
INTERNATIONAL JOURNAL OF c© 2010 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 1, Number 1, Pages 109–122

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH

RANK-DEFICIENT MATRICES

ANDREW BINDER AND JORGE REBAZA

Abstract. A smooth block LU factorization, coupled with Newton’s method, is used to com-
pute multiple nonlinear eigenvalues of smooth rank-deficient matrix functions A(λ). We provide
conditions for such factorizations to exist and show that the algorithm for the computation of
multiple nonlinear eigenvalues converges quadratically, and is more efficient than one using QR

factorizations. A possible approach for cubic convergence is also discussed. Several numerical
examples are given for general and random nonlinear matrix functions A(λ).

Key words. Smooth factorizations, multiple nonlinear eigenvalues.

1. Introduction

The factorization of matrix functions A(λ), where λ is a parameter in general
complex, has received great attention due to its importance and applications in
several areas including linear algebra, matrix computations and dynamical systems.
Smooth factorizations in particular [3], where the factors are as smooth as A(λ), are
a central tool for the computation of heteroclinic and homoclinic orbits in dynamical
systems [4], [8].

We say λ is a nonlinear eigenvalue of A(λ) if it satisfies

(1) A(λ)v = 0.

The vector v 6= 0 is called the corresponding nonlinear eigenvector. In the very
special case when A(λ) = B − λI, for some constant matrix B, then λ and v
are just the ordinary (linear) eigenvalue and eigenvector respectively. Nonlinear
eigenvalues come from a long list of applications including the dynamical analysis
of structures, singularities in elastic materials, and acoustic emissions of high speed
trains. For an extensive list of problems related to nonlinear eigenvalues, see [1].

There is reliable software (e.g. MATLAB) that computes such nonlinear eigenvalues
for the case when A(λ) is a polynomial function. Some algorithms for the cases
where A(λ) is a general, large, and sparse matrix function have also been developed
[11]. One of the main ideas of these methods is to linearize the problem in order to
apply linear tools (such as generalized Schur factorizations) to the linearized system
and preserve the structure of the original problem.

We explore the idea of computing multiple nonlinear eigenvalues for general, rank-
deficient, and smooth matrix functions A(λ) via rank-revealing LU factorizations
coupled with Newton’s method. We assume that A(λ) is relatively small and dense.
We first introduce the necessary theory to make sure that such factorizations in-
volve smooth factors; we then develop an algorithm, study its convergence proper-
ties, and explore a higher order of convergence. A similar approach was considered
in [7] using the classical QR factorization, and we take care of comparing their

Received by the editors June 29, 2010 and, in revised form, September 20, 2010.
2000 Mathematics Subject Classification. 65F99, 35P30.
This research was supported in part by NSF Grant DMS–0552573.

109

110 A. BINDER AND J. REBAZA

corresponding efficiencies. A generalization of this QR approach to compute mul-
tiple nonlinear eigenvalues of matrix functions A(α, λ), where λ is the eigenvalue
parameter, is considered in [2].

2. LU Factorization of a smooth nonsingular matrix

Lemma 1. All full rank square matrices A(λ) ∈ C1 with nonsingular leading prin-

cipal submatrices have a unique L(λ)U(λ) factorization, where L(λ) ∈ C1 is unit

lower triangular, and U(λ) ∈ C1 is upper triangular.

Proof. Let A(0) = L(0)U(0), with L(0) unit lower triangular and U(0) upper
triangular. If the sought factorization is feasible, let A(λ) = L(λ)U(λ). Taking the
derivative of A(λ) and solving for U ′(λ), we get:

(2) U ′(λ) = L−1(λ)A′(λ) − L−1(λ)L′(λ)U(λ).

Since U ′(λ) must be upper triangular,

(L−1(λ)A′(λ))i,1 = (L−1(λ)L′(λ))i,1U(λ)1,1, i ≥ 2

(L−1(λ)A′(λ))i,2 = (L−1(λ)L′(λ))i,1U(λ)1,2 + (L−1(λ)L(λ))i,2U(λ)2,2, i ≥ 3.

...

This system of linear equations is solvable for B(λ) = (L−1(λ)L′(λ))i,j such that
i > j. Similarly, we have

(3) L′(λ) = A′(λ)U−1(λ)− L(λ)U ′(λ)U−1(λ).

Since L′(λ) must be lower triangular,

(A′(λ)U−1(λ))1,i = L(λ)1,1(U
′(λ)U−1(λ))1,i, i ≥ 2

(A′(λ)U−1(λ))2,i = L(λ)2,1(U
′(λ)U−1(λ))1,i + L(λ)2,2(U

′(λ)U−1(λ))2,i, i ≥ 3.

...

This system of equations is solvable for C(λ) = (U ′(λ)U−1(λ))i,j such that i < j.
The diagonal entries of U(λ) are completely determined from A(λ) = L(λ)U(λ).
Therefore, the diagonal entries of C(λ) depend smoothly on A(λ) and L(λ). Thus,
the system (2), (3) with A(0) = L(0)U(0) is uniquely solvable and provides the
sought smooth factorization. �

3. LU factorization for a smooth rank-deficient matrix

Terminology. We say a matrix A has a block LU factorization when A = LU

and the matrices L and U satisfy: L =

[
L1,1 0
L2,1 I

]
, L1,1 is a unit lower triangular

matrix, U =

[
U1,1 U1,2

0 U2,2

]
, and U1,1 is upper triangular.

Theorem 2. Let A(λ) be an n×n C1 matrix function on some D ⊂ C such that

for some λ0 ∈ D, A(λ0) has rank n −m, m < n. Assume there are permutation

matrices P1, P2 such that P1A(λ0)P2 has a block LU factorization P1A(λ0)P2 =
L0U0. Then, there is a neighborhood N(λ0) ⊂ D such that P1A(λ)P2 has a block

LU factorization

(4) P1A(λ)P2 = L(λ)U(λ), ∀ λ ∈ N(λ0),

with L(λ), U(λ) ∈ C1(D), satisfying that L(λ0) = L0 and U(λ0) = U0.

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 111

Proof. Write A(λ) as

(5) A(λ) = A(λ0) +A′(λ0)(λ− λ0) + o(|λ− λ0|
2) = A(λ0) +R(λ),

where R(λ) = A′(λ0)(λ− λ0) + o(|λ − λ0|
2), and R(λ0) = 0. Then,

(6) L−1
0 P1A(λ)P2 = L−1

0 P1A(λ0)P2 + L−1
0 P1R(λ)P2 = U0 +R1(λ),

where R1(λ) = L−1
0 P1R(λ)P2. Partition the matrices:

(7) U0 =

[
U1,1 U1,2

0 U2,2

]
, R1(λ) =

[
R1,1(λ) R1,2(λ)
R2,1(λ) R2,2(λ)

]
.

The blocks U1,1 and R1,1(λ) have dimension (n−m)× (n−m). Define accordingly
a smooth unit block triangular matrix

(8) L−1
1 (λ) =

[
L1,1(λ) 0
L2,1(λ) I(λ)

]
.

Then,

L−1
1 (λ)L−1

0 P1A(λ)P2 = L−1
1 (λ)(U0 +R1(λ))

=

[
L1,1(λ) 0
L2,1(λ) I(λ)

] [
U1,1 +R1,1(λ) U1,2 +R1,2(λ)

R2,1(λ) U2,2 +R2,2(λ)

]
(9)

=

[
C1,1(λ) C1,2(λ)
C2,1(λ) C2,2(λ)

]
,

where

C1,1(λ) = L1,1(λ)(U1,1 +R1,1(λ)),

C1,2(λ) = L1,1(λ)(U1,2 +R1,2(λ)),(10)

C2,1(λ) = L2,1(λ)(U1,1 +R1,1(λ)) +R2,1(λ),

C2,2(λ) = L2,1(λ)(U1,2 +R1,2(λ)) + (U2,2 + R2,2(λ)).

We want to have C2,1(λ) = 0. Since U1,1 is invertible, for small |λ − λ0|, U1,1 +
R1,1(λ) is also invertible. Then, with the matrix function

(11) L2,1(λ) = −R2,1(λ)(U1,1 +R1,1(λ))
−1,

we get

(12) L−1
1 (λ)L−1

0 P1A(λ)P2 =

[
L1,1(λ)(U1,1 +R1,1(λ)) C1,2(λ)

0 C2,2(λ)

]
.

Notice that the matrix L1,1(λ)(U1,1 + R1,1(λ)) is smooth and invertible in some
neighborhood N(λ0). By Lemma 1, we have a smooth LU factorization

(13) L1,1(λ)(U1,1 +R1,1(λ)) = L̂2(λ)Û2(λ).

Expand L̂2(λ) to an n× n matrix L2(λ) =

[
L̂2(λ) 0
0 I

]
, so that

L−1
2 (λ)L−1

1 (λ)L−1
0 P1A(λ)P2 =

[
L̂2

−1
(λ) 0

0 I

][
L̂2(λ)Û2(λ) C1,2(λ)

0 C2,2(λ)

]

=

[
Û2(λ) L̂2

−1
(λ)C1,2(λ)

0 C2,2(λ)

]
= U(λ).

Thus, P1A(λ)P2 has a C1 block LU factorization, and L(λ) = L0L1(λ)L2(λ). �

Note: We say (4) is an LU factorization of A(λ), with complete pivoting.

112 A. BINDER AND J. REBAZA

4. Algorithm for the Computation of a Multiple Nonlinear Eigenvalue

The next objective is to devise an algorithm to calculate a multiple nonlinear
eigenvalue λ∗ of a matrix function A(λ) ∈ C2. Let || · ||F denote the Frobenius
norm. For a matrix A = [a1 · · · an], where ai are the columns of the matrix, we
define the vector

(14) col A ≡




a1
a2
...
an


 .

Now, let λ∗ ∈ C be a multiple nonlinear eigenvalue and rank A(λ∗) = n − m
(1 ≤ m < n). From [5], there exists a rank revealing LU factorization

(15) P1A(λ∗)P2 = L(λ∗)

[
U

(∗)
1,1 (λ∗) U

(∗)
1,2 (λ∗)

0 0

]
,

where rank U
(∗)
1,1 (λ∗) = n−m = rank A(λ∗). Suppose λ0 is sufficiently close to λ∗,

and let

(16) P1A(λ0)P2 = L(λ0)U(λ0)

be a block LU factorization of P1A(λ0)P2. Following Theorem 2, we can get a
smooth block LU factorization

(17) P1A(λ)P2 = L(λ)U(λ), for λ ∈ N(λ0),

and

U(λ) =

[
Û2(λ) L̂2

−1
(λ)C1,2(λ)

0 C2,2(λ)

]
,

where

(18) C2,2(λ) = C2,2(λ0) + C′
2,2(λ0)(λ− λ0) +O(|λ− λ0|

2).

Dropping the higher order terms, we have

(19) C2,2(λ) ≈ C2,2(λ0) + C′
2,2(λ0)(λ− λ0).

Thus, the next iterate λ1 is chosen so that

(20) ||C2,2(λ0) + C′
2,2(λ0)(λ1 − λ0)||

2
F = min

λ
||C2,2(λ0) + C′

2,2(λ0)(λ− λ0)||
2
F .

We need to determine C′
2,2(λ0). Recall from Eq. (10) that

(21) C2,2(λ) = L2,1(λ)(U1,2 +R1,2(λ)) + (U2,2 +R2,2(λ)).

Substituting Eq. (11) into the above equation, we get

(22) C2,2(λ) = −R2,1(λ)(U1,1 +R1,1(λ))
−1(U1,2 +R1,2(λ)) + (U2,2 +R2,2(λ)).

Again, dropping the higher order terms, we have

(23) C2,2(λ) ≈ −R′
2,1(λ0)(λ− λ0)(U1,1)

−1(U1,2) + (U2,2 +R′
2,2(λ0)(λ− λ0)).

But observing (6), we can write

C2,2(λ) ≈ − (L−1
0 P1A

′(λ0)P2)s×(n−s)(λ− λ0)(U1,1)
−1(U1,2)

+ U2,2 + (L−1
0 P1A

′(λ0)P2)s×s(λ− λ0),

where the subindices denote the corresponding blocks being used. Then,

(24) C′
2,2(λ) ≈ (L−1

0 P1A
′(λ0)P2)s×s − (L−1

0 P1A
′(λ0)P2)s×(n−s)(U1,1)

−1(U1,2).

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 113

Going back to (20) and defining

(25) f(λ) = ||C2,2(λ0) + C′
2,2(λ0)(λ− λ0)||

2
F ,

we have

(26) f ′(λ0) = 2(col C′
2,2(λ0))

H · col C2,2(λ0), f ′′(λ0) = 2||C′
2,2(λ0)||

2
F .

Thus, a Newton iteration reads

(27) λ1 = λ0 −
(col C′

2,2(λ0))
H · col C2,2(λ0)

||C′
2,2(λ0)||2F

.

We have then the following algorithm:

Step 1: Given an initial approximation λ0 to λ∗.

Step 2: Compute

A(λi) and A′(λi), i = 0, 1, · · · .

Step 3: Compute the LU factorization with complete column pivoting of A(λi):

(28) P1A(λi)P2 = L(λi)U(λi)

where L(λi) is block unit lower triangular and U(λi) is block upper triangular.

Step 4: Compute

(29) C′
2,2(λi) = (L−1

i P1A
′(λi)P2)s×s − (L−1

i P1A
′(λi)P2)s×(n−s)(U

(i)−1

1,1 U
(i)
1,2).

Step 5: Compute

(30) λi+1 = λi −
(col C′

2,2(λi))
H · col C2,2(λi)

||C′
2,2(λi)||2F

.

Step 6: If the desired accuracy is attained, stop the iteration. Otherwise, repeat
steps 2-6.

Estimating the Numerical Rank. An important piece of information necessary
to perform the algorithm is the rank of the matrix A(λi). This rank can be ap-
proximated numerically using a rank revealing factorization. While the LU rank
revealing factorization does not offer a perfect ordering of the diagonal entries of U
(as a QR factorization would for the entries of R), it provides sufficient information
to determine the numerical rank due to the property

min
1≤i≤n−m

|uii| ≫ max
n−m+1≤i,j≤n

|uij |.

Thus, we can choose ǫ > 0 and find the largest t such that

(31)
|ut+1,t+1|

|u1,1|
≤ ǫ ≤

|ut,t|

|u1,1|
.

Our tests using this rank method have proved that it is very consistent and accurate.

5. Convergence Analysis

We begin the convergence analysis of the preceding algorithm by proving some
preliminary results. Ultimately, we will prove that the algorithm is locally quadratic
convergent.

114 A. BINDER AND J. REBAZA

Theorem 3. Let A(λ) ∈ Cn×n have rank n−m, 1 ≤ m < n. Assume there exist

two distinct block LU factorizations A(λ) = L1(λ)U1(λ) = L2(λ)U2(λ). Then,

(32) L1(λ) = L2(λ)D(λ) and U1(λ) = D−1(λ)U2(λ)

where D(λ) is an invertible, block diagonal matrix.

Proof. Define Ui(λ) to be

(33) Ui(λ) =

[
U

(i)
1,1(λ) U

(i)
1,2(λ)

0 U
(i)
2,2(λ)

]
, i = 1, 2

where U
(i)
1,1(λ) ∈ Cn−m×n−m is invertible. Define

(34) Û1(λ) =

[
U

(1)
1,1 (λ) U

(1)
1,2 (λ)

0 U
(1)
2,2 (λ) + ǫI

]
,

such that U
(1)
2,2 (λ)+ ǫI is invertible, for some ǫ ∈ C. From the assumptions, we have

(35) L−1
2 (λ)L1(λ)U1(λ) = U2(λ).

Define

(36) Û2(λ) = L−1
2 (λ)L1(λ)Û1(λ) =

[
U

(2)
1,1 (λ) U

(2)
1,2 (λ)

0 Û
(2)
2,2 (λ)

]
.

Then,

(37) L−1
2 (λ)L1(λ) = Û2(λ)Û

−1
1 (λ) =: D(λ).

As D(λ) is the product of two invertible block lower triangular matrices as well as
two invertible block upper triangular matrices, D(λ) must be an invertible block
diagonal matrix. From (35) and (37), the theorem is proved. �

Theorem 4. Let A(λ) ∈ C2, and let P1, P2 and P̂1, P̂2 be two sets of permutation

matrices that result from two distinct LU factorizations with complete pivoting of

A(λ∗) with rank A(λ∗) = n−m. Then,

(38) ||U ′
2,2(λ∗)||

2
F > 0 ⇐⇒ ||Û ′

2,2(λ∗)||
2
F > 0.

Proof. Assume by way of contradiction (and without loss of generality) that

(39) ||U ′
2,2(λ∗)||

2
F > 0 and ||Û ′

2,2(λ∗)||
2
F = 0.

By assumption, we have

(40) P1A(λ∗)P2 = L∗U∗ and P̂1A(λ∗)P̂2 = L̂∗Û∗,

with

(41) U∗ =

[
U∗
1,1 U∗

1,2

0 0

]
and Û∗ =

[
Û∗
1,1 Û∗

1,2

0 0

]
.

By Theorem 2, there exist complete pivoting LU factorizations of A(λ) in a neigh-
borhood of λ∗:

(42) P1A(λ)P2 = L(λ)U(λ) and P̂1A(λ)P̂2 = L̂(λ)Û (λ).

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 115

For |λ− λ∗| sufficiently small, these factorizations have the following properties:

U1,1(λ), Û1,1(λ) are invertible,

U2,2(λ) = U ′
2,2(λ∗)(λ− λ∗) +O(|λ − λ∗|

2), Û2,2(λ) = O(|λ − λ∗|
2),(43)

U ′
2,2(λ∗) 6= 0.

From Theorem 3, we let

V (λ) =

[
U1,1(λ) U1,2(λ)

0 I(m)

]
, V̂ (λ) =

[
Û1,1(λ) Û1,2(λ)

0 I(m)

]
,

D(λ) =

[
I(n−m) 0

0 U2,2(λ)

]
, D̂(λ) =

[
I(n−m) 0

0 Û2,2(λ)

]
.

Then, from (42), we have

P1A(λ)P2 = L(λ)D(λ)V (λ), P̂1A(λ)P̂2 = L̂(λ)D̂(λ)V̂ (λ)

⇒ A(λ) = PT
1 L(λ)D(λ)V (λ)PT

2 , A(λ) = P̂T
1 L̂(λ)D̂(λ)V̂ (λ)P̂T

2(44)

⇒ PT
1 L(λ)D(λ)M(λ) = P̂T

1 L̂(λ)D̂(λ)M̂ (λ),

where M(λ) = V (λ)PT
2 and M̂(λ) = V̂ (λ)P̂T

2 . For |λ− λ∗| sufficiently small,

(45) D(λ)M(λ)M̂ (λ)−1 = (PT
1 L(λ))−1P̂T

1 L̂(λ)D̂(λ).

Let N(λ) = M(λ)M̂(λ)−1 and N̂(λ) = (PT
1 L(λ))−1P̂T

1 L̂(λ), which we partition as

(46) N(λ) =

[
N1,1(λ) N1,2(λ)
N2,1(λ) N2,2(λ)

]
, N̂(λ) =

[
N̂1,1(λ) N̂1,2(λ)

N̂2,1(λ) N̂2,2(λ)

]
.

Eq. (45) in matrix block form becomes

(47)

[
N1,1(λ) N1,2(λ)

U2,2(λ)N2,1(λ) U2,2(λ)N2,2(λ)

]
=

[
N̂1,1(λ) N̂1,2(λ)Û2,2(λ)

N̂2,1(λ) N̂2,2(λ)Û2,2(λ)

]
.

The properties of (43) imply that limλ→λ∗
U2,2(λ) = limλ→λ∗

Û2,2(λ) = 0. Com-
bining this fact with Eq. (47) gives

lim
λ→λ∗

N̂2,1(λ) = lim
λ→λ∗

U2,2(λ)N2,1(λ) = 0 and

lim
λ→λ∗

N1,2(λ) = lim
λ→λ∗

N̂1,2(λ)Û2,2(λ) = 0.

From Eq. (47), U2,2(λ)N2,2(λ) = N̂2,2(λ)Û2,2(λ). Then,

U2,2(λ) = N̂2,2(λ)Û2,2(λ)N2,2(λ)
−1

⇒
U2,2(λ)

λ− λ∗

= N̂2,2(λ)
Û2,2(λ)

λ− λ∗

N2,2(λ)
−1.

Letting λ → λ∗ gives

0 6= U ′
2,2(λ∗) = lim

λ→λ∗

U2,2(λ)

λ− λ∗

= lim
λ→λ∗

N̂2,2(λ)
Û2,2(λ)

λ− λ∗

N2,2(λ)
−1(48)

= lim
λ→λ∗

N̂2,2(λ)
O(|λ − λ∗|

2)

λ− λ∗

N2,2(λ)
−1 = 0.

The above statement is a contradiction and completes the proof. �

116 A. BINDER AND J. REBAZA

Theorem 5. Let A(λ) ∈ C2. Let the permutation matrices P
(1)
i = P

(1)
∗ and

P
(2)
i = P

(2)
∗ independently of i for λi sufficiently close to λ∗. If ||U ′

2,2(λ∗)||
2
F > 0,

then the algorithm from Section 4 is locally quadratically convergent.

Proof.

(49) U2,2(λ) = U2,2(λi) + U ′
2,2(λi)(λ− λi) +O(|λ − λi|

2).

At the nonlinear eigenvalue λ∗,

0 = U2,2(λi) + U ′
2,2(λi)(λ∗ − λi) +O(|λ∗ − λi|

2)

⇒ 0 = col U2,2(λi) + col U ′
2,2(λi)(λ∗ − λi) +O(|λ∗ − λi|

2).(50)

Then,

(51) 0 = [col U ′
2,2(λi)]

Hcol U2,2(λi) + ||U ′
2,2(λi)||

2
F (λ∗ − λi) +O(|λ∗ − λi|

2).

From the given assumptions and Theorem 4, we know that ||U ′
2,2(λ∗)||

2
F > 0 for

any set of permutation matrices. We may choose a k > 0 small enough for λi

sufficiently close to λ∗ such that

(52) ||U ′
2,2(λi)||

2
F > k||U ′

2,2(λ∗)||
2
F > 0.

Thus,

(53) 0 =
[colU ′

2,2(λi)]
HcolU2,2(λi)

||U ′
2,2(λi)||2F

+ (λ∗ − λi) +O(|λ∗ − λi|
2).

With the help of (30), this simplifies to

(54) 0 = −(λi+1 − λi) + (λ∗ − λi) +O(|λ∗ − λi|
2).

Therefore,

(55) λ∗ − λi+1 = O(|λ∗ − λi|
2).

�

6. Numerical Tests

Numerical tests were performed to compare the efficiency of the LU algorithm
versus the QR algorithm for computing multiple nonlinear eigenvalues of a smooth,
nonlinear matrix function. The algorithms described in the previous section were
used, including the numerical rank approximation. These algorithms were run using
MATLAB.

The nonlinear matrices used in the experiments were of the form:

(56) A(λ) = A0 +A1λ+A2λ
2 +A3 sin(λ) + A4 cos(λ) +A5e

λ,

where the matrices Ai, i = 0, 1, 2, 3, 4, 5, are random and constant. Eigenvalues cal-
culated were deemed acceptable if both algorithms converged to the same eigenvalue
and detA(λ) at the eigenvalue approximation was sufficiently close to zero. The
initial guess of the eigenvalue was determined by adding a constant perturbation
to the calculated eigenvalue.

Tables 1, 2, and 3 display the time results for the LU and QR algorithms for various
nonlinear matrices tested in more than 100 trials in each case. The letters Q, E,
and S signify the combination of nonlinear matrices that were used in the tests.
The letters represent

(57) Q = A0 +A1λ+A2λ
2, S = A3 sin(λ) + A4 cos(λ), E = A5e

λ.

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 117

As can be seen from the tables, the average LU algorithm performed several times
faster than its QR counterpart in all instances. Also, the average running time
for the LU algorithm was less than the minimum running time required by the
QR algorithm in each case. Observe that the maximum time required by the
LU algorithm was less than the minimum time required by the QR algorithm to
compute the nonlinear eigenvalues for the 10×10 matrices and a couple of the 4×4
matrices.

Table 1. Time [ms] Comparison of 4 x 4 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Max Average Min Max Average Min (QR / LU)

Q 3.937 1.121 0.666 9.946 5.021 3.096 4.478

Q, E 2.767 1.113 0.665 8.370 5.040 3.100 4.526

Q, S 3.531 1.137 0.668 9.455 5.027 3.122 4.421

Q, E, S 1.907 1.122 0.665 8.403 5.044 3.106 4.495

Table 2. Time [ms] Comparison of 10 x 10 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Max Average Min Max Average Min (QR / LU)

Q 5.106 2.552 1.634 33.479 13.986 9.366 5.481

Q, E 5.778 2.570 1.651 38.528 13.620 9.365 5.299

Q, S 7.826 2.688 1.655 35.637 14.903 9.614 5.543

Q, E, S 4.533 2.568 1.634 25.445 14.626 9.483 5.555

Table 3. Time [ms] Comparison of 100 x 100 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Max Average Min Max Average Min (QR / LU)

Q 708.512 221.234 131.962 3021.232 911.267 398.420 4.119

Q, E 590.827 217.775 127.710 2556.985 927.271 475.985 4.258

Q, S 705.574 258.276 132.617 3813.738 1058.852 430.225 4.100

Q, E, S 623.669 233.597 125.844 3673.734 950.936 497.605 4.071

Tables 4, 5, and 6 display the average number of iterations required for the LU
and QR algorithms to converge to the nonlinear eigenvalue, the average time
[ms]/iteration in the computation, and the QR/LU ratio of the average time
[ms]/iteration. In all cases, the LU factorization required slightly more iterations
on average to converge to the nonlinear eigenvalue than the QR decomposition. Ta-
bles 4, 5, and 6 demonstrate however that the LU algorithm is more time efficient
per iteration than the QR algorithm.

7. Application

We will next apply the LU algorithm to a nonlinear eigenvalue problem with
multiple eigenvalues that comes from the analysis of a vibrating railtrack resting

118 A. BINDER AND J. REBAZA

Table 4. Average Iteration Comparison of 4 x 4 Algorithm Performance

Nonlinear LU QR Time [ms] Per
Matrix Number Time/Iteration [ms] Number Time/Iteration [ms] Iteration Ratio

Q 4.73 .24 4.64 1.08 4.57

Q, E 4.77 .23 4.69 1.07 4.60

Q, S 4.83 .24 4.64 1.08 4.60

Q, E, S 4.83 .23 4.71 1.07 4.61

Table 5. Average Iteration Comparison of 10 x 10 Algorithm Performance

Nonlinear LU QR Time [ms] Per
Matrix Number Time/Iteration [ms] Number Time/Iteration [ms] Iteration Ratio

Q 4.47 .57 4.30 3.26 5.70

Q, E 4.48 .57 4.21 3.24 5.64

Q, S 4.65 .58 4.49 3.32 5.74

Q, E, S 4.51 .57 4.34 3.28 5.77

Table 6. Average Iteration Comparison of 100 x 100 Algorithm Performance

Nonlinear LU QR Time [ms] Per
Matrix Number Time/Iteration [ms] Number Time/Iteration [ms] Iteration Ratio

Q 3.22 68.72 3.10 293.76 4.27

Q, E 3.11 70.08 3.08 301.36 4.30

Q, S 3.44 75.07 3.22 329.08 4.38

Q, E, S 3.25 75.96 3.08 309.05 4.29

on sleepers (lateral supports under the track) given in [6]. The discretization of the
problem leads to a quadratic eigenvalue problem of the form:

(58) A(λ) = A0 +A1λ+A2λ
2,

where Ai, i = 0, 1, 2, are constant matrices with dimension 10 × 10. The exact
eigenvalues of the problem are known and can be determined with an explicit equa-
tion. One multiple eigenvalue of the system is λ∗ = −0.5729 − 0.6600i, with an
algebraic multiplicity of 2. Starting with a guess of λ0 = −1− 0.75i, the U matrix
given by the algorithm after 5 iterations and approximately 0.00586 s is of the form

(59) U =

[
U1,1 U1,2

0 0

]

where U1,1 is an 8× 8 matrix. The approximate eigenvalue given by the algorithm
matches the known nonlinear eigenvalue within an error tolerance of 10−15. The
multiplicity of the nonlinear eigenvalue is determined from the algorithm directly
by the dimension of the lower right 0 block. Both methods reveal that the nonlin-
ear eigenvalue has an algebraic multiplicity of 2. The LU and QR algorithms both
required 5 iterations to compute the nonlinear eigenvalue. The LU and QR algo-
rithms required 0.00586 and 0.0199 seconds to perform the calculations respectively,
confirming again the superiority of the LU factorization over the QR factorization
in terms of execution time.

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 119

The LU and QR algorithms were also compared in an application examining the
eigenvibrations of a loaded string from [1] and [9]. From the discretization of the
problem of a vibrating string with a load of mass m attached by a spring of stiffness
k, we find the equation

(60) R(λ)x =

(
A−Bλ+

λ

λ− σ
C

)
x = 0

where σ = k
m
. In the MATLAB tests, the matrices had dimensions of 100 x 100, and

the constants σ and k were both set equal to 1. Five eigenvalues of the problem
for these parameter values are provided in [9]. In particular, λ∗ = 4.482176546
is an eigenvalue of this problem. The initial eigenvalue guess for both methods
was λ0 = λ∗ + (2 + 2i). The LU algorithm calculated the correct eigenvalue in 5
iterations in 148.91 ms. The QR algorithm calculated the correct eigenvalue in 4
iterations in 760.83 ms. The LU algorithm required one more iteration yet was 5
times faster than the QR algorithm. Once again, the LU algorithm has proven to
be superior to the QR method in regards to the execution time.

Further tests using these algorithms were performed for larger square matrices up
to dimensions of 1000 x 1000. For square matrices with dimensions greater than
100 x 100, the LU algorithm’s advantage over the QR algorithm in terms of the
average total running time and the average time per iteration seemed to increase.
For example, the average time per iteration required in the few tests of 500 x 500
matrices for the LU and QR algorithms was about 10.79 s and 122.65 s respectively.
The QR algorithm ran approximately 11.4 times longer than the LU algorithm per
iteration. The average total running time measured in these trials saw a similar
discrepancy. This increasing trend continued in the few tests performed for larger
matrices up to a size of 1000 x 1000.

8. Cubic Convergence Algorithm

The algorithm presented in Section 5 is locally quadratically convergent near the
nonlinear eigenvalue. This algorithm can be modified to allow for cubic convergence.
This is possible by a Newton-Steffensen method as described in [10]. When solving
for the roots of f(x) = 0, the Newton-Steffensen iterative formula is of the form

(61) xn+1 = xn −
f2(xn)

f ′(xn)(f(xn)− f(x∗
n))

,

where

(62) x∗
n = xn −

f(xn)

f ′(xn)
.

Recall that

(63) f ′(λi) = 2(col U ′
2,2(λi))

H · col U2,2(λi), f ′′(λi) = 2||U ′
2,2(λi)||

2
F .

Therefore, after adapting Newton-Steffensen to our problem, the iterations to min-
imize such a norm reads
(64)

λi+1 = λn−
((col U ′

2,2(λi))
H · col U2,2(λi))

2

||U ′
2,2(λi)||2F ((col U

′
2,2(λi))H · col U2,2(λi)− (col U ′

2,2(λ
∗
i))

H · col U2,2(λ∗
i))

,

where

(65) λ∗
i = λi −

(col U ′
2,2(λi))

H · col U2,2(λi)

||U ′
2,2(λi)||2F

.

120 A. BINDER AND J. REBAZA

Thus, if λ∗ is a nonlinear eigenvalue of A(λ) ∈ Cn×n with rank A(λ∗) = n − m,
known in advance, the corresponding algorithm for cubic convergence is

Step 1: Given an initial approximation λ0 to λ∗.

Step 2: Compute
A(λi) and A′(λi), i = 0, 1, · · · .

Step 3: Compute a block LU factorization with complete column pivoting of A(λi):

(66) P1A(λi)P2 = L(λi)U(λi)

Step 4: Compute

(67) U ′
2,2(λi) = (L−1

i P1A
′(λi)P2)m×m − (L−1

i P1A
′(λi)P2)m×(n−m)(U

(i)−1

1,1 U
(i)
1,2).

Step 5: Compute the Newton method iteration

(68) λ∗
i = λi −

(col U ′
2,2(λi))

H · col U2,2(λi)

||U ′
2,2(λi)||2F

.

Step 6: Compute
A(λ∗

i) and A′(λ∗
i), i = 0, 1, · · · .

Step 7: Compute a block LU decomposition with complete column pivoting of
A(λ∗

i):

(69) P1A(λ
∗
i)P2 = L(λ∗

i)U(λ∗
i)

Step 8: Compute
(70)

U
′

2,2(λ
∗

i) = (L−1
i (λ∗

i)P1A
′(λ∗

i)P2)m×m−(L−1
i (λ∗

i)P1A
′(λ∗

i)P2)m×(n−m)(U
(i)−1

1,1 (λ∗

i)U
(i)
1,2(λ

∗

i)).

Step 9: Compute the Newton-Steffensen iteration
(71)

λi+1 = λi−
((col U ′

2,2(λi))
H · col U2,2(λi))

2

||U ′
2,2(λi)||2F ((col U

′
2,2(λi))H · col U2,2(λi)− (col U ′

2,2(λ
∗
i))

H · col U2,2(λ∗
i))

.

Step 10: If the desired accuracy is attained, stop the iteration. Otherwise, repeat
steps 2-10.

An obvious disadvantage of this algorithm is that it requires the computation of two
LU factorizations per step versus the single factorization required in the algorithm
that provides quadratic convergence. This will make each iteration in the process
more expensive. A similar algorithm can be created using QR decomposition with
the appropriate substitutions in the algorithm. Table 7 displays the time results for
the cubic LU and QR algorithms for various nonlinear matrices tested in more than
100 trials in each case. As can be seen from the table, the average LU algorithm
performed several times faster than its QR counterpart in all instances. For the
10×10 comparisons, the LU algorithm was approximately 5.3 times faster than the
QR algorithm on average for each nonlinear matrix function. This ratio is slightly
less than in the quadratic case. The maximum time required by the LU algorithm
was in all cases less than the minimum time required by the QR algorithm to
compute the nonlinear eigenvalues for the 10× 10 matrices with cubic convergence.

MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH RANK-DEFICIENT MATRICES 121

Table 7. Time [ms] Comparison of 10 x 10 Cubic Convergence
Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Max Average Min Max Average Min (QR / LU)

Q 10.630 4.013 2.333 41.275 21.344 13.036 5.319

Q, E 9.572 3.889 2.342 46.831 20.919 13.045 5.379

Q, S 7.346 4.000 2.377 47.283 20.898 13.044 5.224

Q, E, S 10.610 4.090 2.351 53.448 21.608 13.037 5.283

Table 8 displays the average number of iterations required for the LU and QR
algorithms to converge to the nonlinear eigenvalue, the average time [ms]/iteration
in the computation, and the QR/LU ratio of the average time [ms]/iteration. In all
cases, the LU factorization required slightly more iterations on average to converge
to the nonlinear eigenvalue than the QR decomposition. Table 8 demonstrates that
the LU algorithm is more time efficient per iteration than the QR algorithm. Com-
paring Table 8 with Table 5, the data shows that the average number of iterations
required to converge to the nonlinear eigenvalue in the cubic convergence algorithm
decreased on average by slightly more than one. However, the time per iteration
increased substantially. This change was expected as each iteration now requires
two decompositions. Table 9 demonstrates the cubic convergence of the LU and
QR algorithm for two random 10× 10 matrices.

Table 8. Average Iteration Comparison of 10 x 10 Cubic Conver-
gence Algorithm Performance

Nonlinear LU QR Time [ms] Per
Matrix Number Time/Iteration [ms] Number Time/Iteration [ms] Iteration Ratio

Q 3.26 1.230 3.12 6.832 5.56

Q, E 3.22 1.206 3.14 6.670 5.53

Q, S 3.28 1.218 3.14 6.651 5.46

Q, E, S 3.31 1.235 3.16 6.829 5.53

Table 9. Cubic Algorithm Error Convergence for a 10 x 10 Matrix Function

Iteration LU Error QR Error

0 0.7071 0.6403

1 0.3212 0.2253

2 0.1340 0.0938

3 1.7791 ∗ 10−4 2.2825 ∗ 10−4

4 5.1172 ∗ 10−13 1.8925 ∗ 10−12

9. Final Remarks

We have presented a complete pivoting LU factorization of smooth rank-deficient
matrices as a more efficient alternative to the QR factorization to compute multiple
nonlinear eigenvalues when the matrix is in general dense and relatively small. The
given algorithm, which converges quadratically, can also be useful within iterative
projection methods for large sparse problems. There are additional ways the current

122 A. BINDER AND J. REBAZA

algorithms could be modified to improve their effectiveness. As they are now, the
algorithms do not take advantage of any structure that may be inherent in the
problem. Modifying the algorithm to use properties such as symmetric structure
would be very beneficial.

The cubic convergence algorithm for the general case has important areas where it
could be improved. The cubic convergence algorithm is more expensive per iteration
due to the necessity of the computation of two factorizations per iteration compared
to the single decomposition required in the quadratic decomposition. If there were a
way to approximate the second LU decomposition or just the components necessary
to calculate the next iterative guess, the method could become much more efficient.
One simple approach to approximating the f ′(x∗

n) component in the method is to
use the approximation

(72)
f ′(x∗

n)− f ′(xn)

x∗
n − xn

≈ f ′′(xn).

This equation can be solved for f ′(x∗
n) to yield

(73) f ′(x∗
n) ≈ f ′′(xn)(x

∗
n − xn) + f ′(xn).

The advantage to using this equation would be that the second LU decomposition
does not have to be calculated. An increased rate of convergence could be gained
for minimal cost as all the values are already known. Of course, this approximation
could only be applied when x∗

n is sufficiently close to xn. Initial testing, however,
has shown negligible improvement in the speed of the algorithm.

References

[1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder and F. Tisseur, NLEVP: A collection
of nonlinear eigenvalue problems, MIMS Eprints 40 (2008).

[2] H. Dai and P. Lancaster, Numerical methods for finding multiple eigenvalues of matrices
depending on parameters, Numerische Math., 76 (1997) 189–208.

[3] L. Dieci and T. Eirola, On smooth decompositions of matrices, SIAM J. Matrix Anal. Appl.,
20 (1999) 800–819.

[4] E. J. Doedel, B.W. Kooi, Y. A. Kuznetzov, and G. A. Voorn, Continuation of connecting
orbits in 3D ODEs, (I) Point to cycle connections, Int. J. Bifurc. & Chaos 18 (2008) 1889–
1903.

[5] G. Golub and C. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins University Press
(1996).

[6] P. Lancaster and Rózsa, The spectrum and stability of a vibrating rail supported by sleepers,
Computers Math. Applic., 31 (1996) 201-213.

[7] R. C. Li, Compute multiple nonlinear eigenvalues, J. Comp. Math., 10 (1992) 1–20.
[8] J. Rebaza, Smooth Schur factorizations in the continuation of separatrices, Lin. Alg. & its

Applic., 421 (2007) 138–156.

[9] S. I. Solovëv, Preconditioned iterative methods for a class of nonlinear eigenvalue problems,
Lin. Alg. & its Applic. 415 (2006) 210-229.

[10] J. R. Sharma, A composite third order Newton Steffensen method for solving nonlinear
equations, Appl. Math and Comp., 169 (2005) 242-246.

[11] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigenvalue
methods, GAMM Mitt. Ges. Angew. Math. Mech. 27 (2004) 121–152.

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
E-mail : abinder@email.arizona.edu

Department of Mathematics, Missouri State University, Springfield, MO 65897, USA
E-mail : jrebaza@missouristate.edu
URL: http://math.missouristate.edu/jrebaza.htm

