ∂Ω, p ≥ p0 > 0,

Following the idea of [4], we define the multiscale asymptotic expansions to
problem (8) as follows:

(9)
Êε,1(x, p) = Ê0(x, p) + εΘ1(ξ)curl Ê

0(x, p),

Êε,2(x, p) = Ê0(x, p) + εΘ1(ξ)curl Ê
0(x, p) + ε2Θ2(ξ)curl

2 Ê0(x, p),

where curl2 = curl curl. We define

(10)





curlξ

(
A(ξ)curlξΘ

q
1(ξ)

)
= −curlξ

(
A(ξ)eq

)
, ξ ∈ Q

∇ξ ·Θq
1(ξ) = 0, ξ ∈ Q

Θq
1(ξ) × ν = 0, ξ ∈ ∂Q, q = 1, 2, 3,

where e1 = {1, 0, 0}T , e2 = {0, 1, 0}T , e3 = {0, 0, 1}T and aT denotes the transpose
of a. We define the matrix-valued cell functions Θ1(ξ) = (Θ1

1(ξ),Θ
2
1(ξ),Θ

3
1(ξ)).

Let Ξq(ξ) = −A(ξ)curlξ Θq
1(ξ) − A(ξ)eq + Âeq, and define the scalar functions

ζq(ξ), q = 1, 2, 3 as follows:

(11)

{
−∆ξζ

q(ξ) = divξ Ξq(ξ), ξ ∈ Q,

ζq(ξ) = 0, ξ ∈ ∂Q, q = 1, 2, 3,

where divξ denotes the divergence operator with respect to ξ.
Given divξ(Ξq(ξ) +∇ξζ

q(ξ)) = 0, then we define

(12)





curlξ

(
A(ξ)curlξΘ

q
2(ξ)

)
= −curlξ

(
A(ξ)Θq

1(ξ)
)

−A(ξ)curlξΘq
1(ξ)−A(ξ)eq + Âeq +∇ζq, ξ ∈ Q

∇ξ ·Θq
2(ξ) = 0, ξ ∈ Q

Θq
2(ξ) × ν = 0, ξ ∈ ∂Q, q = 1, 2, 3,

where the homogenized coefficients matrix Â is computed by

(13) Â =

∫

Q

(
A(ξ) +A(ξ) curlξ Θ1(ξ)

)
dξ, Q = (0, 1)3.

We next define the matrix-valued cell functions Θ2(ξ) = (Θ1
2(ξ),Θ

2
2(ξ),Θ

3
2(ξ)).

Remark 2.2 Existence and uniqueness of the cell functions Θq
1(ξ), Θ

q
2(ξ), q =

1, 2, 3 can be established. For more details, please refer to [4].
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Following the approach of [2, 4], we obtain the homogenized Maxwell’s equations
associated with problem (8) as follows:

(14)





curl (Â curl Ê0(x, p)) + (p2 + p+ 1 + K̂(p))Ê0(x, p)

= f̂(x, p) + (1 + p)E0(x) +E1(x), x ∈ Ω

Ê0(x, p)× n = 0, x ∈ ∂Ω,

where n = (n1, n2, n3) is the outward unit normal to ∂Ω.

Remark 2.3 It can be proved that the homogenized coefficients matrix Â is sym-
metric and positive-definite. Existence and uniqueness of the solution to problem
(14) can be established on the basis of Proposition 5 of [3], for any fixed p ≥ p0 > 0.

3. The Edge Finite Element Computations for Related Problems

3.1. The adaptive edge finite element method for computing cell func-
tions Θq

1(ξ),
Θq

2(ξ) q = 1, 2, 3.. The variational problem of (10) is to find Θq
1(ξ) ∈ H0(curl;Q)

such that

(15) b(Θq
1,v) = −

∫

Q

A(ξ)eq · curlξv(ξ)dξ, ∀v ∈ H0(curl;Q), q = 1, 2, 3,

where we set the bilinear form

(16) b(u,v) =

∫

Q

A(ξ)curlξu(ξ) · curlξv(ξ)dξ,

the scalar product u · v = uivi and the reference cell Q = (0, 1)3.
We employ an adaptive multilevel method presented in [7]. In solving (11) and

(12), we apply the same mesh as (10). We introduce some notation: Let Tk be a
sequence of tetrahedrons of the reference cell Q and Fk be the set of faces not lying
on ∂Q , k ≥ 0. The finite element space Uk over Tk is defined by

Uk = {v ∈ H(curl;Q) : v × ν|∂Q = 0 and
v|T = aT + bT × x with aT , bT ∈ R3, ∀T ∈ Tk}.

Degrees of freedom on every T ∈ Tk are
∫
Ei

v · dl, i = 1, · · · , 6, where E1, · · · , E6

are the six edges of T . For any T ∈ Tk and F ∈ Fk, we denote the diameters of T
and F by hT and hF , respectively.

Let Θq
1,k, q = 1, 2, 3 denote the finite element approximate solutions of Θq

1, q =
1, 2, 3 in the finite element space Uk, respectively. Then,

(17) b(Θq
1,k,vk) = −

∫

Q

A(ξ)eq · curlξvk(ξ)dξ, ∀vk ∈ Uk, q = 1, 2, 3.

Following Theorems 3.3 and 3.4 of [7], we give a posteriori error estimates for
Θq

1, q = 1, 2, 3, as follows:

(18) ‖Θq
1(ξ)−Θq

1,k(ξ)‖2H0(curl;Q) ≤ C
( ∑

T∈Tk

η2T +
∑

F∈Fk

η2F

)
,

where

η2T = h2T ‖curlξ A(ξ)eq + curlξ

(
A(ξ)curlξ Θ

q
1,k(ξ)

)
‖20,T

η2F = hF ‖[A(ξ)curlξ Θq
1,k(ξ) × ν]|F ‖20,F .

In order to compute ζq(ξ) and Θq
2(ξ), we need to solve problems (11) and (12)

numerically. Define a linear finite element space over Tk given by

(19) S0
k(Q) = {wk ∈ C0(Q) : wk|T ∈ P1, T ∈ Tk, wk|∂Q = 0} ⊂ H1

0 (Q),
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where P1 is the set of all piecewise linear polynomials.
The discrete variational problem of (11) is to find: ζqk ∈ S0

k(Q) such that

(20)

∫

Q

∇ξζ
q
k · ∇ξwkdξ =

∫

Q

Ξq(ξ) · ∇ξwkdξ, ∀wk ∈ S0
k(Q), q = 1, 2, 3,

where Ξq(ξ) is given in (11).
A weak solution of the cell problem (12) is to find Θq

2(ξ) ∈ H0(curl;Q) such
that

(21)
b(Θq

2,v) = −
∫
Q
A(ξ)Θq

1(ξ) · curlξvdξ +
∫
Q
Ξq(ξ) · vdξ

−
∫
Q
∇ξζ

q(ξ) · vdξ, ∀v ∈ H0(curl;Q), q = 1, 2, 3,

where the bilinear form b(u,v) is defined in (16), Θq
1(ξ), q = 1, 2, 3 are given in

(10).
The discrete variational problem of (12) is to find Θq

2,k ∈ Uk such that

(22)
b(Θq

2,k,vk) = −
∫
Q
A(ξ)Θq

1,k(ξ) · curlξvkdξ +
∫
Q
Ξk
q (ξ) · vkdξ

−
∫
Q
∇ξζ

q
k(ξ) · vkdξ, ∀vk ∈ Uk, q = 1, 2, 3,

where
Ξk
q (ξ) = −A(ξ)curlξΘq

1,k(ξ)−A(ξ)eq + Âkeq,

Âk =

∫

Q

[A(ξ) +A(ξ) curlξ Θ1,k(ξ)]dξ,

and
Θ1,k(ξ) = (Θ1

1,k(ξ),Θ
2
1,k(ξ),Θ

3
1,k(ξ)).

3.2. The edge finite element method for solving the homogenizedMaxwell’s
equations. We recall (13), (14) and (17). In practice, we need to solve the follow-
ing modified homogenized Maxwell’s equations:

(23)





curl (Âh0 curl ̂̃E
0

(x, p)) + (p2 + p+ 1 + K̂(p)) ̂̃E
0

(x, p)

= f̂(x, p) + (1 + p)E0(x) +E1(x), x ∈ Ω

̂̃E
0

(x, p)× n = 0, x ∈ ∂Ω,

where

Âh0 =

∫

Q

[A(ξ) +A(ξ) curlξ Θ1,h0(ξ)]dξ,

Θ1,h0(ξ) denotes the finite element solution of Θ1(ξ) and h0 is the final mesh pa-
rameter of the adaptive finite element method for computing Θ1(ξ).

In this section, we discuss the finite element computation for the homogenized
Maxwell’s equations (23) in a whole domain Ω. Let T h = {e} be a regular family
of tetrahedrons of Ω and h = max

e
{he}. We define the finite element space of

H0(curl; Ω) consisting of the linear edge elements by

(24) Xh(Ω) = {vh ∈ H(curl; Ω) : vh|e ∈ R1, vh × n = 0 on ∂Ω},
where n is the outward unit normal to the boundary ∂Ω and R1 is defined in (5.32)
of ([16], p.128).

The discrete variational form of problem (23) is the following:

(25)





a( ̂̃E
0

h, vh) + (p2 + p+ 1 + K̂(p))( ̂̃E
0

h, vh)

= (f̂ + (1 + p)E0 +E1,vh), ∀vh ∈ Xh(Ω),
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where

(26) a(u,v) =

∫

Ω

Âh0curl u · curl vdx.

Set P = p2+p+1+ K̂(p) = α+ iβ and F = f̂ +(1+p)E0+E1 = f1+ if2, where

i =
√
−1. Let {φj(x)}Nj=1 be a set of basis of Xh(Ω) and ̂̃E

0

h(x, p) =
N∑
j=1

χjϕj(x).

Then the discrete system (25) is equivalent to

(27)

N∑

j=1

a(ϕj , ϕk)χj +

N∑

j=1

P (ϕj , ϕk)χj = (F, ϕk), k = 1, 2, . . . , N.

We denote by K̂h := (a(ϕj , ϕk))jk the stiffness matrix, Mh := ((ϕj , ϕk))jk
the mass matrix, χj = uj + ivj, u = (u1, · · · , uN)T , v = (v1, · · · , vN )T , F1 =
((f1, ϕ1), (f1, ϕ2), · · · , (f1, ϕN ))T , F2 = ((f2, ϕ1), · · · , (f2, ϕN ))T . Therefore, we
solve the linear system as follows:

(28)

(
K̂h + αMh −βMh

βMh K̂h + αMh

)(
u

v

)
=

(
F1

F2

)
.

3.3. The multiscale finite element method for the stationary Maxwell’s
equations. The multiscale numerical algorithm for the stationary Maxwell’s equa-
tions consists of the following steps:

Step 1: Compute the cell functions Θ1(ξ) and Θ2(ξ) defined in (10) and (12) in
the reference cell Q.

Step 2: Solve the modified homogenized stationary Maxwell’s equations (23) in
the whole domain Ω in a coarse mesh for any fixed p ≥ p0 > 0.

Step 3: Define the first-order and the second-order difference quotients, then
replace

curl ̂̃E
0

(x, p), curl2 ̂̃E
0

(x, p) by them, where ̂̃E
0

(x, p) is the solution of the modified
homogenized stationary Maxwell’s equations (23).

Define the first-order curl difference quotients given by

(29) δc
̂̃E
0

h(Nm, p) =
1

τ(Nm)

∑

e∈σ(Nm)

curl ̂̃E
0

h|e(Nm, p),

where σ(Nm) is the set of elements with node Nm, τ(Nm) is the number of elements

of σ(Nm), curl ̂̃E
0

h(Nm, p) is the value of the curl ̂̃E
0

h at node Nm associated with
element e.

The second-order difference quotients are given as follows:

(30) δ2c
̂̃
E

0

h(Nm, p) =
1

τ(Nm)

∑

e∈σ(Nm)

d∑

j=1

δc
̂̃
E

0

h(Pj , p)curlψj |e(Nm),

where d is the number of nodes on e; Pj , j = 1, · · · , d are the nodes of e and
ψj , j = 1, · · · , d are the Lagrange’s shape functions.

Define the multiscale numerical algorithm for the stationary Maxwell’s equations
as follows

(31)
Êε,1

h0,h
(x, p) = ̂̃E

0

h(x, p) + εΘ1,h0(ξ)δc
̂̃E
0

h(x, p),

Êε,2
h0,h

(x, p) = ̂̃E
0

h(x, p) + εΘ1,h0(ξ)δc
̂̃E
0

h(x, p) + ε2Θ2,h0(ξ)δ
2
c
̂̃E
0

h(x, p),
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where ̂̃E
0

h(x, p) is the finite element solution of ̂̃E
0

(x, p); Θ1,h0(ξ), Θ2,h0(ξ) are

respectively the finite element solutions of Θ1(ξ), Θ2(ξ); δc
̂̃E
0

h(x, p), δ
2
c
̂̃E
0

h(x, p) de-

note the interpolation functions of δc
̂̃E
0

h(Nm, p), δ
2
c
̂̃E
0

h(Nm, p), respectively.

4. The Inverse Laplace Transform and the Approximate Solution for the
Original Problem

4.1. The inverse Laplace transform. Define the inverse Laplace transform of
a function û(x, p) as follows:

(32) u(x, t) = L−1(û(x, p)) =
1

2πi

∫ γ+i∞

γ−i∞

û(x, p)eptdp,

where p = γ + iς , Re(p) > 0, where Re(p) denotes the real part of p.
To compute the inverse Laplace transform (32), we introduce the Riemann-sum

approximation (see [22])

(33) u(x, t) =
eγt

t
[
1

2
û(x, γ) +Re

∞∑

k=1

û(x, γ +
ikπ

t
)(−1)k],

where γ =
4.7

t
.

In practice, we define the truncated function for the Riemann-sum approximation
as follows:

(34) uM (x, t) =
eγt

t

{1

2
û(x, γ) +Re

M∑

k=1

û(x, γ +
ikπ

t
)(−1)k

}
.

4.2. The multiscale approach for the original problem (5). Once we ob-

tain the numerical solutions ̂̃E
0

h(x, p), Ê
ε,s
h0,h

(x, p), s = 1, 2, we can apply the in-
verse Laplace transform to get the approximate solution of the original problem
(5). For any fixed time t = t∗, we simultaneously solve a set of the homogenized
Maxwell’s equations (23) with complex coefficients in a coarse mesh for different
pk, which are independent and may therefore be done in parallel. Here we choose

pk =
4.7

t∗
+ i

kπ

t∗
, k = 0, 1, 2, · · · ,M .

Thanks to (31) and (34), we get the multiscale approximate solutions for the
original problem (5) as follows:

(35) E0
M,h0,h

(x, t∗) = eγt
∗

t∗
{12

̂̃E
0

h(x, p0) +Re
M∑
k=1

̂̃E
0

h(x, pk)},

(36)

Eε,1
M,h0,h

(x, t∗) = eγt
∗

t∗
{12[

̂̃E
0

h(x, p0) + εΘ1,h0(ξ)δcÊ
0
h(x, p0)]

+ Re
M∑
k=1

[ ̂̃E
0

h(x, pk) + εΘ1,h0(ξ)δc
̂̃E
0

h(x, pk)](−1)k}

(37)

Eε,2
M,h0,h

(x, t∗) = eγt
∗

t∗
{12[

̂̃E
0

h(x, p0) + εΘ1,h0(ξ)δc
̂̃
E

0

h(x, p0) + ε2Θ2,h0(ξ)δ
2
c
̂̃
E

0

h(x, p0)]

+Re
M∑
k=1

[ ̂̃E
0

h(x, pk) + εΘ1,h0(ξ)δc
̂̃
E

0

h(x, pk) + ε2Θ2,h0(ξ)δ
2
c
̂̃
E

0

h(x, pk)](−1)k},
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where ̂̃E
0

h(x, pk), k = 0, 1, · · · ,M are the finite element solutions of problem (23)
for different pk, k = 0, 1, · · · ,M . The matrix-valued functions Θ1,h0(ξ) = (Θ1

1,h0
(ξ),

Θ2
1,h0

(ξ),Θ3
1,h0

(ξ)), Θ2,h0(ξ) = (Θ1
2,h0

(ξ),Θ2
2,h0

(ξ),Θ3
2,h0

(ξ)), where Θq
1,h0

(ξ), Θq
2,h0

(ξ),

q = 1, 2, 3 are the finite element solutions of cell problems (10) and (12). δc
̂̃
E

0

h(x, pk),

δ2c
̂̃
E

0

h(x, pk) are given in (29) and (30), respectively. h0, h are respectively the mesh
parameters of the reference cell Q and the whole domain Ω.

5. Numerical Case Studies

To validate the developed multiscale algorithm, we present numerical simula-
tions for the following case studies. We consider the following 3-D time-dependent
Maxwell’s equations in composite materials with memory effects as follows:

(38)





∂2Eε

∂t2
+
∂Eε

∂t
+Eε + curl (A(

x

ε
)curlEε)

+

∫ t

0

K(t− τ)Eε(x, τ)dτ = f(x, t), (x, t) ∈ Ω× (0, T )

Eε × n = 0, (x, t) ∈ ∂Ω× (0, T )

Eε(x, 0) = E0(x),
∂Eε

∂t
(x, 0) = E1(x),

Example 5.1 We consider problem (38) and assume that a whole domain Ω
and the reference cell Q = (0, 1)3 are shown as in Fig.1: (a) and (b). Let ε =
1
5 , T = 0.5, K(t) = e−t. Two cases are considered in our numerical simulations,
and let aij1 denote the value of aij in the inside cube of Q, and aij0 denote the
value of aij in the other part of Q.

Case 5.1: aij0 = 100δij, aij1 = δij ; f = (500t, 500t, 500t)T .

Case 5.2: aij0 = 1000δij, aij1 = δij ; f = (5000t, 5000t, 5000t)T ,
where δij is a Kronecker symbol, and aT denotes the transpose of a.

To show the numerical accuracy of the present method, we need to know the
exact solution of problem (38). However, since it is extremely difficult to find out
the exact solution of (38), we replace Eε(x, t) by the numerical solution in a fine
mesh. In a standard approach, we first apply the linear edge element method to
get the semi-discrete system for problem (38), and then employ the backward Euler
scheme to solve the system and the memory term (see [6]). We take the time step
∆t = 0.005. Without confusion, Eε(x, t) denotes the numerical solution of the
original problem (38) in a fine mesh. It should be emphasized that this step is not
necessary in real applications.

We recall that the key steps of the method presented in this paper are to apply
the Laplace transform to convert problem (38) into the stationary problem (23), to
use the multiscale numerical algorithm (31) to solve problem (23), then to employ
the numerical formulas (35)-(37) for computing the inverse Laplace transform to get
the approximate solutions of the original problem (38). It should be remembered

that E0
M,h0,h

(x, t), Eε,1
M,h0,h

(x, t), Eε,2
M,h0,h

(x, t) denote the homogenized numerical
solution, the first-order and the second-order multiscale numerical solutions given
in (35)-(37), respectively. Here we take M = 100.

We compare the approximate solutionsE0
M,h0,h

(x, t), Eε,1
M,h0,h

(x, t), Eε,2
M,h0,h

(x, t)

with the numerical solution Eε(x, t) of the original problem (38) in a fine mesh.
The numerical results are illustrated in Table 2 and Figs. 2 and 3. The numbers
of elements and the degrees of freedoms are listed in Table 1.
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Table 1. Comparison of computational effort in Example 5.1

original equations cell problem homogenized equations
number of elements 93750 750 12000

number of dof 115075 1115 29860

Table 2. Comparison of the computational errors

‖e0‖(0)

‖E0
M,h0,h

‖(0)

‖e1‖(0)

‖E
ε,1
M,h0,h

‖(0)

‖e2‖(0)

‖E
ε,2
M,h0,h

‖(0)

‖e0‖(1)

‖E0
M,h0,h

‖(1)

‖e1‖(1)

‖E
ε,1
M,h0,h

‖(1)

‖e2‖(1)

‖E
ε,2
M,h0,h

‖(1)

Case 5.1 0.95791 0.9565 0.3479 3.3374 3.1713 0.5733

Case 5.2 2.3747 2.3723 0.2618 12.5537 11.9917 0.5282

Case 5.3 2.2217 2.2216 0.4241 5.5493 5.1159 0.6535

Case 5.4 8.7191 8.7013 0.3718 23.4211 21.6238 0.6235

We introduce the notation: ‖u‖(0) = ‖u‖L2(0,T ;(L2(Ω))3), ‖u‖(1) = ‖u‖L2(0,T ;H(curl;Ω)),

e0(x, t) = Eε(x, t)−E0
M,h0,h

(x, t),

e1(x, t) = Eε(x, t)−Eε,1
M,h0,h

(x, t),

e2(x, t) = Eε(x, t)−Eε,2
M,h0,h

(x, t),

and

error1 =
‖e0‖(L2(Ω))3

‖E0
M,h0,h

‖(L2(Ω))3
, error2 =

‖e1‖(L2(Ω))3

‖Eε,1
M,h0,h

‖(L2(Ω))3
,

error3 =
‖e2‖(L2(Ω))3

‖Eε,2
M,h0,h

‖(L2(Ω))3
, error4 =

‖e0‖H(curl;Ω)

‖E0
M,h0,h

‖H(curl;Ω)
,

error5 =
‖e1‖H(curl;Ω)

‖Eε,1
M,h0,h

‖H(curl;Ω)
, error6 =

‖e2‖H(curl;Ω)

‖Eε,2
M,h0,h

‖H(curl;Ω)
.

The relative numerical errors of the homogenization method, the first-order and
the second-order asymptotic multiscale methods in the L2(0, t; (L2(Ω))3)-norm and
in the
L2(0, t;H(curl; Ω))-norm for Cases 5.1 and 5.2 are shown in Table 2.

Fig.2: (a)-(d) show the evolution of the relative errors for Cases 5.1 and 5.2
in (L2(Ω))3-norm and in H(curl; Ω)-norm with respect to time t, 0 ≤ t ≤ 0.5.
The figures also reveal that the errors do not grow with time t, and this clearly
demonstrates that our method is stable for long time simulations.

Fig.3 (a)-(h) show the numerical results for Eε(x, t), Eε,1
M,h0,h

(x, t), Eε,2
M,h0,h

(x, t)

and E0
M,h0,h

(x, t) at time T = 0.5 at the intersection x3 = 0.5 for Case 5.1, where
M = 100.

Example 5.2 We consider problem (38), where a whole domain Ω and the
reference cell Q are as shown in Fig.4: (a) and (b). There is an ellipsoid inclusion
in Q, and the equation of the ellipsoid is given by

(ξ1 − 0.5)2

0.16
+

(ξ2 − 0.5)2

0.16
+

(ξ3 − 0.5)2

0.16
= 1.

Two cases are considered in our numerical simulations. Let aij1 denote the value
of aij in the inside ellipsoid of Q and aij0 be the value of aij in the other part of
Q. The Kronecker symbol δij and aT are defined as in Example 5.1, and we set
ε = 1

3 , T = 0.8.

Case 5.3: aij0 = 100δij, aij1 = δij ; f = (500t, 500t, 500t)T .
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Figure 2. In Case 5.1: (a) the evolution of relative errors in
the (L2(Ω))3-norm; (b) the evolution of relative errors in the
H(curl; Ω)-norm. In Case 5.2: (c) the evolution of relative er-
rors in the (L2(Ω))3-norm; (d) the evolution of relative errors in
the H(curl; Ω)-norm.

Table 3. Comparison of computational effort in Example 5.2

original equations cell problem homogenized equations
number of elements 253987 3542 48000

number of dof 298963 4319 59660

Case 5.4: aij0 = 1000δij, aij1 = δij ; f = (5000t, 500t, 500t)T .

The numbers of the elements and the degrees of freedoms are listed in Table 3.
We take the time step ∆t = 0.005.

The relative numerical errors of the homogenization method, the first-order and
the second-order asymptotic multiscale methods in the L2(0, t; (L2(Ω))3)-norm and
in the
L2(0, t;H(curl; Ω))-norm for Cases 5.3 and 5.4 are listed in Table 2. The evolution
of the relative errors for Cases 5.3 and 5.4 in the L2(0, t; (L2(Ω))3)-norm and in the
L2(0, t;H(curl; Ω))-norm are illustrated in Fig.5.

In Fig.6:(a)-(h), the numerical results for solutions Eε(x, t), Eε,1
M,h0,h

(x, t),

Eε,2
M,h0,h

(x, t),E0
M,h0,h

(x, t) at time T = 0.5 at the intersection x3 = 0.5 for Case
5.3, where M = 100.
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a b

c d

e f

g h

Figure 3. In Case 5.1: (a) The first component of the solution Eε

in a fine mesh; (b)the first component of the first-order multiscale

numerical solution Eε,1
M,h0,h

; (c)the first component of the second-

order multiscale numerical solution Eε,2
M,h0,h

; (d)the first compo-

nent of the homogenized solution E0
M,h0,h

in a coarse mesh. In

Case 5.1: (e) The third component of the solution Eε in a fine
mesh; (f)the third component of the first-order multiscale numer-

ical solution Eε,1
M,h0,h

; (g)the third component of the second-order

multiscale numerical solution Eε,2
M,h0,h

; (h)the third component of

the homogenized solution E0
M,h0,h

in a coarse mesh.
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Figure 4. (a) Domain Ω; (b) the reference cell Q.
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Figure 5. In Case 5.3: (e) the evolution of relative errors in
the (L2(Ω))3-norm; (f) the evolution of relative errors in the
H(curl; Ω)-norm. In Case 5.4: (a) the evolution of relative er-
rors in the (L2(Ω))3-norm; (b) the evolution of relative errors in
the H(curl; Ω)-norm;

Remark 5.1 From the results presented in Table 2 and Figs.2-3 and 5-6, we
observe that when the difference between various materials is large, the homoge-
nization method and the first-order multiscale method fail to provide satisfactory
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g h

Figure 6. In Case 5.3: (a) The second component of the solution
Eε in a fine mesh; (b)the second component of the first-order mul-

tiscale numerical solution Eε,1
M,h0,h

; (c)the second component of the

second-order multiscale numerical solution Eε,2
M,h0,h

; (d) the second

component of the homogenized solution E0
M,h0,h

in a coarse mesh.

In Case 5.3: (e) The third component of the solution Eε in a fine
mesh; (f)the third component of the first-order multiscale numer-

ical solution Eε,1
M,h0,h

; (g)the third component of the second-order

multiscale numerical solution Eε,2
M,h0,h

; (h)the third component of

the homogenized solution E0
M,h0,h

in a coarse mesh.
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results. The second-order multiscale approach is clearly the best among the com-
putation schemes studied in this paper.

Conclusions In this paper, we discussed the multiscale method for the time-
dependent Maxwell’s equations with memory effects in composite materials. Nu-
merical simulations were carried out to validate the multiscale numerical algorithm
in the present paper. It should be emphasized that our method has two advantages:
First, we can present the multiscale approach for the time-dependent Maxwell’s
equations with memory effects. Second, we can solve a finite set of stationary
Maxwell’s equations on separate processors. In contrast, the normal step-by-step
time-marching methods for the evolution equations are not easily parallelizable.
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84: 819-850.

[4] L.Q. Cao, Y. Zhang, W. Allegretto and Y.P. Lin, Multiscale asymptotic method for the
Maxwell’s equations in composite materials, SIAM J. Numer. Anal.(2010) 47(6): 4257-4289.

[5] Y. Zhang, L.Q. Cao and Y.S. Wong, Multiscale computations for 3D time-dependent
Maxwell’s equations in composite materials,SIAM J. Sci. Comput.(2010) 32(5): 2560-2583.

[6] C.M. Chen and T.M. Shih, Finite elements methods for integro-differential equations, World
Scientific Pub. Co., Singapore, 1998.

[7] Z. Chen, L. Wang and W. Zheng, An adaptive multilevel method for time-harmonic Maxwell
equations with sigularities, SIAM J. Sci. Comput.(2007), 29: 118-138.

[8] M. Costabel, M. Dauge and S. Nicaise, Sigularities of Maxwell interface problems, M2AN

Math. Model Numer. Anal.(1999), 33: 627-649.
[9] M. Costabel, M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch.

Rational Mech. Anal.(2000), 151: 221-276.
[10] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, 1976.
[11] M. El Feddi, Z. Ren, A. Razek, A. Bossavit, Homogenization technique for maxwell equations

in periodic structures, IEEE Trans.on Magnetics(1997), 33: 1382-1385.
[12] V. Girault and P.A. Raviant, Finite Element Methods for Navier-Stokes equations, Springer-

Verlag, 1986.
[13] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral

Funtionals, Spinger-Verlag, 1994.
[14] W. McLean, I.H. Sloan and V. Thomée, Time discretization via laplace transformation of an

integro-differential equation of parabolic type, Numer. Math.(2006), 102: 497-522.
[15] W. McLean and V. Thomée, Time discretization of an evolution equation with laplace trans-

forms, IMA J. Numer. Anal.(2004), 24: 439-463.
[16] P. Monk, Finite Element Methods for Maxwell’s Equations , Clarendon press, Oxford, 2003.
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