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1 Introduction

Recently, V. Fülöp and F. Móricz [3] studied the order of magnitude of multiple Fourier

coefficients of functions in BV (T
N

), where T= [0,2π), in the sense of Vitali and Hardy.
Here, we have generalized these results by estimating the order of magnitude of mul-
tiple Fourier coefficients of complex valued functions in (Λ1,··· ,ΛN)BV(p), r−BV and

Lip(p;α1,··· ,αN) over T
N

.

Definition 1.1. For a given f ∈Lp(T
2
), 1≤ p<∞, the p-integral modulus of continuity of

f is defined as

ω(p)( f ;δ1,δ2)=sup

{(

1

4π2

∫ ∫

T
2
|∆ f (x,y;h,k)|pdxdy

)1/p

: 0<h≤δ1, 0< k≤δ2

}

,

where
∆ f (x,y;h,k)= f (x+h,y+k)− f (x,y+k)− f (x+h,y)+ f (x,y).

For every f ∈Lp(T
2
), ω(p)( f ;δ1,δ2)→0 as max{δ1,δ2}→0.
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For p≥1 and α1,α2∈ (0,1], we say that f ∈Lip(p;α1,α2) if

ω(p)( f ;δ1,δ2)=O(δα1
1 δα2

2 ) as δ1and δ2→0.

For p=∞, we write ω( f ;δ1,δ2) for ω(∞)( f ;δ1,δ2), Definition 1.1 gives the modulus of con-
tinuity of f and in that case the class Lip(p;α1,α2) reduces to Lipschitz class Lip(α1,α2).

Definition 1.2. Let L be the class of all non-decreasing sequences Λ
′
={λ

′

n} (n=1,2,···)
of positive numbers such that ∑n(λ

′

n)
−1 diverges. For given

∧

= (Λ1,Λ2), where Λk =
{λk

n} ∈ L for k = 1,2 and p ≥ 1. A complex valued measurable function f defined on
a rectangle R := [a,b]×[c,d] is said to be of p-(Λ1,Λ2)-bounded variation (that is, f ∈
(Λ1,Λ2)BV(p)(R)), if

V∧

p
( f ,R)=

sup

P=P1×P2

( m

∑
i=1

l

∑
j=1

|∆ f (xi ,yj)|
p

λ1
i λ2

j

)1/p
<∞,

where

∆ f (xi,yj)=∆ f (xi,yj;∆xi,∆yj), ∆xi = xi+1−xi,

∆yj =yj+1−yj, P1 : a= x0< x1< x2< ···< xm =b

and

P2 : c=y0 <y1<y2< ···<yl =d.

If f ∈(Λ1,Λ2)BV(p)(R) is such that the marginal functions f (a,·)∈Λ2BV(p)([c,d]) and
f (·,c)∈Λ1BV(p)([a,b]) (refer [6]) for the definition of ΛBV(p)([a,b])), then f is said to be
of p-(Λ1,Λ2)∗-bounded variation over R (that is, f ∈ (Λ1,Λ2)∗BV(p)(R)).

If f ∈ (Λ1,Λ2)∗BV(p)(R) then f is bounded and each of the marginal function f (·,t)∈
Λ1BV(p)([a,b]) and f (s,·)∈Λ2BV(p)([c,d]), where t∈ [c,d] and s∈ [a,b] are fixed.

Note that, for Λ1 = Λ and Λ2 = {1} (that is, λ1
n = λn and λ2

n = 1, ∀n) the class
(Λ1,Λ2)BV(p)(R) and the class (Λ1,Λ2)∗BV(p)(R) reduce to the class ΛBV(p)(R) and the
class Λ∗BV(p)(R) respectively; for p= 1, we omit writing p, the class (Λ1,Λ2)BV(p)(R)
and the class (Λ1,Λ2)∗BV(p)(R) reduce to the class (Λ1,Λ2)BV(R) (Definition 2, [1]) and
the class (Λ1,Λ2)∗BV(R) respectively and for p = 1 the class ΛBV(p)(R) and the class
Λ∗BV(p)(R) reduce to the class ΛBV(R) and the class Λ∗BV(R) respectively (Definition
3, [2]). Moreover, for Λ1=Λ2={1} and for p=1 the class (Λ1,Λ2)BV(p)(R) and the class
(Λ1,Λ2)∗BV(p)(R) reduces to the class BVV(R) (bounded variation in the sense of Vitali)
and the class BVH(R) (bounded variation in the sense of Hardy) respectively.

Observe that the characteristic function of E= {(x,y);x∈ [0,1] and y∈ [0,1−x]} is in
ΛBV(p)([0,1]2) if

∑
n

( 1

λn

)2
<∞. (1.1)
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If Λ satisfies (1.1), the requirement of measurability cannot be omitted from Definition
1.2, otherwise the class ΛBV(p) would include functions which are not Lebesgue measur-
able. Even under the assumption of measurability, Dyachenko and Waterman (Proposi-
tion 1, [2]) proved that there exists a f ∈ΛBV(R) which is everywhere discontinuous.

Definition 1.3. For a given positive integer r, a complex valued function f defined on a
rectangle R :=[a,b]×[c,d] is said to be of r-bounded variation (that is, f ∈r−BV(R)) if the
following two conditions are satisfied:

(i)
Vr( f ,R)= sup

P=P1×P2

Vr( f ,R,P)<∞,

where

Vr( f ,R,P)=
(m−r

∑
i=1

n−r

∑
j=1

|∆r f (xi,yj)|
)

,

P, P1, P2, ∆ f (xi,yj) are defined in Definition 1.2 and

∆k f (xi,yj)=∆k−1(∆ f (xi,yj)), k≥2,

so that

∆r f (xi,yj)=
r

∑
s=1

r

∑
t=1

(−1)s+t(r
s)(

r
t) f (xi+r−s,yj+r−t).

(ii) The marginal functions f (·,c)∈ r−BV([a,b]) and f (a,·)∈ r−BV([c,d]).

It is easy to prove that f ∈ r−BV(R) implies f is bounded on R, BVH(R)⊂ r−BV(R)
and each of the marginal functions f (·,y0)∈r−BV([a,b]) and f (x0,·)∈r−BV([c,d]) (refer
to (Definition 4, pp. 115, [6]) for the definition of r−BV[a,b]), where y0∈[c,d] and x0∈[a,b]
are fixed.

Definition 1.4. A function f defined on the rectangle R :=[a,b]×[c,d] is said to be abso-
lutely continuous (that is, f ∈AC(R)) if the following two conditions are satisfied:

(i) Given ǫ>0, there exists δ=δ(ǫ)>0 such that

∑
{Rk}∈R

| f (ak ,ck)− f (bk,ck)− f (ak,dk)+ f (bk,dk)|<ǫ,

whenever {Rk := [ak,bk]×[ck,dk]}k=1,2,···, is a infinite collection of pairwise non-
overlapping sub-rectangles of R with

∑
{Rk}∈R

(bk−ak)(dk−ck)<δ.

(ii) The marginal functions f (·,c)∈AC([a,b]) and f (a,·)∈AC([c,d]).

An absolutely continuous function f on R is uniformly continuous and each of the
marginal functions f (·,y0) ∈ AC([a,b]) and f (x0,·) ∈ AC([c,d]), where y0 ∈ [c,d] and
x0∈ [a,b] are fixed.
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2 New results for functions of two variables

For any x=(x1,x2)∈T
2

and k=(k1,k2)∈Z2, denote their scalar product by k·x=k1x1+k2x2.

For any f∈L1(T
2
), where f is 2π-periodic in each variable, its Fourier series is defined

as

f (x)∼ ∑
k∈Z2

f̂ (k)ei(k·x),

where

f̂ (k)=
1

(2π)2

∫

T
2

f (x)e−i(k·x)dx

denotes the kth Fourier coefficient of f .

We prove the following theorems.

Theorem 2.1. If f ∈ (Λ1,Λ2)BV(p)(T
2
)∩Lp(T

2
) (p ≥ 1) and k = (k1,k2) ∈ Z2 is such that

k1 ·k2 6=0, then

| f̂ (k)|=O

(

1

(∑
|k1|
i=1∑

|k2|
j=1

1
λ1

i λ2
j

)1/p

)

.

Theorem 2.1 generalizes the result (Theorem 1 (iii), [5]) for functions of two variables.

Corollary 2.1. If f ∈(Λ1,Λ2)∗BV(p)(T
2
) (p≥1) and k=(k1,k2)∈Z2 is such that k1 ·k2 6=0,

then

| f̂ (k)|=O

(

1

(∑
|k1 |
i=1∑

|k2 |
j=1

1
λ1

i λ2
j

)1/p

)

.

Theorem 2.2. If f ∈ r−BV(T
2
) and k=(k1,k2)∈Z2 is such that k1 ·k2 6=0, then

| f̂ (k)|=O

( 1

|k1 ·k2|

)

.

Theorem 2.3. If f ∈Lip(p;α1,α2) over T
2

(p≥ 1, α1, α2 ∈ (0,1]) and k=(k1,k2)∈Z2 is such
that k1 ·k2 6=0, then

| f̂ (k)|=O

(

1

|k1|α1 |k2|α2

)

.

Theorem 2.4. If f ∈AC(T
2
) and k=(k1,k2)∈Z2 is such that k1 ·k2 6=0, then

| f̂ (k)|= o
( 1

|k1 ·k2|

)

.
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3 Proof of the results

Proof of Theorem 2.1: Since

f̂ (k1,k2)=
1

4π2

∫ 2π

0

∫ 2π

0
f (x1,x2)e

−ik1x1 e−ik2x2 dx1dx2,

we have

4| f̂ (k1,k2)|=
1

4π2

∣

∣

∣

∫ 2π

0

∫ 2π

0

(

f
(

x1+
π

k1
,x2+

π

k2

)

− f
(

x1,x2+
π

k2

)

− f
(

x1+
π

k1
,x2

)

+ f (x1,x2)
)

e−ik1x1 e−ik2x2 dx1dx2

∣

∣

∣
.

Because of the periodicity of f in each variable, we get

∫ 2π

0

∫ 2π

0
|∆ fr1r2(x1,x2)|dx1dx2=

∫ 2π

0

∫ 2π

0

∣

∣

∣
f
(

x1+
π

k1
,x2+

π

k2

)

− f
(

x1,x2+
π

k2

)

− f
(

x1+
π

k1
,x2

)

+ f (x1,x2)
∣

∣

∣
dx1dx2,

where

∆ fr1r2(x1,x2)= f
(

x1+
r1π

k1
,x2+

r2π

k2

)

− f
(

x1+
(r1−1)π

k1
,x2+

r2π

k2

)

− f
(

x1+
r1π

k1
,x2+

(r2−1)π

k2

)

+ f
(

x1+
(r1−1)π

k1
,x2+

(r2−1)π

k2

)

,

for any r1,r2∈Z. Therefore

| f̂ (k1,k2)|≤
1

16π2

∫ 2π

0

∫ 2π

0
|∆ fr1r2(x1,x2)|dx1dx2. (3.1)

Dividing both sides by λ1
r1

λ2
r2

and then summing over r1 =1 to |k1| and r2 =1 to |k2|, we
get

| f̂ (k1,k2)|

( |k1|

∑
r1=1

|k2|

∑
r2=1

1

λ1
r1

λ2
r2

)

≤
1

16π2

∫ 2π

0

∫ 2π

0

( |k1|

∑
r1=1

|k2|

∑
r2=1

|∆ fr1r2(x1,x2)|

(λ1
r1

λ2
r2
)

1
p+

1
q

)

dx1dx2,

where q is the index conjugate to p.
Applying Hölder’s inequality on the right side of the above inequality, we have

| f̂ (k1,k2)|

( |k1|

∑
r1=1

|k2 |

∑
r2=1

1

λ1
r1

λ2
r2

)

≤
1

16π2

∫ 2π

0

∫ 2π

0

( |k1|

∑
r1=1

|k2|

∑
r2=1

|∆ fr1r2(x1,x2))|p

λ1
r1

λ2
r2

)
1
p
( |k1|

∑
r1=1

|k2|

∑
r2=1

1

λ1
r1

λ2
r2

)
1
q

dx1dx2.
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Hence

| f̂ (k1,k2)|

( |k1|

∑
r1=1

|k2|

∑
r2=1

1

λ1
r1

λ2
r2

)
1
p

≤
1

16π2

∫ 2π

0

∫ 2π

0

( |k1|

∑
r1=1

|k2|

∑
r2=1

|∆ fr1r2(x1,x2)|p

λ1
r1

λ2
r2

)
1
p

dx1dx2

≤
1

4
V∧

p
( f ,T

2
).

This completes the proof.

Proof of Corollary 2.1: Observe that f ∈ (Λ1,Λ2)∗BV(p)(T
2
) then f is bounded and

(Λ1,Λ2)∗BV(p)(T
2
)⊂ (Λ1,Λ2)BV(p)(T

2
).

Hence the corollary follows.
Proof of Theorem 2.2: Proceeding as in the proof of Theorem 2.1, from (3.1) it follows

that

| f̂ (k1,k2)|≤
( 1

16π2

)

∫ 2π

0

∫ 2π

0
|∆ fr1r2(x1,x2)|dx1dx2.

Similarly, we get

| f̂ (k1,k2)|≤
( 1

16π2

)r∫ 2π

0

∫ 2π

0
|∆r fr1r2(x1,x2)|dx1dx2.

Summing the above inequality over r1 =1 to |k1|−r and r2=1 to |k2|−r, we get

(|k1|−r)(|k2|−r)| f̂ (k1,k2)|≤
( 1

16π2

)r∫ 2π

0

∫ 2π

0

|k1|−r

∑
r1=1

|k2|−r

∑
r2=1

|∆r fr1r2(x1,x2)|dx1dx2.

This together with
|k1|−r

∑
r1=1

|k2|−r

∑
r2=1

|∆r fr1r2(x1,x2)|≤Vr( f ;[0,2π]2),

|k1|≈ |k1|−r and |k2|≈ |k2|−r implies

| f̂ (k1,k2)|=O

( 1

|k1k2|

)

.

Proof of Theorem 2.3: Proceeding as in the proof of Theorem 2.1, one gets (3.1). By
applying Hölder’s inequality to the right side of (3.1), we obtain

| f̂ (k1,k2)|=O(1)
(

∫ 2π

0

∫ 2π

0
|∆ fr1r2(x1,x2)|

pdx1dx2

)1/p
.

Hence the result follows.
Proof of Theorem 2.4: Theorem 2.4 can be proved in a similar way to the proof of

Theorem 2.1.
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4 Extension of the results for functions of several variables

For any x=(x1,··· ,xN)∈T
N

and k=(k1,··· ,kN)∈ZN denotes their scalar product by

k·x= k1x1+···+kN xN .

For f∈L1(T
N
), where f is complex valued function which is 2π-periodic in each variable,

its Fourier series is defined as

f (x)∼ ∑
k∈ZN

f̂ (k)ei(k·x),

where

f̂ (k)=
1

(2π)N

∫

T
N

f (x)e−i(k·x)dx

denotes the kth Fourier coefficient of f .

Given x=(x1,··· ,xN)∈TN and h=(h1,··· ,hN)∈TN , define

∆ f (x;h)=Th f (x)− f (x)=∆ f (x1,··· ,xN ;h1,··· ,hN)

=
1

∑
η1=0

···
1

∑
ηN=0

(−1)η1+···+ηN f (x1+η1h1,··· ,xN+ηNhN).

For p≥1, the p-integral modulus of continuity of a function f ∈Lp(T
N
) is defined as

ω(p)( f ;δ1,··· ,δN)=sup

{

( 1

(2π)N

∫

T
N
|∆ f (x;h)|pdx

)1/p
: 0<hj ≤δj, j=1,··· ,N

}

.

Obviously, ω(p)( f ;δ1,··· ,δN)→0 as max{δ1,··· ,δN}→0.

For p=∞, we omit writing p, one gets ω( f ;δ1,··· ,δN), the modulus of continuity of f .

A function f ∈Lp(T
N
) is said to belongs to Lip(p;α1,··· ,αN), the Lipschitz class in the

mean of order p, if ω(p)( f ;δ1,··· ,δN)=O(δα1
1 ,··· ,δαN

N ) as δi→0, ∀i=1,··· ,N.

For p = ∞, the class Lip(p;α1,··· ,αN) reduces to the Lipschitz class Lip(α1,··· ,αN).
Obviously, Lip(α1,··· ,αN)⊂ Lip(p;α1,··· ,αN).

For given
∧

=(Λ1,··· ,ΛN), where Λ1,··· ,ΛN ∈L and p≥ 1. A function f : T
N
→C is

said to be of p−(Λ1,··· ,ΛN) bounded variation (that is, f ∈ (Λ1,··· ,ΛN)BV(p)(T
N
)) if

V∧

p
( f ,T

N
)=sup

P

( s1

∑
r1=1

···
sN

∑
rN=1

|∆ f (xr1−1
1 ,··· ,xrN−1

N ;hr1
1 ,··· ,hrN

N )|p

λ1
r1

λ2
r2
···λN

rN

)1/p

<∞,

where the supremum is extended over all partitions P=P1×P2×···×PN of the closed cube

T
N

, Pj={0=x0
j <x1

j < ···<x
s j

j =2π} and sj≥1; rj=1,2,··· ,sj; h
r j

j =x
r j

j −x
r j−1

j ; j=1,2,··· ,N.
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Moreover, a function f ∈ (Λ1,··· ,ΛN)BV(p)(T
N

) is said to be of p−(Λ1,··· ,ΛN)∗

bounded variation (that is, f ∈ (Λ1,··· ,ΛN)∗BV(p)(T
N
)), if for each of its marginal func-

tions

f (x1,··· ,xi−1,0,xi+1,··· ,xN)∈ (Λ1,··· ,Λi−1,Λi+1,··· ,ΛN)∗BV(p)(T
N
(0i)),

∀i=1,2,··· ,N, where

T
N
(0i)=

{

(x1,··· ,xi−1,xi+1,··· ,xN)∈T
N−1

: 0≤ xk ≤2π, for k=1,··· ,i−1,i+1,··· ,N
}

.

It is easy to prove that f ∈ (Λ1,··· ,ΛN)∗BV(p)(T
N
)) implies it is bounded. In particular f

is Lebesgue integrable over T
N

.

Similarly, we say that a function f ∈ r−BV(T
N
) if the following two conditions are

satisfied:

(i)

Vr( f ,T
N
)=sup

P

( s1

∑
r1=1

···
sN

∑
rN=1

|∆r f (xr1−1
1 ,··· ,xrN−1

N ;hr1
1 ,··· ,hrN

N )|

)

<∞,

where, for k≥2,

∆k f (xr1−1
1 ,··· ,xrN−1

N ;hr1
1 ,··· ,hrN

N )=∆k−1
(

∆ f (xr1−1
1 ,··· ,xrN−1

N ;hr1
1 ,··· ,hrN

N )
)

.

(ii) Each of its marginal functions

f (x1,x2,··· ,xi−1,0,xi+1,··· ,xN)∈ r−BV(T
N
(0i)), ∀i=1,··· ,N.

A function f = f (x1,··· ,xN) is said to be absolutely continuous over T
N

(that is, f ∈

AC(T
N
)) if the following two conditions are satisfied [4]:

(i) Given ǫ>0, there exists δ=δ(ǫ)>0 such that

∑
Rk∈R′

|∆ f (ck
1,··· ,ck

N ;hk
1,··· ,hk

N)|<ǫ

with hk
j =dk

j −ck
j , j=1,2,··· ,N; whenever

R′=
{

Rk =[ck
1,dk

1]×[ck
2,dk

2]×···×[ck
N ,dk

N ]
}

is a finite collection of pairwise non-overlapping sub-rectangles of T
N

with

∑
Rk∈R′

N

∏
j=1

(dk
j −ck

j )<δ.
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(ii) Each of its marginal functions

f (x1,x2,··· ,xi−1,0,xi+1,··· ,xN)∈AC(T
N
(0i)), ∀i=1,··· ,N.

Now, we extend the above mentioned theorems of Section 2 for higher dimensional space
as following:

Theorem 4.1. If f ∈(Λ1,··· ,ΛN)BV(p)(T
N
)∩Lp(T

N
) (p≥1) and k=(k1,··· ,kN)∈ZN is such

that k1 ···kN 6=0, then

| f̂ (k)|=O

(

1
(

∑
|k1|
r1=1 ···∑

|kN |
rN=1

1
λ1

r1
···λN

rN

)1/p

)

.

Obviously, Theorem 4.1 generalizes the result (Theorem, [3]).

Corollary 4.1. If f ∈ (Λ1,··· ,ΛN)∗BV(p)(T
N
)(p≥1) and k=(k1,··· ,kN)∈ZN is such that

k1 ···kN 6=0, then

| f̂ (k)|=O

(

1
(

∑
|k1|
r1=1 ···∑

|kN |
rN=1

1
λ1

r1
···λN

rN

)1/p

)

.

Theorem 4.2. If f ∈r−BV(T
N
)(r≥1) and k=(k1,··· ,kN)∈ZN is such that k1 ···kN 6=0, then

| f̂ (k)|=O

( 1

|k1 ···kN |

)

.

Theorem 4.3. If f ∈Lip(p;α1,··· ,αN) over T
N
(p≥1, α1,··· ,αN∈(0,1]) and k=(k1,··· ,kN)∈

ZN is such that k1 ···kN 6=0, then

| f̂ (k)|=O

( 1

|k1|α1 ··· |kN |αN

)

.

Theorem 4.4. If f ∈AC(T
N
) and k=(k1,··· ,kN)∈ZN is such that k1 ···kN 6=0, then

| f̂ (k)|= o
( 1

|k1 ···kN |

)

.

The above results of this section can be proved in the same way as we do in Section 2.
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