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ASYMPTOTIC BEHAVIOR OF SOLUTION TO NONLINEAR

DAMPED p-SYSTEM WITH BOUNDARY EFFECT

CHI-KUN LIN, CHI-TIEN LIN, AND MING MEI

Abstract. For the initial-boundary value problem to the 2× 2 damped p-system with nonlinear
source,























vt − ux = 0,

ut + p(v)x = −αu− β|u|q−1u, q ≥ 2,

(v, u)|t=0 = (v0, u0)(x) → (v+, u+) as x → +∞,

u|x=0 = 0, u+ 6= 0,

(x, t) ∈ R+ × R+,

when β > 0, or β < 0 but |β| < α

|u+|q−1 , the solution (v, u)(x, t) is proved to globally exist and

converge to the solution of the corresponding porous media equations






















v̄t − ūx = 0,

p(v̄)x = −αū,

v̄|t=0 = v̄0(x) → v+ as x → +∞,

ū|x=0 = 0,

(x, t) ∈ R+ × R+,

with a specially selected initial data v̄0(x). The optimal convergence rates ‖∂k
x (v− v̄, u− ū)(t)‖L2

= O(1)(t−
2k+3

4 , t−
2k+5

4 ), k = 0, 1, are also obtained, as the initial perturbation is in L1(R+) ∩
H3(R+). If the initial perturbation is in the weighted space L1,γ(R+) ∩ H3(R+) with the best

choice of γ = 1
4
, some new and much better decay rates are further obtained: ‖∂k

x(v− v̄)(t)‖L2 =

O(1)(1 + t)−
2k+3

4
− γ

2 , k = 0, 1. The proof is based on the technical weighted energy method
combining with the Green function method. However, when β < 0 and |β| > α

|u+|q−1 , then

the solution will blow up at a finite time. Finally, numerical simulations are carried out to
confirm the theoretical results by using the central-upwind scheme. In particular, the interest
phenomenon of coexistence of the global solution v(x, t) and the blow-up solution u(x, t) is observed

and numerically demonstrated.

Key words. p-system of hyperbolic conservation laws, nonlinear damping, IBVP, porous equa-
tions, diffusion waves, asymptotic behavior, convergence rates, blow-up.

1. Introduction and Main Results

This is a series of study on the hyperbolic p-system with nonlinear source. In
the first part [22], we investigated the asymptotic behavior of the solution for
the Cauchy problem. Here, as the second part, we are going to treat the initial-
boundary value problem. Namely, we study the 2 × 2 nonlinear damped p-system
on the quadrant

(1)

{

vt − ux = 0,

ut + p(v)x = −αu− β|u|q−1u,
(x, t) ∈ R+ × R+,

with the initial-boundary conditions

(2)

{

(v, u)|t=0 = (v0, u0)(x) → (v+, u+) as x → +∞, x ∈ R+,

u|x=0 = 0.
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This model represents the compressible flow through porous media with nonlinear
dissipative external force field in the Lagrangian coordinates. Here, v = v(x, t) > 0
is the specific volume, u = u(x, t) is the velocity, the pressure p(v) is a smooth
function of v such that p(v) > 0, p′(v) < 0. As well-known in a hyperbolic system,
the typical example in the case of a polytropic gas is p(v) = v−ν with ν ≥ 1. The
external term −αu− β|u|q−1u appears in the momentum equation, where α > 0 is
a constant, β 6= 0 is another constant but can be either negative or positive. The
term −αu is called the linear damping, and −β|u|q−1u with q ≥ 2 is regarded as a
nonlinear source to the linear damping −αu. When β > 0, the term −β|u|q−1u is
nonlinear damping, while, when β < 0, the term −β|u|q−1u is regarded as nonlinear
accumulating. v+ > 0 and u+ are the state constants. For compatibility, we need
u0(0) = 0.

When β = 0, the system (1) is linear damping. The asymptotic behavior of
the solution for the Cauchy problem or the IVBP for the linear damped 2 × 2 p-
system has been extensively studied. In 1992, Hsiao and Liu [3, 4] first studied the
Cauchy problem for the linearly damped p-system, and showed that the solution
(v, u)(x, t) converges to its diffusion wave (v̄, ū)(x/

√
1 + t), a self-similar solution

to the following porous media equations
{

v̄t − ūx = 0,

p(v̄)x = −αū,
or

{

v̄t = − 1
αp(v̄)xx,

p(v̄)x = −αū,
(x, t) ∈ R× R+,

in the form of ‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−1/2, t−1/2). Since then, the con-
vergence have been improved by Nishihara [24, 25] as ‖(v − v̄, u − ū)(t)‖L∞ =
O(1)(t−3/4, t−5/4) for the initial perturbation in H3(R), and then by Nishihara,
Wang and Yang [28, 34] as ‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−1, t−3/2) for the ini-
tial perturbation in L1(R) ∩ H3(R). These convergence results need the initial
perturbation around the specified diffusion wave and the wave strength both to
be sufficiently small. Such restrictions were then partially released by Zhao [35],
where the initial perturbation in L∞-sense can be arbitrarily large but its first de-
rivative must be sufficiently small, which implies that the wave must also be weak.
Furthermore, when v+ = v−, Nishihara [26] improved the rates as ‖(v − v̄, u −
ū)(t)‖L∞ = O(1)(t−3/2 log t, t−2 log t). Very recently, when v+ 6= v−, by a heuris-
tic analysis, Mei [23] pointed out that the best asymptotic profile to the linearly
damped p-system is the particular parabolic solution to the corresponding porous
media equation with a specific initial data, rather than the self-similar solutions
(the so-called nonlinear diffusion waves), and further proved the convergence as
‖(v − v̄, u− ū)(t)‖L∞ = O(1)(t−3/2 log t, t−2 log t).

For the initial boundary problem on the quadrant in the case of linear damp-
ing (i.e., β = 0), the convergence to the diffusion waves with different boundary
conditions has been studied respectively by Marcati and Mei [19] and by Nishi-
hara and Yang [27] with the rate ‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−3/4, t−5/4) for
the initial perturbation in H3(R+), respectively, and then, further improved to
‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−1, t−3/2) by Marcati, Mei and Rubino [20] for
the initial perturbation in L1(R+) ∩ H3(R+). Motivated by [35], the conver-
gence has been improved by Jiang and Zhu [14] for the strong diffusion wave.
Recently, Saind-Houari [31] claimed that the decay rate could be improved to

‖(v − v̄, u − ū)(t)‖L∞(R+) = O(1)(t−1− γ
2 , t−

3
2−

γ
2 ), if the initial perturbation is in

L1,r(R+)∩H3(R+), where L
1,r(R+) is a weighted L1-space with the weight (1+x)γ

and 0 ≤ γ ≤ 1. However, this result is not correct in all cases, and the proof is also
with some problems. In fact, the author just applied the well-known results from
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[20, 21, 14, 12] to try to prove the improved rates for the linear part only, but did
not check the nonlinear part. It is important to note that including the nonlinear
part is the crucial step in the proof. For details, we refer to Remark 1.3 below.

For other interesting studies in convergence to diffusion waves in many different
cases with linear damping, we refer to [5, 6, 7, 8, 10, 11, 14, 16, 25, 26, 29, 33, 35, 36]
and the references therein.

When β 6= 0, the system (1) becomes either nonlinear damping for β > 0 or
nonlinear accumulating for β < 0 . The research related to this topic, so far, is
very limited. For the Cauchy problem case, under the stiff condition u+ = u− = 0,
Jiang and Zhu [37, 38] proved the solution to converge the diffusion wave in the
form of ‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−3/4, t−5/4) with the initial perturbation
around the diffusion wave in H3(R). Recently, by technically constructing a pair
of correction functions, Mei [22] released the condition u+ = u− = 0 to the general
case u+ 6= u−, and further proved the convergence to the diffusion wave with the
optimal rates ‖(v− v̄, u− ū)(t)‖L∞ = O(1)(t−1, t−3/2) when the initial perturbation
is in L1(R) ∩ H3(R). For the IBVP case, the convergence of the solution to the
diffusion wave with the rate ‖(v − v̄, u − ū)(t)‖L∞ = O(1)(t−3/4, t−5/4) has been
investigated by Jiang and Zhu in [13] under the condition u+ = 0. However, these
results are not satisfied, because the condition u+ = 0 is too special, and the
convergence rate is not sufficient. The main purpose in the present paper is to seek
the best asymptotic profile for the original solution, and to show a much better
convergence in the case u+ 6= 0.

In what follows, we organize our paper as four parts. In the rest of the current
section, we first make a heuristic analysis to see what will be the best asymptotic
profile for the original solution to the system (1) and (2), and then state our main
convergence results. Namely, when β > 0 (nonlinear damping case) or β < 0
(nonlinear accumulating case) but |β| is small, the solution of (1) and (2) converges
to its corresponding diffusion wave with optimal rates. As observed, we further
remark that, when β < 0 (nonlinear accumulating case) but |β| is large, the solution
u(x, t) will blow up in finite time, but the solution v(x, t) still globally exists. This is
the coexistence of global solution and non-global solution for the system. In section
2, we will give some well-known results which are the preparation for the proof of
main theorems. Section 3 is devoted to the proof of main theorem. We show the
convergence of the original solution to its diffusion wave with optimal decay rates in
the case either β > 0 or β < 0 with samll |β|. The adopted approach is the weighted
energy method together with Fourier transform and Green function method. In
the last section, we present some numerical simulations to confirm our theoretical
results. In order to avoid the non-necessary oscillations for the numerical solutions
to the hyperbolic p-system, we adopt the central-upwind scheme. In particular, the
interest phenomenon of coexistence of the global solution v(x, t) and the blow-up
solution u(x, t) is numerically demonstrated too.

Before precisely stating the related results and what the difficulty that we have
to face, let us first derive the asymptotic state equations for the IBVP (1). By
setting the following scalings to the variables

t = t̄/ε2, x = x̄/ε, v = v̄, u = εū

for 0 < ε ≪ 1, we then scale the damped p-system (1) to the new system (still
denote t̄ and x̄ as t and x, respectively)

{

v̄t − ūx = 0,

ε2ūt + p(v̄)x = −αū− βεq−1|ū|q−1ū.
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Neglecting the small terms ε2ūt and −βεq−1|ū|q−1ū, we derive the asymptotic state
equations for (1) and (2) as follows:

(3)



















v̄t − ūx = 0,

p(v̄)x = −αū,

v̄|t=0 = v̄0(x),

ū|x=0 = 0,

(x, t) ∈ R+ × R+,

where the initial data v̄0(x) will be carefully selected later. This can be also expected
by the Darcy’s law. From the Dirichlet boundary condition ū|x=0 = 0 and the
second equation of (3), we immediately have the Neumann boundary condition
v̄x|x=0 = 0. It can be verified from (3) that

(4) (v̄, ū)(x, t) → (v+, 0) as x → +∞.

Thus, (3) is equivalent to the (parabolic) porous media equation for v̄

(5)



















v̄t = − 1
αp(v̄)xx,

ū = − 1
αp(v̄)x,

v̄|t=0 = v̄0(x) → v+ as x → +∞,

v̄x|x=0 = 0,

(x, t) ∈ R+ × R+.

In order to release u+ = 0 to the general case u+ 6= 0, as in [22] we will ingeniously
construct a pair of the correction functions (v̂, û)(x, t) to eliminate the gap between
(v, u)(∞, t) and (v̄, ū)(∞, t). On the other hand, to find the best asymptotic profile,
the selection of the initial data v̄0(x) will also play a crucial role.

We are going to answer aforementioned questions. Firstly, we show how to set
up the proper equations for the general case u+ 6= 0. From the first equations of
(1) and (3), we have

(v − v̄)t − (u− ū)x = 0.

Integrating over R+ with respect to x and noting u(0, t) = ū(0, t) = 0 and ū(∞, t) =
0, it yields

d

dt

∫ ∞

0

(v − v̄)(x, t)dx = (u − ū)
∣

∣

∣

∞

x=0
= u(∞, t).

When u+ = 0, obviously, we can expect u(+∞, t) = 0, and then expect u − ū ∈
L2(R+). This is the reason for Jiang and Zhu [13] to assume u+ = 0. However, when
u+ 6= 0, we no long have u−ū ∈ L2(R+) because of u(+∞, t) 6= 0. In order to delete
such a gap, we need to apply the procedure initially proposed by Hsiao and Liu
[3] then later developed by Mei [22] to construct a pair of the correction functions
(v̂, û)(x, t). To do this, inspired by Mei [22], we need to investigate u(+∞, t) first.

From the second equation of (1), the solution u(+∞, t) (denoted by u+(t)) sat-
isfies the following Bernoulli’s equation

{

d
dtu

+(t) = −αu+(t)− β|u+(t)|q−1u+(t),

u+(0) = u(+∞, 0) = u0(+∞) = u+,

which can be solved explicitly as (see the Appendix in [22] for detail)

(6) u(+∞, t) = u+(t) =
u+e

−αt

(

1 + β
α |u+|q−1[1− e−α(q−1)t]

)1/(q−1)
.

Notice that, when

(7) β < 0 and |β| > α

|u+|q−1
,
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the solution u+(t) will blow up at t∗ = 1
α(q−1) ln

|β||u+|q−1

|β||u+|q−1−α . So, in order to

guarantee the global existence of u+(t), we need

(8) either β > 0, or β < 0 but |β| < α

|u+|q−1
.

Hence, the gap between u(∞, t) and ū(∞, t) = 0 is

u(∞, t)− ū(∞, t) = u+(t)− 0 = O(1)|u+|e−αt,

which causes that u − ū is not in L2(R+).To remove the gap, we construct the
correction function û(x, t) as follows.

Let û(x, t) be such that

(9)











d
dt û = −αû− β|û|q−1û, (x, t) ∈ R+ × R+,

û|x=∞ = u+(t),

û|x=0 = 0.

In the similar way of [22], û(x, t) can be constructed as

(10) û(x, t) =
m(x)e−αt

(

1− β
α [|m(x)|e−αt]q−1

)1/(q−1)
,

where m(x) is an integration constant (with respect to t) given by

(11) m(x) = C+

∫ x

0

m0(y)dy, m(0) = 0, m(+∞) = C+.

Here,

(12) C+ =
u+

(

1 + β
α |u+|q−1

)1/(q−1)
,

and m0(x) satisfies
(13)

m0(x) ≥ 0, m0(0) = m0(+∞) = 0, m0(x) ∈ C∞
0 (R+), and

∫

R+

m0(x)dx = 1.

Furthermore, let v̂(x, t) be

(14) v̂(x, t) =
−m′(x)e−αt

α
(

1− β
α [|m(x)|e−αt]q−1

)1/(q−1)
.

Thus, the correction functions (v̂, û)(x, t) satisfy

(15)



















v̂t − ûx = 0,

ût = −αû− β|û|q−1û,

(v̂, û)|x=+∞ = (0, u+(t)),

û|x=0 = 0.

Now we are going to determine the best asymptotic profile (v̄, ū)(x, t) by selecting
a suitable initial data v̄0(x). From (1)1, (3)1 and (15)1, we have

(v − v̄ − v̂)t − (u − ū− û)x = 0.

Here, (1)1 denotes the first equation in (1), and similar notation is used in this
paper. Integrating this equation over R+ with respect to x, and noting that
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u(+∞, t) = u+(t), ū(+∞, t) = 0, û(+∞, t) = u+(t) and u(0, t) = ū(0, t) = û(0, t) =
0, we obtain

d

dt

∫ ∞

0

[v(x, t) − v̄(x, t) − v̂(x, t)]dx = 0.

Furthermore, integrating the above equation with respect to t yields

(16)

∫ ∞

0

[v(x, t)− v̄(x, t)− v̂(x, t)]dx =

∫ ∞

0

[v0(x) − v̄0(x) − v̂(x, 0)]dx.

Let us select the initial data v̄0(x) such that

(17)

∫ ∞

0

[v0(x) − v̄0(x) − v̂(x, 0)]dx = 0,

for example, taking v̄0(x) = v0(x)− v̂(x, 0), then we have formally

(18)

∫ ∞

0

[v(x, t)− v̄(x, t)− v̂(x, t)]dx = 0 for t ≥ 0.

Thus, we can define some possible L2-functions as

V (x, t) : = −
∫ ∞

x

[v(y, t)− v̄(y, t)− v̂(y, t)]dy,(19)

U(x, t) : = u(x, t)− ū(x, t)− û(x, t),(20)

then, from (1)-(3) and (15), we reformulate the system as

(21)



















Vt − U = 0,

Ut + (p′(v̄)Vx)x + αU = −F1 − F2,

(V, U)|t=0 = (V0, U0)(x),

V |x=0 = 0,

(x, t) ∈ R+ × R+,

where

F1 : =
1

α
p(v̄)xt + (p(Vx + v̄ + v̂)− p(v̄)− p′(v̄)Vx)x,(22)

F2 : = β|U + ū+ û|q−1(U + ū+ û)− β|û|q−1û(23)

= β|Vt + ū+ û|q−1(Vt + ū+ û)− β|û|q−1û,

V0(x) : = −
∫ ∞

x

[v0(y)− v̄0(y)− v̂(y, 0)]dy,(24)

U0(x) : = u0(x) − ū(x, 0)− û(x, 0).(25)

Before stating our main results, we introduce the following notations.
Notations. Throughout the paper, C > 0 denotes a generic constant which may
change its value from line to line or even in the same line, while Ci > 0 (i =
0, 1, 2, · · · ) represents a specific constant. The partial derivatives of f are denoted
by fx, fxx, and so on, or sometimes by ∂k

xf , k = 0, 1, 2, · · · . Lp(R+) (1 ≤ p ≤ ∞)
is the usual Lebesque space with the norm

‖f‖Lp =
(

∫

R+

|f(x)|pdx
)1/p

for 1 ≤ p < ∞, and ‖f‖L∞ = sup
x∈R+

|f(x)|,

where the integral region R+ will be omitted without any confusion. Lp,γ(R+) with
γ > 0 and 1 ≤ p ≤ ∞ is the weighted Lp(R+) space with a weight (1 + x)γ . Its
norm is denoted as

‖f‖Lp,γ(R+) =
(

∫

R+

(1 + x)γ |f(x)|pdx
)1/p

, 1 ≤ p ≤ ∞.
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Hk(R+) (k ≥ 0) is the usual Sobolev space with the norm

‖f‖Hk =
(

k
∑

i=0

∫

R+

|∂i
xf |2dx

)1/2

.

For the sake of simplicity, we also denote ‖(f, g, h)‖2L2 = ‖f‖2L2+‖g‖2L2 +‖h‖2L2 and
‖(f, g, h)‖2Hk = ‖f‖2Hk + ‖g‖2Hk + ‖h‖2Hk . Let T > 0 and let B be a Banach space.

We denote by C0([0, T ];B) the space of B-valued continuous functions on [0, T ],
and L2([0, T ];B) as the space ofB-valued L2-functions on [0, T ]. The corresponding
spaces of B-valued functions on [0,∞) are defined similarly.

Now we state the convergence results.

Theorem 1.1. Let β and u+ satisfy (8), q ≥ 2, and v̄0(x) be chosen such that
(17) holds, and v̄0(x) − v+ ∈ L1(R+) ∩Hm(R+) with m ≥ 3.

(1) If (V0, U0) ∈ H3(R+)×H2(R+), when

max
x∈R+

|v̄0 − v+|+ ‖V0‖H3 + ‖U0‖H2 + |u+| ≪ 1,

then the global solution (V, U)(x, t) of (21) uniquely exists and satisfies

V (x, t) ∈
2
⋂

k=0

Ck(0,∞;H3−k(R)), U(x, t) ∈
1
⋂

k=0

Ck(0,∞;H2−k(R)),

and

‖∂k
xV (t)‖L2 = O(1)(1 + t)−k/2, k = 0, 1, 2, 3,(26)

‖∂k
xU(t)‖L2 = O(1)(1 + t)−(k+2)/2, k = 0, 1,(27)

‖∂k
xV (t)‖L∞ = O(1)(1 + t)−(2k+1)/4, k = 0, 1, 2,(28)

‖U(t)‖L∞ = O(1)(1 + t)−5/4.(29)

(2) If (V0, U0) ∈ (L1(R+) ∩H2(R+))× (L1(R+) ∩H1(R+)), then

‖∂k
xV (t)‖L2 = O(1)(1 + t)−(2k+1)/4, k = 0, 1, 2,(30)

‖U(t)‖L2 = O(1)(1 + t)−5/4,(31)

‖∂k
xV (t)‖L∞ = O(1)(1 + t)−(k+1)/2, k = 0, 1,(32)

‖U(t)‖L∞ = O(1)(1 + t)−3/2.(33)

(3) If (V0, U0) ∈ (L1,γ(R+) ∩H2(R+))× (L1,γ(R+) ∩H1(R+)) with 0 ≤ γ ≤ 1
4

(the best choice for γ is γ = 1
4), then

‖∂k
xV (t)‖L2 = O(1)(1 + t)−

2k+1
4 −γ

2 , k = 0, 1, 2,(34)

‖U(t)‖L2 = O(1)(1 + t)−
5
4−

γ
2 ,(35)

‖∂k
xV (t)‖L∞ = O(1)(1 + t)−

k+1
2 −γ

2 , k = 0, 1,(36)

‖U(t)‖L∞ = O(1)(1 + t)−
3
2 .(37)

Furthermore, notice that Vx = v − v̄ − v̂, U = u− ū− û, and use (10) and (14),
i.e., ‖v̂(t)‖L∞ = O(1)e−αt and ‖û(t)‖L∞ = O(1)e−αt, we immediately obtain the
following optimal convergence to the diffusion wave in L∞-space.

Corollary 1.2 (Convergence to diffusion wave). Under the conditions in Theorem
1.1, and (V0, U0)(x) ∈ L1(R+), it holds

‖(v − v̄)(t)‖L∞ = O(1)(1 + t)−1,(38)

‖(u− ū)(t)‖L∞ = O(1)(1 + t)−3/2.(39)
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Furthermore, (V0, U0)(x) ∈ L1,γ(R+) with 0 ≤ γ ≤ 1
4 , it holds

‖(v − v̄)(t)‖L∞ = O(1)(1 + t)−1− γ
2 = O(1)(1 + t)−

9
8 ,(40)

‖(u− ū)(t)‖L∞ = O(1)(1 + t)−
3
2 .(41)

Remark 1.3.

(i) For the Cauchy problem case studied in [22], the condition (V0, U0) ∈ L1

is not explicitly stated by Mei [22]. However, in order to obtain the better
decay rates (30)-(33) in Theorem 1.1 (see (1.36) and (1.37) on pp. 1282,
[22]), the condition must be imposed.

(ii) In [22], without any difficulty, the condition for β < 0 with |β| < α
2|u±|q−1

can be released to |β| < α
|u±|q−1 .

(iii) From Theorem 1.1 and Corollary 1.2, we achieve the convergence rates as

‖∂k
xV (t)‖L2 = O(1)(1 + t)−

2k+1
4 −γ

2 , k = 0, 1, 2,

with the best choice of γ = 1
4 (see (87) below) for q ≥ 2, which are

much better than the existing rates. But, unfortunately we cannot improve

‖U(t)‖L∞ = ‖Vt(t)‖L∞ = O(1)t−
3
2 to O(1)t−

3
2−

γ
2 due to the slow decay of

v̄xt in the nonlinear term. These results are also true for the case β = 0,
namely, the system (1) becomes the linear damping. We also note that,
when β = 0, Said-Houari [31] claimed better decay rates for γ ∈ [0, 1],

‖∂k
xV (t)‖L2 = O(1)(1 + t)−

2k+1
4 −γ

2 , k = 0, 1, 2,

‖∂k
xU(t)‖L2 = O(1)(1 + t)−

2k+3
4 −γ

2 , k = 0, 1,

especially, the case of 1
4 < γ ≤ 1. However, this is not true, and the proof

is incorrect. The author never checked how the nonlinear term decays, in
particular, the term involving v̄xt in the nonlinear term does not lead to
any improved rates in L1,γ(R+), because v̄(x, t) is the solution to the cor-
responding porous media equation with the Neumann boundary condition,
and the improved rate in the weighted L1,γ(R+) obtained by Ikehata [12]
for the Dirichlet boundary case is failed for the Neumann boundary case.
In another word, the decay rates of the nonlinear term does not decay as
fast as we always expect. In fact, we have only ‖v̄xt(t)‖L1 = O(1)t−

3
2 and

‖v̄xt(t)‖L1,γ = O(1)t−
3
2+

γ
2 , which are impossible to ensure the perturbed so-

lution to decay faster as ‖(u− ū)(t)‖L∞ = O(1)t−
3
2−

γ
2 . For detail, we refer

to Subsection 3.2 below.

Remark 1.4. When the parameters β and u+ satisfy (7), namely, β < 0 and
|β| > α

|u+|q−1 , from (6), u(+∞, t) will blow up at the finite time t∗. Thus, the

solution u(x, t) of (1) and (2) does not globally exist, and

(42) lim
t→T∗−

‖u(t)‖L∞ = +∞, for 0 < T ∗ ≤ t∗.

As showed in Section 4, the interesting numerical results presented in Figure 5
indicate that u(x, t) blows up at the finite time T ∗, but v(x, t) is bounded and never
blows up.

For the Cauchy problem case, we have the following example with a specific initial
datum (which is suggested by Huang [9]) to show that u(x, t) will blow up, but not
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v(x, t):










vt − ux = 0,

ut + p(v)x = −αu− β|u|q−1u,

(v, u)|t=0 = (v+, u+),

(x, t) ∈ R× R+.

Obviously, it possesses the unique solution






v(x, t) = v+,

u(x, t) = u+e
−αt

(

1 + β
α |u+|q−1[1− e−α(q−1)t]

)−1/(q−1)

.

It is clear that v(x, t) = v+ is never blowing-up, but u(x, t) will blow up at t∗ =
1

α(q−1) ln
|β||u+|q−1

|β||u+|q−1−α for β < 0 and |β| > α
|u+|q−1 .

For the IBVP (1) and (2), it seems hard to construct an example to show the
blowing-up for u(x, t) and no blowing-up for v(x, t), but from the following non-
rigorous analysis, we may understand this phenomenon.

For x ≫ 1, using the Taylor’s expansion at t∗, we have

u(x, t) ≈ u+(t) = u+e
−αt

(

1 +
β

α
|u+|q−1[1− e−α(q−1)t]

)− 1
q−1

= u+e
−αt

(

1 +
β

α
|u+|q−1[1− e−α(q−1)(t−t∗)e−α(q−1)t∗ ]

)− 1
q−1

≈ u+e
−αt∗

(

1 +
β

α
|u+|q−1

[

1− [1 − α(q − 1)(t− t∗)]

×β|u+|q−1 + α

β|u+|q−1

])− 1
q−1

= u+e
−αt∗ [(q − 1)(t− t∗)(β|u+|q−1 + α)]−

1
q−1 .

So, it holds

|u(x, t)| ≈ O(1)|t − t∗|−
1

q−1 ,

which will blow up at t∗. Let us formally expect also

|ux(x, t)| ≈ O(1)|t− t∗|−
1

q−1 ,

then from the first equation vt − ux = 0 of (1), we have

|v(x, t)| =
∣

∣

∣
v0(x) +

∫ t

0

ux(x, s)ds
∣

∣

∣
= O(1)

(

1 + |t− t∗|1−
1

q−1

)

,

which will not blow up for 1− 1
q−1 ≥ 0, namely, q ≥ 2.

However, as mentioned before, there is no rigorous proof for this interest case
(the coexistence of the global solution v and the non-global (blow-up) solution u),
so this case still remains open.

2. Preliminaries

In this section, we state some well-known results which will be usful for the proof
of the convergence in Section 3.

First of all, we give the existence and the decay rates for the solution to the
asymptotic profile equations (the IBVP (3)), which have been given in [20], see also
[13].
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Lemma 2.1 ([20, 13]). Let v̄0 − v+ ∈ L1(R+) ∩Hm(R+) for some positive integer
m. Then the solution (v̄, ū)(x, t) of the IBVP (3) globally and uniquely exists, and
satisfies

‖∂k
x∂

j
t (v̄ − v+)(t)‖L2 = O(1)δ1(1 + t)−

4j+2k+1
4 , 0 ≤ 2k + j ≤ m,(43)

‖∂k
x∂

j
t (v̄ − v+)(t)‖L∞ = O(1)δ1(1 + t)−

2j+k+1
2 , 0 ≤ 2k + j ≤ m,(44)

‖(v̄ − v+)xt(t)‖L1 = O(1)δ1(1 + t)−
3
2 ,(45)

where δ1 := maxx∈R+ |v̄0(x) − v+|.
Notice that the IBVP (5) is with the Neumann boundary. Different from the

Dirichlet boundary case, even if the initial perturbation v̄0 − v+ ∈ L1,γ(R+) (0 ≤
γ ≤ 1), the solution v̄(x, t) does not converge to v+ faster than in the case of
v̄0− v+ ∈ L1(R+). In fact, as showed in [17], we can get a slower decay rate for the
solution in the weighted L1,γ(R+) as follows.

Lemma 2.2 ([17]). For γ ∈ [0, 1], it holds

‖∂k
x∂

j
t (v̄ − v+)(t)‖L2,γ = O(1)δ1(1 + t)−

4j+2k+1
4 + γ

4 , 0 ≤ 2k + j ≤ m,(46)

‖∂k
x∂

j
t (v̄ − v+)(t)‖L∞,γ = O(1)δ1(1 + t)−

2j+k+1
2 + γ

2 , 0 ≤ 2k + j ≤ m,(47)

‖(v̄ − v+)xt(t)‖L1,γ = O(1)δ1(1 + t)−
3
2+

γ
2 .(48)

From (14) and m′(x) = m0(x) ∈ C∞
0 (R+), we immediately obtain the following

exponential decay for v̂(x, t).

Lemma 2.3. For γ ∈ [0, 1], it holds that

‖∂k
x v̂(t)‖L2,γ = O(1)|u+|e−αt, k = 0, 1, 2, · · · ,(49)

‖∂k
x v̂(t)‖L∞,γ = O(1)|u+|e−αt, k = 0, 1, 2, · · · ,(50)

‖∂k
x v̂(t)‖L1,γ = O(1)|u+|e−αt, k = 0, 1, 2, · · · .(51)

Furthermore, for the linear damped wave equation on the first quadrant with
µ > 0

(52)











φtt + αφt − µφxx = g(x, t), (x, t) ∈ R+ × R+,

(φ, φt)|t=0 = (φ0, φ1)(x), x ∈ R+,

φ|x=0 = 0, t ∈ R+,

as showed in [20], its solution can be expressed as

φ(x, t) =

∫ ∞

0

[K0(x − y, t)−K0(x+ y, t)]φ0(y)dy

+

∫ ∞

0

[K1(x− y, t)−K1(x+ y, t)]φ1(y)dy

+

∫ t

0

∫ ∞

0

[K1(x− y, t− s)−K1(x+ y, t− s)]g(y, s)dyds,(53)

where Ki(x, t) (i = 0, 1) are the fundamental solutions of the homogenous equation

∂ttKi + α∂tKi − µ∂xxKi = 0, x ∈ R, t ∈ R+,

with
{

K0(x, 0) = δ(x)
∂
∂tK0(x, 0) = 0

and

{

K1(x, 0) = 0
∂
∂tK1(x, 0) = δ(x),
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where δ(x) is the Dirac-Delta function. The Fourier transforms ofKi(x, t) (i = 0, 1),

denoted by K̂i(ξ, t) (i = 0, 1), are given explicitly by

K̂1(ξ, t) =























2e−αt/2√
α2−4µξ2

sinh
(

√
α2−4µξ2

2 t
)

, |ξ| < α
2
√
µ

te−αt/2, |ξ| = α
2
√
µ

2e−αt/2√
4µξ2−α2

sin
(

√
4µξ2−α2

2 t
)

, |ξ| > α
2
√
µ ,

and
K̂0(ξ, t) =

α

2
K̂1(ξ, t) +R2(ξ, t),

where

R2(ξ, t) =



















e−αt/2 cosh
(

√
α2−4µξ2

2 t
)

, |ξ| < α
2
√
µ

e−αt/2, |ξ| = α
2
√
µ

e−αt/2 cos
(

√
4µξ2−α2

2 t
)

, |ξ| > α
2
√
µ .

The decay rates are also obtained in [21] for the Cauchy problem, and extended in
[20] for the IBVP.

Lemma 2.4 ([21, 20]). If f ∈ L1(R+) ∩Hj+k(R+), then
∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K1(x− y, t)−K1(x+ y, t)]f(y)dy
∥

∥

∥

L2
(54)

≤ C(1 + t)−j− 2k+1
4

[

‖f‖L1 + ‖f‖Hj+k−1

]

,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K1(x− y, t)−K1(x+ y, t)]f(y)dy
∥

∥

∥

L∞
(55)

≤ C(1 + t)−j− k+1
2

[

‖f‖L1 + ‖f‖Hj+k

]

.

If f ∈ L1(R+) ∩Hj+k+1(R+), then
∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]f(y)dy
∥

∥

∥

L2
(56)

≤ C(1 + t)−j− 2k+1
4

[

‖f‖L1 + ‖f‖Hj+k

]

,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]f(y)dy
∥

∥

∥

L∞
(57)

≤ C(1 + t)−j− k+1
2

[

‖f‖L1 + ‖f‖Hj+k+1

]

.

Furthermore, as shown in [12, 31], we have the following faster decays if the
initial data belongs to the weighted space L1,γ(R+).

Lemma 2.5 ([12, 31]). Let γ ∈ [0, 1]. If f ∈ L1,γ(R+) ∩Hj+k(R+), then
∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K1(x− y, t)−K1(x + y, t)]f(y)dy
∥

∥

∥

L2
(58)

≤ C(1 + t)−j− 2k+1
4 − γ

2

[

‖f‖L1,γ + ‖f‖Hj+k−1

]

,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K1(x− y, t)−K1(x + y, t)]f(y)dy
∥

∥

∥

L∞
(59)

≤ C(1 + t)−j− k+1
2 − γ

2

[

‖f‖L1,γ + ‖f‖Hj+k

]

.
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If f ∈ L1,γ(R+) ∩Hj+k+1(R+), then

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]f(y)dy
∥

∥

∥

L2
(60)

≤ C(1 + t)−j− 2k+1
4 − γ

2

[

‖f‖L1,γ + ‖f‖Hj+k

]

,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]f(y)dy
∥

∥

∥

L∞
(61)

≤ C(1 + t)−j− k+1
2 − γ

2

[

‖f‖L1,γ + ‖f‖Hj+k+1

]

.

Finally, we give a well-known and useful auxiliary lemma as follows.

Lemma 2.6 ([32]). Let a > 0, b > 0. Then

(62)

∫ t

0

(1 + t− s)−a(1 + s)−bds ≤











C(1 + t)−min(a,b), max(a, b) > 1,

C(1 + t)−min(a,b) ln(2 + t), max(a, b) = 1,

C(1 + t)1−a−b, max(a, b) < 1.

3. Proof of Theorem 1.1

As shown in [22] for the Cauchy problem case, we can similarly prove the conver-
gence rates (26)-(29) by the elementary energy method. Here, we omit the detail
for the proof. The proof (30)-(37) will be our main contribution in this section.
Using the energy method with Fourier transform together (c.f. [20]), We derive
the convergence rates (30)-(33) and (34)-(37) for the initial perturbation in L1 and
L1,γ , respectively.

3.1. Proof of (30)-(33), the second part of Theorem 1.1. First of all, sub-
stituting U = Vt from the first equation of (21) to the second equation of (21), we
then reduce (21) to the following damped wave equation in the quadrant:

(63)











Vtt + αVt − µVxx = G, (x, t) ∈ R+ × R+,

(V, Vt)(x, 0) = (V0, U0)(x), x ∈ R+,

V (0, t) = 0,

where µ = −p′(v+) > 0 and

(64) G(x, t) := −F1 − F2 − {[p′(v̄)− p′(v+)]Vx}x.
From (52) and (53), the solution of (63) can be expressed in the integral form as
follows

V (x, t) =

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]V0(y)dy(65)

+

∫ ∞

0

[K1(x− y, t)−K1(x + y, t)]U0(y)dy

+

∫ t

0

∫ ∞

0

[K1(x− y, t− s)−K1(x+ y, t− s)]G(y, s)dyds.

Let T > 0, we define the solution space for (65) as

(66) X(0, T ) := {V (x, t)|V ∈ C(0, T ;H2(R+), Vt ∈ C(0, T ;L∞(R+)}
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and the measure N(T ) by

N(T ) = sup
0≤t≤T

{

2
∑

k=0

(1 + t)
2k+1

4 ‖∂k
xV (t)‖L2 +

1
∑

k=0

(1 + t)
k+1
2 ‖∂k

xV (t)‖L∞(67)

+(1 + t)
5
4 ‖Vt(t)‖L2 + (1 + t)

3
2 ‖Vt(t)‖L∞

}

.

The local existence of the solution to the integral equation (65) can be obtained
by the standard iteration technique. We omit the details. The crucial part for
the proof of the global existence is to establish a priori estimate (see Lemma 3.3
below). Based on the local existence and a priori estimate, by using the continuous-
extension technique, we can prove the global existence of the solution V (x, t) with
the sharp decay rates, which implies Theorem 1.1.

Let

(68) η := δ1 + |u+|+ ‖V0‖L1 + ‖V0‖H3 + ‖U0‖L1 + ‖U0‖H2 .

By applying Lemma 2.4, we immediately have the following estimates.

Lemma 3.1. Let V0 ∈ L1(R+)×H2(R+) and U0 ∈ L1(R+)×H1(R+). Then
∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K0(x− y, t)−K0(x+ y, t)
]

V0(y)dy
∥

∥

∥

L2
(69)

≤ C(1 + t)−j− 2k+1
4

[

‖V0‖L1 + ‖V0‖H2

]

, 0 ≤ 2j + k ≤ 2,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t)−K1(x+ y, t)
]

U0(y)dy
∥

∥

∥

L2
(70)

≤ C(1 + t)−j− 2k+1
4

[

‖U0‖L1 + ‖U0‖H1

]

, 0 ≤ 2j + k ≤ 2,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K0(x− y, t)−K0(x+ y, t)
]

V0(y)dy
∥

∥

∥

L∞
(71)

≤ C(1 + t)−j− k+1
2

[

‖V0‖L1 + ‖V0‖H2

]

, 0 ≤ j + k ≤ 1,

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t)−K1(x+ y, t)
]

U0(y)dy
∥

∥

∥

L∞
(72)

≤ C(1 + t)−j− k+1
2

[

‖U0‖L1 + ‖U0‖H1

]

, 0 ≤ j + k ≤ 1.

The main goal in this subsection is to establish the following estimates.

Lemma 3.2. Let V (x, t) ∈ X(0, T ). Then
∫ t

0

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t− s)−K1(x + y, t− s)
]

G(y, s)dy
∥

∥

∥

L2
ds(73)

≤ Cη[1 +N(T )](1 + t)−j− 2k+1
4 , 0 ≤ 2j + k ≤ 2,

∫ t

0

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t− s)−K1(x + y, t− s)
]

G(y, s)dy
∥

∥

∥

L∞
ds(74)

≤ Cη[1 +N(T )](1 + t)−j− k+1
2 , 0 ≤ j + k ≤ 1.

Proof. From (22), (23), (64) and by the Taylor’s expansion, we obtain

|G| ∼ O(1)
(

|v̄xt|+ |{(Vx + v̂)2}x|+ |v̄xv̂|+ |v̂x|+ |û|(75)

+|Vt|q + |ū|q + |û|q−1|Vt|+ |û|q−1|ū|+ |{(v̄ − v+)Vx}x|
)
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and

|∂k
xG| ∼ O(1)

(

|∂k
x v̄xt|+ |∂k

x{(Vx + v̂)2}x|+ |∂k
x(v̄xv̂)|+ |∂k

x v̂x|+ |∂k
x û|(76)

+|∂k
x(V

q
t )|+ |∂k

x(ū
q)|+ |∂k

x(û
q−1Vt)|+ |∂k

x(û
q−1ū)|

+|∂k
x{(v̄ − v+)Vx}x|

)

.

Noting the decay rates (43)-(45) for v̄ − v+, the exponential decay rates (49)-(51)
for v̂(x, t), and V (x, t) ∈ X(0, T ), namely,

2
∑

2j+k=0

(1 + t)j+
2k+1

4 ‖∂j
t ∂

k
xV (t)‖L2 +

1
∑

j+k=0

(1 + t)j+
k+1
2 ‖∂j

t ∂
k
xV (t)‖L∞ ≤ N(T ),

then by using the Hölder inequality, we have

‖G(t)‖L1 ≤ C
{

‖v̄xt(t)‖L1(77)

+
(

‖Vx(t)‖L2 + ‖v̂(t)‖L2

)(

‖Vxx(t)‖L2 + ‖v̂x(t)‖L2

)

+‖v̄x(t)‖L2‖v̂(t)‖L2 + ‖v̂x(t)‖L1

+‖Vt(t)‖q−2
L∞ ‖Vt(t)‖2L2 + ‖ū(t)‖q−2

L∞ ‖ū(t)‖2L2

+‖û(t)‖q−1
L∞ ‖Vt(t)‖L1 + ‖û(t)‖q−1

L∞ ‖ū(t)‖L1

+‖(v̄ − v+)(t)‖L2‖Vxx(t)‖L2

+‖(v̄ − v+)x(t)‖L2‖Vx(t)‖L2

}

≤ Cη[1 +N(T )]
{

(1 + t)−
3
2

+[(1 + t)−
3
4 + e−αt][(1 + t)−

5
4 + e−αt]

+(1 + t)−
3
4 e−αt + e−αt + (1 + t)−

3(q−2)
2 (1 + t)−

5
2

+(1 + t)−(q−2)(1 + t)−
3
2 + e−αt(q−1) + e−αt(q−1)

+(1 + t)−
1
4 (1 + t)−

5
4 + (1 + t)−

3
4 (1 + t)−

3
4

}

≤ Cη[1 +N(T )](1 + t)−
3
2 .

Similarly, by a straightforward but tedious calculation, it gives

(78) ‖G(t)‖H1 ≤ Cη[1 +N(T )](1 + t)−
3
2 .

Thus, by using Lemma 2.4 and Lemma 2.6 and noting 3/2 > (2k + 1)/4 for k =
0, 1, 2, we have

∫ t

0

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t− s)−K1(x + y, t− s)
]

G(y, s)dy
∥

∥

∥

L2
ds(79)

≤ C

∫ t

0

(1 + t− s)−j− 2k+1
4

[

‖G(s)‖L1 + ‖G(s)‖H1

]

ds

≤ Cη[1 +N(T )]

∫ t

0

(1 + t− s)−j− 2k+1
4

[

(1 + s)−
3
2 + (1 + s)−

3
2

]

ds

≤ Cη[1 +N(T )](1 + t)−j− 2k+1
4 , 0 ≤ 2j + k ≤ 2.

This completes the proof of (73).
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Similarly, we prove (74) as follows

∫ t

0

∥

∥

∥
∂j
t ∂

k
x

∫ ∞

0

[

K1(x− y, t− s)−K1(x + y, t− s)
]

G(y, s)dy
∥

∥

∥

L∞
ds(80)

≤ C

∫ t

0

(1 + t− s)−j− k+1
2

[

‖G(s)‖L1 + ‖G(s)‖H1

]

ds

≤ Cη[1 +N(T )]

∫ t

0

(1 + t− s)−j− k+1
2

[

(1 + s)−
3
2 + (1 + s)−

3
2

]

ds

≤ Cη[1 +N(T )](1 + t)−j− k+1
2 , 0 ≤ j + k ≤ 1.

The proof is completed. �

Applying Lemmas 3.1 and 3.2 to Eq.(65), we immediately establish a priori
estimate for V (x, t).

Lemma 3.3 (A priori estimates). It holds that

‖∂j
t ∂

k
xV (t)‖L2 ≤ C(1 + t)−j− 2k+1

4 , 0 ≤ 2j + k ≤ 2,(81)

‖∂j
t ∂

k
xV (t)‖L∞ ≤ C(1 + t)−j− k+1

2 , 0 ≤ j + k ≤ 1,(82)

provided η +N(T ) ≪ 1.

3.2. Proof of (34)-(37), the third part of Theorem 1.1. Let

Nγ(T ) = sup
0≤t≤T

{

2
∑

2j+k=0

(1+t)j+
2k+1

4 + γ
2 ‖∂j

t ∂
k
xV (t)‖L2+

1
∑

k=0

(1+t)
k+1
2 + γ

2 ‖∂k
xV (t)‖L∞

}

.

As showed by Ma-Mei in [17] for the linear damping case (see Theorem 2.2, (2.20)
in [17]), we can similarly prove that, for γ ∈ [0, 12 ],

(83) ‖∂j
t ∂

k
xV (t)‖L2,γ ≤ C(1 + t)−(j+k)/2, 0 ≤ j + k ≤ 2.

The proof is standard but long, and we omit the detail. Now, we can further prove

(84) ‖∂j
t ∂

k
xV (t)‖L2,γ ≤ C(1 + t)−j− 2k+1

4 +γ
4 , 0 ≤ j + k ≤ 2.

if ‖∂j
t ∂

k
xV (t)‖L2 ≤ C(1 + t)−j− 2k+1

4 .
Now, let V (x, t) ∈ X(0, T ) with the normNγ(t). From (75) and using integration

by parts and the Hölder inequality, and applying Lemmas 2.2 and 2.3, we have, for
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γ ∈ [0, 1),

‖G(t)‖L1,γ ≤ C
(

‖v̄xt(t)‖L1,γ(85)

+(‖Vx(t)‖L2,
γ
2
+ ‖v̂(t)‖

L2,
γ
2
)(‖Vxx(t)‖L2,

γ
2
+ ‖v̂x(t)‖L2,

γ
2
)

+‖v̄x(t)‖L∞‖v̂(t)‖L1,γ + ‖v̂x(t)‖L1,γ

+‖Vt(t)‖q−2
L∞ ‖Vt(t)‖2L2,γ + ‖ū(t)‖q−2

L∞ ‖ū(t)‖2L2,γ

+‖û(t)‖q−1
L∞ ‖Vt(t)‖L1,γ + ‖û(t)‖q−1

L∞ ‖ū(t)‖L1,γ

+‖(v̄ − v+)(t)‖L2,
γ
2
‖Vxx(t)‖L2,

γ
2

+‖(v̄ − v+)(t)‖L2,
γ
2
‖Vx(t)‖L2,

γ
2

)

≤ Cη[1 +Nγ(t)]
[

(1 + t)−
3
2+

γ
2

+[(1 + t)−
3
4+

γ
8 + e−αt][(1 + t)−

5
4+

γ
8 + e−αt]

+(1 + t)−
3
4 e−αt + e−αt

+(1 + t)−
3
2 (q−2)(1 + t)−

5
2+

γ
2 + (1 + t)−(q−2)(1 + t)−

3
2+

γ
2

+e−α(q−1)t + e−α(q−1)t(1 + t)−
1
2+

γ
2

+(1 + t)−
1
4+

γ
8 (1 + t)−

5
4+

γ
8 + (1 + t)−

3
4+

γ
8 (1 + t)−

3
4+

γ
8

]

≤ Cη[1 +Nγ(T )](1 + t)−
3
2+

γ
2 .

Thus, from (65) and by Lemma 2.5 and (85), we have

‖∂k
xV (t)‖L2(86)

≤
∥

∥

∥
∂k
x

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]V0(y)dy
∥

∥

∥

L2

+
∥

∥

∥
∂k
x

∫ ∞

0

[K1(x− y, t)−K1(x+ y, t)]U0(y)dy
∥

∥

∥

L2

+

∫ t

0

∥

∥

∥
∂k
x

∫ ∞

0

[K1(x− y, t− s)−K1(x+ y, t− s)]G(y, s)dy
∥

∥

∥

L2
ds

≤ C(1 + t)−
2k+1

4 − γ
2 (‖V0‖L1,γ + ‖V0‖H2)

+C(1 + t)−
2k+1

4 − γ
2 (‖U0‖L1,γ + ‖U0‖H1)

+C

∫ t

0

(1 + t− s)−
2k+1

4 − γ
2 [‖G(s)‖L1,γ + ‖G(s)‖H1 ]ds

≤ C(1 + t)−
2k+1

4 − γ
2 (‖V0‖L1,γ + ‖V0‖H2)

+C(1 + t)−
2k+1

4 − γ
2 (‖U0‖L1,γ + ‖U0‖H1)

+Cη[1 +Nγ(T )]

∫ t

0

(1 + t− s)−
2k+1

4 − γ
2 [(1 + s)−

3
2+

γ
2 + (1 + s)−

3
2 ]ds

k = 0, 1, 2.

Let us balance the orders in the last term of (86):

−2k + 1

4
− γ

2
= −3

2
+

γ

2
, for the largest case k = 2,

it gives

(87) γ =
1

4
.
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Applying Lemma 2.6 to (86), we obtain

(88) ‖∂k
xV (t)‖L2 ≤ Cδ̄(1 + t)−

2k+1
4 − γ

2 , k = 0, 1, 2, γ =
1

4
,

where

δ̄ := ‖V0‖L1,γ + ‖U0‖L1,γ + ‖V0‖H2 + ‖U0‖H1 + η[1 +Nγ(T )].

Similarly, we have

‖Vt(t)‖L2(89)

≤
∥

∥

∥
∂t

∫ ∞

0

[K0(x− y, t)−K0(x+ y, t)]V0(y)dy
∥

∥

∥

L2

+
∥

∥

∥
∂t

∫ ∞

0

[K1(x− y, t)−K1(x+ y, t)]U0(y)dy
∥

∥

∥

L2

+

∫ t

0

∥

∥

∥
∂t

∫ ∞

0

[K1(x− y, t− s)−K1(x + y, t− s)]G(y, s)dy
∥

∥

∥

L2
ds

≤ C(1 + t)−
5
4−

γ
2 (‖V0‖L1,γ + ‖V0‖H2)

+C(1 + t)−
5
4−

γ
2 (‖U0‖L1,γ + ‖U0‖H1)

+C

∫ t

0

(1 + t− s)−
5
4−

γ
2 [‖G(s)‖L1,γ + ‖G(s)‖H1 ]ds

≤ C(1 + t)−
5
4−

γ
2 (‖V0‖L1,γ + ‖V0‖H2)

+C(1 + t)−
5
4−

γ
2 (‖U0‖L1,γ + ‖U0‖H1)

+Cη[1 +Nγ(T )]

∫ t

0

(1 + t− s)−
5
4−

γ
2 [(1 + s)−

3
2+γ + (1 + s)−

3
2 ]ds

≤ C(1 + t)−
5
4−

γ
2 (‖V0‖L1,γ + ‖V0‖H2)

+C(1 + t)−
5
4−

γ
2 (‖U0‖L1,γ + ‖U0‖H1)

+Cη[1 +Nγ(T )](1 + t)−
5
4−

γ
2 + C[|v+ − v−|+Nγ(T )](1 + t)−

3
2

≤ Cδ̄(1 + t)−
5
4−

γ
2 .

However, for the decay rate of ‖Vt(t)‖L∞ , even if (V0, U0) ∈ L1,γ , we cannot expect

it to be O(1)(1+ t)−
3
2−

γ
2 . In fact, by a similar calculation as before, the decay rate

will be ‖Vt(t)‖L∞ = O(1)(1+ t)−
3
2+γ , which is even less than the rate ‖Vt(t)‖L∞ =

O(1)(1 + t)−
3
2 we obtained in (33). The reason for such a deficiency is from the

slower decay term ‖G(t)‖L1,γ = O(1)(1+ t)−
3
2+γ = O(1)(1+ t)−

4
3 . So, in this case,

we take

(90) ‖Vt(t)‖L∞ = O(1)(1 + t)−
3
2

as obtained in (33).

4. Numerical Computations

In this section, we carry out numerical simulations, which will confirm the the-
oretical results. First of all, we adopt the semi-discrete central upwind scheme [15]
numerically to solve the system (1) and (2) in subsection 4.1, then we demonstrate
numerically that the solution of the p-system converges to the corresponding dif-
fusion wave, when the parameter β is positive, or negative and small in subsection
4.2; otherwise, the solution of p-system blows up to infinite in finite time as shown
in subsection 4.3.
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4.1. Semi-discrete central upwind scheme. The p-system (1) and (2) is a
nonlinear hyperbolic system with source term and the porous media equation (3)
and (5) is a parabolic equation. The computational results reported in this section
are based on the semi-discrete central upwind scheme together with a second order
ODE solver [15] for the p-system, and explicit finite difference methods for the
porous media equation. The advantage of this numerical scheme is the simplicity
and no approximate Riemann solver is needed. Here, we give a brief description on
the construction of the central-upwind scheme as follows.

We design the semi-discrete central upwind scheme for the p-system (1) and (2)
which is a nonlinear hyperbolic system with source term. The system can be viewed
as a system of hyperbolic conservation laws with source term:

(91) Ut = f(U)x +R(U),

where U := (v, u), f(U) := (u,−p(v)) and R(U) := (0,−αu − β|u|q−1u). The

eigenvalues of the Jacobian of f are ±
√

−p′(v).
The common method to solve systems of hyperbolic conservation laws with

source terms is splitting method. Generally speaking, one needs to pay more at-
tention on boundary treatment for the splitting method. In this paper, we use the
semi-discrete central-upwind scheme as first introduced in [15]. This scheme is sim-
ple and robust because no approximate Riemann solver is needed. Furthermore, the
semi-discrete central-upwind schemes employ less numerical viscosity which makes
it possible to solve problems for longer computed time.

We start our construction with the following notation: xj = jdx and Ij =
[xj− 1

2
, xj+ 1

2
], where ∆x is the spatial size. The cell average is

(92) Ūj =
1

dx

∫

Ij

U(x, t)dx.

The semi-discrete central-upwind scheme can then be obtained in the following flux
form:

(93)
d

dt
Ūj(t) = −

Hx
j+ 1

2

(t)−Hx
j− 1

2

(t)

∆x
+Rj ,

where the second-order numerical fluxes are:

(94) Hx
j+ 1

2
(t) :=

f(UE
j ) + f(UW

j+1)

2
+

aj+ 1
2

2

[

UW
j+1 −UE

j

]

.

Here U
E,W
j are the point values of the piecewise linear reconstruction

(95) Ũ(x) := Ūj + (Ux)j(x − xj), x ∈ Ij

at points xj+ 1
2
and xj− 1

2
. That is,

UE
j = Ūj +

∆x

2
(Ux)j ,(96)

UW
j = Ūj −

∆x

2
(Ux)j ,(97)

where the numerical slope Ux can be evaluated by the following minmod recon-
struction:

(98) (Ux)j = minmod
(Ūj − Ūj−1

∆x
,
Ūj+1 − Ūj−1

2∆x
,
Ūj+1 − Ūj

∆x

)

.
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Figure 1. Convergence rates of the p-system solution to the corre-

sponding diffusion wave with β = 4. (a) is for Fv(t) :=
‖(v−v̄)(t)‖L∞

(1+t)−9/8

and (b) is for Gu(t) :=
‖(u−ū)(t)‖L∞

(1+t)−13/8

The local speed aj+ 1
2
in (94) can be determined by

(99) aj+ 1
2
= max

(

√

−p′(vj) ,
√

−p′(vj+1)

)

and the stability criterion is

(100) max(aj+ 1
2
)∆t ≤ 1

2
∆x

Although the original model assumes the spatial domain to be the half domain,
a finite computational domain [0, L] is imposed. Here, we let L = 800, so that
the computational domain is sufficiently large and the effect due to the numerical
boundary at x = L can be ignored. In each of the following subsections, the initial
conditions for p-system are set to v0(x) = 2 − sech(0.1x) and u0(x) = tanh(0.1x)
and the sizes of the space step is chosen as ∆x = 0.01. Note that the right state
u+ = 1. Here, the value of q is taken as q = 2.

Finally, in our scheme, the ODE system (93) is solved by a second order Runge-
Kutta solver. It is also possible to solve the ODEs by other methods. For example,
the implicit-explicit Runge-Kutta solver. See [30, 1].

4.2. Positive and small negative β’s. In this subsection, we take β = 4 and
β = −0.01, respectively, which satisfy (8). Hence, the p-system solution is expected
to converge to its corresponding diffusion wave. For solving the p-system, the time
step is chosen as ∆t = 0.001. When solving the porous media equation, we let
∆t = 0.00002 so that the numerical stability condition is satisfied. The initial
condition for the porous media equation is chosen as v̄(x, 0) = 2 − sech(0.1x) −
v̂(x, 0), v̂(x, 0) = −2C+xe−x2

√
1−β(C+(1−e−x2 ))2

and C+ = 1/
√
1 + β.

The numerical simulations presented in Figures 1, 2 confirm Corollary 1.3 that
the p-system solution converges to the diffusion wave with the optimal rates when
measured under the infinite norm. The optimal convergence rate is (1 + t)−1− γ

2 =

(1 + t)−
9
8 for v(x, t) − v̄(x, t). Although we show in Theorem 1.1 that ‖(u −

ū)(t)‖L∞ ≤ C(1+t)−3/2 due to the technical reason for the slow decay of ‖v̄t(t)‖L1,γ =

O(1)(1 + t)−
3
2+

γ
2 , which seems less sufficient. In fact, as we demonstrate numeri-

cally, the optimal decay is ‖(u− ū)(t)‖L∞ = O(1)(1+ t)−
3
2−

γ
2 = O(1)(1+ t)−

3
2− 1

8 =

O(1)(1 + t)−
13
8 with the best number γ = 1

4 .

4.3. Large negative β. Now, consider β = −4 which satisfies (7). We expect
that the p-system solution u(x, t) will blow up at time 1

2 ln
4
3 ≈ 0.1438410 · · · .
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Figure 2. Convergence rates of the p-system solution to the cor-
responding diffusion wave with β = −0.01. (a) is for Fv(t) :=
‖(v−v̄)(t)‖L∞

(1+t)−9/8 and (b) is for Gu(t) :=
‖(u−ū)(t)‖L∞

(1+t)−13/8

Figure 3. Graph of the p-system solution log10(1 + u) at β = −4.

The numerical simulations presented in Figures 3, 4 and 5 confirm the prediction.
However, from Figure 5, we observe that v(x, t) remains bounded and no blow-up
occurs. Since u(x, t) blows up at T∗ = 1

2 ln
4
3 , then from the first equation of (1)

vt − ux = 0, we have formally that

|u(x, t)| ∼ O(1)|T ∗ − t|−θ → ∞,

v(x, t) ∼ O(1)[1 + |T ∗ − t|1−θ] ≤ C

for some constant 0 < θ < 1 as t → T ∗−. However, for this interest phenomenon
of coexistence of the global solution v(x, t) and the blow-up solution u(x, t), the
rigorous proof is absent, and the question still remains open.
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Figure 4. Curves of the p-system solution log10(1 + u) with β =
−4 as a function of time at space x = 10, 20, 30, 70.
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