
Analysis in Theory and Applications
Anal. Theory Appl., Vol. 30, No. 1 (2014), pp. 136-140

DOI: 10.4208/ata.2014.v30.n1.10

A Complement to the Valiron-Titchmarsh Theorem

for Subharmonic Functions

Alexander I. Kheyfits∗

Bronx Community College and the Graduate Center of the City University of New
York, 2155 University Avenue, Bronx, New York 10453, USA

Received 29 December 2013; Accepted (in revised version) 5 March 2014

Available online 31 March 2014

Abstract. The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions
with negative zeros has been recently generalized onto subharmonic functions with
the Riesz measure on a half-line in R

n, n≥3. Here we extend the Drasin complement
to the Valiron-Titchmarsh theorem and show that if u is a subharmonic function of
this class and of order 0< ρ< 1, then the existence of the limit limr→∞ logu(r)/N(r),
where N(r) is the integrated counting function of the masses of u, implies the regular
asymptotic behavior for both u and its associated measure.
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n with Riesz masses on a ray, associated Legendre functions on
the cut.
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1 Main result

The well-known Valiron-Titchmarsh Tauberian theorem [6] states that if an entire func-
tion f (z) of non-integer order ρ with negative zeros has regular behavior for z=x>0, i.e.,
there exists the finite limit

lim
r→∞

r−ρ log f (r)=h,

then its zeros have the density limt→∞ t−ρn(t)= sinπρ
π h, where n is the counting function

of the zeros of f . In turn, this implies that the function f is of completely regular growth
in the entire complex plane. For the history of this result and the relevant references see,
e.g., [5]. Drasin [1] proved a complementary result.
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If f is an entire function of order λ, 0<λ< 1, with all zeros real and negative, then
either one of the conditions

log
M(r)

n(r)
→ L>0, r→∞,

or

log
M(r)

N(r)
→ Lλ>0, r→∞,

where N(r)=
∫ r

0 t−1n(t)dt, implies the asymptotic relation as r→∞,

logM(r)∼ rλψ(r).

Here λ is determined by the transcendental equation L=π/sin(πλ) and ψ is a slowly
varying function, that is, ψ(σr)/ψ(r)→1 as r→∞ for each fixed σ>0. The relation a∼ b
hereafter means the existence of the limit limr→∞ a(r)/b(r)=1.

The author [5] has recently generalized the Valiron-Titchmarsh theorem onto subhar-
monic functions in R

n, n ≥ 3. In the present note we complement the results of [5] by
extending the Drasin theorem onto the subharmonic functions in R

n,n≥3. Introduce in
R

n spherical coordinates x=(r,θ), r=|x|, θ=(θ1,··· ,θn−1), such that x1=rcosθ1, 0≤θ1≤π,
and 0≤ θk ≤2π for k=2,3,··· ,n−1.

In the case under consideration, the subharmonic functions can be represented as [4,
Eq. (4.5.16)]

u(x)=
∫

Rn
Pn(r,t,θ1)dµ(y)+u0(x), (1.1)

where µ is the Riesz associated mass of u, u0 is a subharmonic function of smaller growth
than u, and the kernel Pn is the modified Weierstrass canonical kernel,

Pn(r,t,θ1)= rtn−2
(

(n−1)r2cosθ1+rt[n+(n−2)cos2 θ1]+(n−1)t2 cosθ1

)

.

Without loss of generality, hereafter we assume u(0) = u0 = 0. Let n(t) = µ(Bt) be the
counting function of the associated masses of u, where Bt is the closed ball of radius t
centered at the origin of R

n, and N(r) = (n−2)
∫ r

0 t1−nn(t)dt its average. Now we can
state our result.

Theorem 1.1. Let u be a subharmonic function in R
n, n≥3, of order ρ, 0< ρ<1, whose Riesz

masses are distributed over the negative x1-axis. If the limit

lim
r→∞

u(r)

n(r)
=∆ (1.2)

exists, then, as r→∞,

u(x)∼H(θ)rρψ(r) (1.3)
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and

N(r)∼ rρ ψ(r)

ρ
, (1.4)

where ψ is a slowly varying function for 0< r<∞ and the order ρ satisfies the transcendental
equation

∆=
Γ(n−1−ρ)

(n−2)!Γ(1−ρ)

πρ

sin(πρ)
, (1.5)

Γ is Euler’s function.

Moreover, the indicator H(θ)=H(θ1) can be expressed through the associated Legendre spher-
ical functions of the first kind P

µ
ν (cosθ1) on the cut as

H(θ1)=
π2

n−3
2 Γ( n−1

2 )∏
n−2
k=1 (ρ+k)∆

(n−3)!sin(πρ)(sinθ1)
n−3

2

P
3−n

2

ρ+ n−3
2

(cosθ1). (1.6)

Eq. (1.4) holds good for θ1 =π as well, since in this case both its sides are equal to −∞.

Remark 1.1. A similar result can be proved if the limit in (1.2) is replaced by the limit
limr→∞ u((r,θ))/n(r) with any θ such that 0≤ θ1 ≤π/2, however, in this case the tran-
scendental equation (1.3) for the order must be replaced by more cumbersome one, and
we do not state this more general result here.

Remark 1.2. Similar results are also valid for tube domains.

Remark 1.3. The precise bounds for the ratio u(r,θ)/n(r) were obtained by Gol’dberg
and Ostrovskii [3]:

For a Weierstrass canonical integral v of noninteger order ρ, q = E(ρ), with Riesz
masses on the negative x1-half-axis

liminf
r→∞

v(r,θ)

n(r)
≤ (ρ+n−2)

∫ ∞

0
u−1−ρhn(u,θ1,q)du≤ limsup

r→∞

v(r,θ)

n(r)
,

where θ is any point of the unit sphere with 0≤θ1<π. Both upper and lower inequalities
here are exact.

Our result leads to the complete description of the functions giving the equalities in
the Gol’dberg-Ostrovskii theorem.

Corollary 1.1. The bounds in these inequalities are given by functions (1.1)-(1.2) and only
by these functions.
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2 Proof of Theorem 1.1

Since we assume u(0)=0, the function u in (1.1) can be written as [4, Eq. (4.5.15)],

u(x)=
∫ ∞

0

Pn(|x|,t,θ1)N(t)dt
(

|x|2+2|x|tcosθ1+t2
)n/2+1

. (2.1)

We use the following special case of the Tauberian theorem of Drasin [1, Theorem 1].
Let the kernel k be positive almost everywhere, and its Laplace transform

Lk(s)=
∫ ∞

−∞
e−stk(t)dt

exists if −σ<s<̺ for some positive, maybe infinite σ and ̺, whereas Lk(−σ)=Lk(̺)=∞.
If f (t), −∞< t<∞, is a positive increasing function such that its convolution with the
kernel k(t) satisfies

∫ ∞

−∞
k(t−y) f (y)dy={L+o(1)} f (t), t→∞,

then

f (t)= eλtψ(t),

where for every fixed a, ψ(t+a)/ψ(t)→1, t→∞. Moreover, λ (≥0) must satisfy Lk(λ)=
L.

After substituting t= ey and r= |x|= ep, (1.5) becomes

u(ep,θ1)=
∫ ∞

−∞
k(p−y) f (y)dy,

where f (y)=N(ey) and

k(t)=
et
{

(n−1)cosθ1+[n+(n−2)cos2θ1]e
t+(n−1)cosθ1e2t

}

(

1+2et cosθ1+e2t
)n/2+1

.

It is clear that k(t)≥0 for all 0≤θ1≤π/2. Moreover, since Pn(r,t,θ1) is a quadratic trinomial
with respect to cosθ1, elementary considerations show that the upper boundary θ1≤π/2
cannot be increased. In particular, we have in the Drasin theorem cited above, σ=n−1,
̺=1, and all the other conditions are directly verified. If θ1=0, the kernel is

k(t)=(n−1)e(n−1)t
(

1+et
)−n

,

thus its positivity is obvious, the computation of its Laplace transform is straightforward,
and the transcendental equation for the order ρ is given by (1.3).
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Returning to the variables r = ep and t = ey, we see that N(t) is positive and non-
decreasing. Thus, by the cited Drasin’s theorem, the limits (1.3) and (1.4) exist for this
ρ,

N(t)= tρψ(t)

and

u(r)=H(0)rρψ(r),

where ψ is a slowly varying function. Combining these equations with (2.1) and the
results from [5], we straightforwardly derive Eqs. (1.5) and (1.6).
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