Order of Magnitude of Multiple Fourier Coefficients

R. G. Vyas^{1,*} and K. N. Darji²

 ¹ Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
 ² Department of Science and Humanity, Tatva Institute of Technological Studies, Modasa, Sabarkantha, Gujarat, India

Received 26 May 2011

Abstract. The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$ and r - BV, over $[0, 2\pi]^N$, are estimated.

Key Words: Order of magnitude of multiple Fourier coefficients, function of $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$, r-BV and $\text{Lip}(p;\alpha_1, \dots, \alpha_N)$.

AMS Subject Classifications: 42B05, 26B30, 26D15

1 Introduction

Recently, V. Fülöp and F. Móricz [3] studied the order of magnitude of multiple Fourier coefficients of functions in BV ($\overline{\mathbf{T}}^N$), where $\mathbf{T} = [0, 2\pi)$, in the sense of Vitali and Hardy. Here, we have generalized these results by estimating the order of magnitude of multiple Fourier coefficients of complex valued functions in $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$, r - BV and Lip $(p;\alpha_1, \dots, \alpha_N)$ over $\overline{\mathbf{T}}^N$.

Definition 1.1. For a given $f \in L^p(\overline{\mathbf{T}}^2)$, $1 \le p < \infty$, the *p*-integral modulus of continuity of *f* is defined as

$$\omega^{(p)}(f;\delta_1,\delta_2) = \sup \left\{ \left(\frac{1}{4\pi^2} \iint_{\overline{\mathbf{T}}^2} |\Delta f(x,y;h,k)|^p dx dy \right)^{1/p} : 0 < h \le \delta_1, \, 0 < k \le \delta_2 \right\},\$$

where

$$\Delta f(x,y;h,k) = f(x+h,y+k) - f(x,y+k) - f(x+h,y) + f(x,y).$$

For every $f \in L^p(\overline{\mathbf{T}}^2)$, $\omega^{(p)}(f;\delta_1,\delta_2) \to 0$ as max $\{\delta_1,\delta_2\} \to 0$.

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* drrgvyas@yahoo.com (R. G. Vyas), darjikiranmsu@gmail.com (K. N. Darji)

For $p \ge 1$ and $\alpha_1, \alpha_2 \in (0, 1]$, we say that $f \in \text{Lip}(p; \alpha_1, \alpha_2)$ if

$$\omega^{(p)}(f;\delta_1,\delta_2) = \mathcal{O}(\delta_1^{\alpha_1}\delta_2^{\alpha_2})$$
 as δ_1 and $\delta_2 \to 0$.

For $p = \infty$, we write $\omega(f; \delta_1, \delta_2)$ for $\omega^{(\infty)}(f; \delta_1, \delta_2)$, Definition 1.1 gives the modulus of continuity of *f* and in that case the class $\text{Lip}(p;\alpha_1,\alpha_2)$ reduces to Lipschitz class $\text{Lip}(\alpha_1,\alpha_2)$.

Definition 1.2. Let **L** be the class of all non-decreasing sequences $\Lambda' = \{\lambda'_n\}$ $(n = 1, 2, \cdots)$ of positive numbers such that $\sum_n (\lambda'_n)^{-1}$ diverges. For given $\Lambda = (\Lambda^1, \Lambda^2)$, where $\Lambda^k = \{\lambda_n^k\} \in \mathbf{L}$ for k = 1, 2 and $p \ge 1$. A complex valued measurable function f defined on a rectangle $R := [a,b] \times [c,d]$ is said to be of $p \cdot (\Lambda^1, \Lambda^2)$ -bounded variation (that is, $f \in$ $(\Lambda^1, \Lambda^2) BV^{(p)}(R)$, if

$$V_{\Lambda_{p}}(f,R) = \sup_{P=P_{1} \times P_{2}} \left(\sum_{i=1}^{m} \sum_{j=1}^{l} \frac{|\Delta f(x_{i},y_{j})|^{p}}{\lambda_{i}^{1}\lambda_{j}^{2}} \right)^{1/p} < \infty,$$

where

$$\Delta f(x_i, y_j) = \Delta f(x_i, y_j; \Delta x_i, \Delta y_j), \qquad \Delta x_i = x_{i+1} - x_i, \Delta y_j = y_{j+1} - y_j, \qquad P_1: a = x_0 < x_1 < x_2 < \dots < x_m = b$$

and

$$P_2: c = y_0 < y_1 < y_2 < \cdots < y_l = d.$$

If $f \in (\Lambda^1, \Lambda^2) BV^{(p)}(R)$ is such that the marginal functions $f(a, \cdot) \in \Lambda^2 BV^{(p)}([c,d])$ and $f(\cdot,c) \in \Lambda^1 BV^{(p)}([a,b])$ (refer [6]) for the definition of $\Lambda BV^{(p)}([a,b])$), then f is said to be of p- $(\Lambda^1, \Lambda^2)^*$ -bounded variation over R (that is, $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$).

If $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ then f is bounded and each of the marginal function $f(\cdot, t) \in$

 $\Lambda^{1}BV^{(p)}([a,b])$ and $f(s,\cdot) \in \Lambda^{2}BV^{(p)}([c,d])$, where $t \in [c,d]$ and $s \in [a,b]$ are fixed. Note that, for $\Lambda^{1} = \Lambda$ and $\Lambda^{2} = \{1\}$ (that is, $\lambda_{n}^{1} = \lambda_{n}$ and $\lambda_{n}^{2} = 1$, $\forall n$) the class $(\Lambda^{1},\Lambda^{2})BV^{(p)}(R)$ and the class $(\Lambda^{1},\Lambda^{2})^{*}BV^{(p)}(R)$ reduce to the class $\Lambda BV^{(p)}(R)$ and the class $\Lambda^* BV^{(p)}(R)$ respectively; for p = 1, we omit writing p, the class $(\Lambda^1, \Lambda^2)BV^{(p)}(R)$ and the class $(\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ reduce to the class $(\Lambda^1, \Lambda^2) BV(R)$ (Definition 2, [1]) and the class $(\Lambda^1, \Lambda^2)^* BV(R)$ respectively and for p = 1 the class $\Lambda BV^{(p)}(R)$ and the class $\Lambda^* BV^{(p)}(R)$ reduce to the class $\Lambda BV(R)$ and the class $\Lambda^* BV(R)$ respectively (Definition 3, [2]). Moreover, for $\Lambda^1 = \Lambda^2 = \{1\}$ and for p = 1 the class $(\Lambda^1, \Lambda^2) BV^{(p)}(R)$ and the class $(\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ reduces to the class $BV_V(R)$ (bounded variation in the sense of Vitali) and the class $BV_H(R)$ (bounded variation in the sense of Hardy) respectively.

Observe that the characteristic function of $E = \{(x,y); x \in [0,1] \text{ and } y \in [0,1-x]\}$ is in $\Lambda BV^{(p)}([0,1]^2)$ if

$$\sum_{n} \left(\frac{1}{\lambda_n}\right)^2 < \infty. \tag{1.1}$$

If Λ satisfies (1.1), the requirement of measurability cannot be omitted from Definition 1.2, otherwise the class $\Lambda BV^{(p)}$ would include functions which are not Lebesgue measurable. Even under the assumption of measurability, Dyachenko and Waterman (Proposition 1, [2]) proved that there exists a $f \in \Lambda BV(R)$ which is everywhere discontinuous.

Definition 1.3. For a given positive integer *r*, a complex valued function *f* defined on a rectangle $R := [a,b] \times [c,d]$ is said to be of *r*-bounded variation (that is, $f \in r - BV(R)$) if the following two conditions are satisfied:

(i)

$$V_r(f,R) = \sup_{P=P_1 \times P_2} V_r(f,R,P) < \infty,$$

where

$$V_r(f,R,P) = \left(\sum_{i=1}^{m-r}\sum_{j=1}^{n-r} |\Delta^r f(x_i,y_j)|\right),$$

P, *P*₁, *P*₂, $\Delta f(x_i, y_i)$ are defined in Definition 1.2 and

$$\Delta^k f(x_i, y_j) = \Delta^{k-1}(\Delta f(x_i, y_j)), \quad k \ge 2,$$

so that

$$\Delta^{r} f(x_{i}, y_{j}) = \sum_{s=1}^{r} \sum_{t=1}^{r} (-1)^{s+t} {r \choose s} {r \choose t} f(x_{i+r-s}, y_{j+r-t})$$

(ii) The marginal functions $f(\cdot,c) \in r - BV([a,b])$ and $f(a,\cdot) \in r - BV([c,d])$.

It is easy to prove that $f \in r - BV(R)$ implies f is bounded on R, $BV_H(R) \subset r - BV(R)$ and each of the marginal functions $f(\cdot, y_0) \in r - BV([a,b])$ and $f(x_0, \cdot) \in r - BV([c,d])$ (refer to (Definition 4, pp. 115, [6]) for the definition of r - BV[a,b]), where $y_0 \in [c,d]$ and $x_0 \in [a,b]$ are fixed.

Definition 1.4. A function *f* defined on the rectangle $R := [a,b] \times [c,d]$ is said to be absolutely continuous (that is, $f \in AC(R)$) if the following two conditions are satisfied:

(i) Given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$\sum_{\{R_k\}\in R} |f(a_k,c_k) - f(b_k,c_k) - f(a_k,d_k) + f(b_k,d_k)| < \epsilon,$$

whenever $\{R_k := [a_k, b_k] \times [c_k, d_k]\}_{k=1,2,\dots,k}$ is a infinite collection of pairwise nonoverlapping sub-rectangles of *R* with

$$\sum_{\{R_k\}\in R} (b_k - a_k) (d_k - c_k) < \delta.$$

(ii) The marginal functions $f(\cdot,c) \in AC([a,b])$ and $f(a,\cdot) \in AC([c,d])$.

An absolutely continuous function f on R is uniformly continuous and each of the marginal functions $f(\cdot,y_0) \in AC([a,b])$ and $f(x_0,\cdot) \in AC([c,d])$, where $y_0 \in [c,d]$ and $x_0 \in [a,b]$ are fixed.

2 New results for functions of two variables

For any $\mathbf{x} = (x_1, x_2) \in \overline{\mathbf{T}}^2$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$, denote their scalar product by $\mathbf{k} \cdot \mathbf{x} = k_1 x_1 + k_2 x_2$. For any $f \in L^1(\overline{\mathbf{T}}^2)$, where f is 2π -periodic in each variable, its Fourier series is defined

$$f(\mathbf{x}) \sim \sum_{\mathbf{k} \in \mathbf{Z}^2} \hat{f}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x})},$$

where

$$\hat{f}(\mathbf{k}) = \frac{1}{(2\pi)^2} \int_{\overline{\mathbf{T}}^2} f(\mathbf{x}) e^{-i(\mathbf{k}\cdot\mathbf{x})} d\mathbf{x}$$

denotes the \mathbf{k}^{th} Fourier coefficient of f.

We prove the following theorems.

Theorem 2.1. If $f \in (\Lambda^1, \Lambda^2) BV^{(p)}(\overline{\mathbf{T}}^2) \cap L^p(\overline{\mathbf{T}}^2)$ $(p \ge 1)$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$ is such that $k_1 \cdot k_2 \neq 0$, then

$$|\hat{f}(\mathbf{k})| = O\left(\frac{1}{(\sum_{i=1}^{|k_1|}\sum_{j=1}^{|k_2|}\frac{1}{\lambda_i^1\lambda_j^2})^{1/p}}\right).$$

Theorem 2.1 generalizes the result (Theorem 1 (iii), [5]) for functions of two variables.

Corollary 2.1. If $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(\overline{\mathbf{T}}^2)$ $(p \ge 1)$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$ is such that $k_1 \cdot k_2 \ne 0$, then

$$|\hat{f}(\mathbf{k})| = O\left(\frac{1}{(\sum_{i=1}^{|k_1|} \sum_{j=1}^{|k_2|} \frac{1}{\lambda_i^1 \lambda_j^2})^{1/p}}\right).$$

Theorem 2.2. If $f \in r - BV(\overline{\mathbf{T}}^2)$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$ is such that $k_1 \cdot k_2 \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = \mathcal{O}\left(\frac{1}{|k_1 \cdot k_2|}\right).$$

Theorem 2.3. If $f \in \text{Lip}(p; \alpha_1, \alpha_2)$ over $\overline{\mathbf{T}}^2$ $(p \ge 1, \alpha_1, \alpha_2 \in (0,1])$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$ is such that $k_1 \cdot k_2 \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = \mathcal{O}\left(\frac{1}{|k_1|^{\alpha_1}|k_2|^{\alpha_2}}\right).$$

Theorem 2.4. If $f \in AC(\overline{\mathbf{T}}^2)$ and $\mathbf{k} = (k_1, k_2) \in \mathbf{Z}^2$ is such that $k_1 \cdot k_2 \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = o\left(\frac{1}{|k_1 \cdot k_2|}\right).$$

30

as

3 Proof of the results

Proof of Theorem 2.1: Since

$$\hat{f}(k_1,k_2) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} f(x_1,x_2) e^{-ik_1x_1} e^{-ik_2x_2} dx_1 dx_2,$$

we have

$$4|\hat{f}(k_1,k_2)| = \frac{1}{4\pi^2} \Big| \int_0^{2\pi} \int_0^{2\pi} \Big(f\Big(x_1 + \frac{\pi}{k_1}, x_2 + \frac{\pi}{k_2}\Big) - f\Big(x_1, x_2 + \frac{\pi}{k_2}\Big) \\ - f\Big(x_1 + \frac{\pi}{k_1}, x_2\Big) + f(x_1, x_2)\Big) e^{-ik_1x_1} e^{-ik_2x_2} dx_1 dx_2 \Big|.$$

Because of the periodicity of f in each variable, we get

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |\Delta f_{r_1 r_2}(x_1, x_2)| dx_1 dx_2 = \int_{0}^{2\pi} \int_{0}^{2\pi} \left| f\left(x_1 + \frac{\pi}{k_1}, x_2 + \frac{\pi}{k_2}\right) - f\left(x_1, x_2 + \frac{\pi}{k_2}\right) - f\left(x_1, x_2 + \frac{\pi}{k_1}, x_2\right) + f(x_1, x_2) \right| dx_1 dx_2,$$

where

$$\Delta f_{r_1 r_2}(x_1, x_2) = f\left(x_1 + \frac{r_1 \pi}{k_1}, x_2 + \frac{r_2 \pi}{k_2}\right) - f\left(x_1 + \frac{(r_1 - 1)\pi}{k_1}, x_2 + \frac{r_2 \pi}{k_2}\right) \\ - f\left(x_1 + \frac{r_1 \pi}{k_1}, x_2 + \frac{(r_2 - 1)\pi}{k_2}\right) + f\left(x_1 + \frac{(r_1 - 1)\pi}{k_1}, x_2 + \frac{(r_2 - 1)\pi}{k_2}\right),$$

for any $r_1, r_2 \in \mathbb{Z}$. Therefore

$$|\hat{f}(k_1,k_2)| \le \frac{1}{16\pi^2} \int_0^{2\pi} \int_0^{2\pi} |\Delta f_{r_1r_2}(x_1,x_2)| dx_1 dx_2.$$
(3.1)

Dividing both sides by $\lambda_{r_1}^1 \lambda_{r_2}^2$ and then summing over $r_1 = 1$ to $|k_1|$ and $r_2 = 1$ to $|k_2|$, we get

$$|\hat{f}(k_1,k_2)| \left(\sum_{r_1=1}^{|k_1|} \sum_{r_2=1}^{|k_2|} \frac{1}{\lambda_{r_1}^1 \lambda_{r_2}^2}\right) \leq \frac{1}{16\pi^2} \int_0^{2\pi} \int_0^{2\pi} \left(\sum_{r_1=1}^{|k_1|} \sum_{r_2=1}^{|k_2|} \frac{|\Delta f_{r_1r_2}(x_1,x_2)|}{(\lambda_{r_1}^1 \lambda_{r_2}^2)^{\frac{1}{p}+\frac{1}{q}}}\right) dx_1 dx_2,$$

where *q* is the index conjugate to *p*.

Applying Hölder's inequality on the right side of the above inequality, we have

$$\begin{aligned} &|\hat{f}(k_{1},k_{2})|\left(\sum_{r_{1}=1}^{|k_{1}|}\sum_{r_{2}=1}^{|k_{2}|}\frac{1}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2}}\right)\\ \leq &\frac{1}{16\pi^{2}}\int_{0}^{2\pi}\int_{0}^{2\pi}\left(\sum_{r_{1}=1}^{|k_{1}|}\sum_{r_{2}=1}^{|k_{2}|}\frac{|\Delta f_{r_{1}r_{2}}(x_{1},x_{2}))|^{p}}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}}\left(\sum_{r_{1}=1}^{|k_{1}|}\sum_{r_{2}=1}^{|k_{2}|}\frac{1}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2}}\right)^{\frac{1}{q}}dx_{1}dx_{2}\end{aligned}$$

Hence

$$\begin{split} |\hat{f}(k_{1},k_{2})| \left(\sum_{r_{1}=1}^{|k_{1}|}\sum_{r_{2}=1}^{|k_{2}|}\frac{1}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}} &\leq \frac{1}{16\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left(\sum_{r_{1}=1}^{|k_{1}|}\sum_{r_{2}=1}^{|k_{2}|}\frac{|\Delta f_{r_{1}r_{2}}(x_{1},x_{2})|^{p}}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}} dx_{1} dx_{2} \\ &\leq \frac{1}{4} V_{\Lambda_{p}}(f,\overline{\mathbf{T}}^{2}). \end{split}$$

This completes the proof.

Proof of Corollary 2.1: Observe that $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(\overline{\mathbf{T}}^2)$ then f is bounded and $(\Lambda^1, \Lambda^2)^* BV^{(p)}(\overline{\mathbf{T}}^2) \subset (\Lambda^1, \Lambda^2) BV^{(p)}(\overline{\mathbf{T}}^2)$.

Hence the corollary follows.

Proof of Theorem 2.2: Proceeding as in the proof of Theorem 2.1, from (3.1) it follows that

$$|\hat{f}(k_1,k_2)| \leq \left(\frac{1}{16\pi^2}\right) \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} |\Delta f_{r_1r_2}(x_1,x_2)| dx_1 dx_2.$$

Similarly, we get

$$|\hat{f}(k_1,k_2)| \leq \left(\frac{1}{16\pi^2}\right)^r \int_0^{2\pi} \int_0^{2\pi} |\Delta^r f_{r_1r_2}(x_1,x_2)| dx_1 dx_2.$$

Summing the above inequality over $r_1 = 1$ to $|k_1| - r$ and $r_2 = 1$ to $|k_2| - r$, we get

$$(|k_1|-r)(|k_2|-r)|\hat{f}(k_1,k_2)| \leq \left(\frac{1}{16\pi^2}\right)^r \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} \sum_{r_1=1}^{|k_1|-r|} \sum_{r_2=1}^{|k_2|-r|} |\Delta^r f_{r_1r_2}(x_1,x_2)| dx_1 dx_2.$$

This together with

$$\sum_{r_1=1}^{|k_1|-r|} \sum_{r_2=1}^{|k_2|-r} |\Delta^r f_{r_1r_2}(x_1,x_2)| \leq V_r(f;[0,2\pi]^2),$$

 $|k_1| \approx |k_1| - r$ and $|k_2| \approx |k_2| - r$ implies

$$|\hat{f}(k_1,k_2)| = O\left(\frac{1}{|k_1k_2|}\right).$$

Proof of Theorem 2.3: Proceeding as in the proof of Theorem 2.1, one gets (3.1). By applying Hölder's inequality to the right side of (3.1), we obtain

$$|\hat{f}(k_1,k_2)| = \mathcal{O}(1) \left(\int_0^{2\pi} \int_0^{2\pi} |\Delta f_{r_1r_2}(x_1,x_2)|^p dx_1 dx_2 \right)^{1/p}.$$

Hence the result follows.

Proof of Theorem 2.4: Theorem 2.4 can be proved in a similar way to the proof of Theorem 2.1.

4 Extension of the results for functions of several variables

For any $\mathbf{x} = (x_1, \dots, x_N) \in \overline{\mathbf{T}}^N$ and $\mathbf{k} = (k_1, \dots, k_N) \in \mathbf{Z}^N$ denotes their scalar product by

$$\mathbf{k} \cdot \mathbf{x} = k_1 x_1 + \cdots + k_N x_N.$$

For $f \in L^1(\overline{\mathbf{T}}^N)$, where f is complex valued function which is 2π -periodic in each variable, its Fourier series is defined as

$$f(\mathbf{x}) \sim \sum_{\mathbf{k} \in \mathbf{Z}^N} \hat{f}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x})},$$

where

$$\hat{f}(\mathbf{k}) = \frac{1}{(2\pi)^N} \int_{\overline{\mathbf{T}}^N} f(\mathbf{x}) e^{-i(\mathbf{k}\cdot\mathbf{x})} d\mathbf{x}$$

denotes the \mathbf{k}^{th} Fourier coefficient of f.

Given $\mathbf{x} = (x_1, \cdots, x_N) \in \mathbf{T}^N$ and $\mathbf{h} = (h_1, \cdots, h_N) \in \mathbf{T}^N$, define

$$\Delta f(\mathbf{x}; \mathbf{h}) = T_{\mathbf{h}} f(\mathbf{x}) - f(\mathbf{x}) = \Delta f(x_1, \cdots, x_N; h_1, \cdots, h_N)$$

= $\sum_{\eta_1=0}^{1} \cdots \sum_{\eta_N=0}^{1} (-1)^{\eta_1 + \cdots + \eta_N} f(x_1 + \eta_1 h_1, \cdots, x_N + \eta_N h_N)$

For $p \ge 1$, the *p*-integral modulus of continuity of a function $f \in L^p(\overline{\mathbf{T}}^N)$ is defined as

$$\omega^{(p)}(f;\delta_1,\cdots,\delta_N) = \sup\left\{ \left(\frac{1}{(2\pi)^N} \int_{\overline{\mathbf{T}}^N} |\Delta f(\mathbf{x};\mathbf{h})|^p d\mathbf{x} \right)^{1/p} : 0 < h_j \le \delta_j, \ j = 1,\cdots,N \right\}.$$

Obviously, $\omega^{(p)}(f;\delta_1,\dots,\delta_N) \rightarrow 0$ as max $\{\delta_1,\dots,\delta_N\} \rightarrow 0$.

For $p = \infty$, we omit writing p, one gets $\omega(f; \delta_1, \dots, \delta_N)$, the modulus of continuity of f. A function $f \in L^p(\overline{\mathbf{T}}^N)$ is said to belongs to $\operatorname{Lip}(p; \alpha_1, \dots, \alpha_N)$, the Lipschitz class in the mean of order p, if $\omega^{(p)}(f; \delta_1, \dots, \delta_N) = \mathcal{O}(\delta_1^{\alpha_1}, \dots, \delta_N^{\alpha_N})$ as $\delta_i \to 0$, $\forall i = 1, \dots, N$.

For $p = \infty$, the class $\operatorname{Lip}(p;\alpha_1,\dots,\alpha_N)$ reduces to the Lipschitz class $\operatorname{Lip}(\alpha_1,\dots,\alpha_N)$. Obviously, $\operatorname{Lip}(\alpha_1,\dots,\alpha_N) \subset \operatorname{Lip}(p;\alpha_1,\dots,\alpha_N)$.

For given $\Lambda = (\Lambda^1, \dots, \Lambda^N)$, where $\Lambda^1, \dots, \Lambda^N \in \mathbf{L}$ and $p \ge 1$. A function $f : \overline{\mathbf{T}}^N \to \mathbf{C}$ is said to be of $p - (\Lambda^1, \dots, \Lambda^N)$ bounded variation (that is, $f \in (\Lambda^1, \dots, \Lambda^N) BV^{(p)}(\overline{\mathbf{T}}^N)$) if

$$V_{\Lambda_{p}}(f,\overline{\mathbf{T}}^{N}) = \sup_{P} \left(\sum_{r_{1}=1}^{s_{1}} \cdots \sum_{r_{N}=1}^{s_{N}} \frac{|\Delta f(x_{1}^{r_{1}-1}, \cdots, x_{N}^{r_{N}-1}; h_{1}^{r_{1}}, \cdots, h_{N}^{r_{N}})|^{p}}{\lambda_{r_{1}}^{1}\lambda_{r_{2}}^{2} \cdots \lambda_{r_{N}}^{N}} \right)^{1/p} < \infty,$$

where the supremum is extended over all partitions $P = P_1 \times P_2 \times \cdots \times P_N$ of the closed cube $\overline{\mathbf{T}}^N$, $P_j = \{0 = x_j^0 < x_j^1 < \cdots < x_j^{s_j} = 2\pi\}$ and $s_j \ge 1$; $r_j = 1, 2, \cdots, s_j$; $h_j^{r_j} = x_j^{r_j} - x_j^{r_j-1}$; $j = 1, 2, \cdots, N$.

Moreover, a function $f \in (\Lambda^1, \dots, \Lambda^N) BV^{(p)}(\overline{\mathbf{T}}^N)$ is said to be of $p - (\Lambda^1, \dots, \Lambda^N)^*$ bounded variation (that is, $f \in (\Lambda^1, \dots, \Lambda^N)^* BV^{(p)}(\overline{\mathbf{T}}^N)$), if for each of its marginal functions

$$f(x_1,\cdots,x_{i-1},0,x_{i+1},\cdots,x_N) \in (\Lambda^1,\cdots,\Lambda^{i-1},\Lambda^{i+1},\cdots,\Lambda^N)^* BV^{(p)}(\overline{\mathbf{T}}^N(0_i)),$$

 $\forall i = 1, 2, \cdots, N$, where

$$\overline{\mathbf{T}}^{N}(0_{i}) = \Big\{ (x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{N}) \in \overline{\mathbf{T}}^{N-1} \colon 0 \le x_{k} \le 2\pi, \text{ for } k=1, \cdots, i-1, i+1, \cdots, N \Big\}.$$

It is easy to prove that $f \in (\Lambda^1, \dots, \Lambda^N)^* BV^{(p)}(\overline{\mathbf{T}}^N)$ implies it is bounded. In particular f is Lebesgue integrable over $\overline{\mathbf{T}}^N$.

Similarly, we say that a function $f \in r - BV(\overline{\mathbf{T}}^N)$ if the following two conditions are satisfied:

(i)

$$V_r(f, \overline{\mathbf{T}}^N) = \sup_{P} \left(\sum_{r_1=1}^{s_1} \cdots \sum_{r_N=1}^{s_N} |\Delta^r f(x_1^{r_1-1}, \cdots, x_N^{r_N-1}; h_1^{r_1}, \cdots, h_N^{r_N})| \right) < \infty,$$

where, for $k \ge 2$,

$$\Delta^{k}f(x_{1}^{r_{1}-1},\cdots,x_{N}^{r_{N}-1};h_{1}^{r_{1}},\cdots,h_{N}^{r_{N}}) = \Delta^{k-1}(\Delta f(x_{1}^{r_{1}-1},\cdots,x_{N}^{r_{N}-1};h_{1}^{r_{1}},\cdots,h_{N}^{r_{N}})).$$

(ii) Each of its marginal functions

$$f(x_1,x_2,\cdots,x_{i-1},0,x_{i+1},\cdots,x_N)\in r-BV(\overline{\mathbf{T}}^N(0_i)),\quad\forall i=1,\cdots,N.$$

A function $f = f(x_1, \dots, x_N)$ is said to be absolutely continuous over $\overline{\mathbf{T}}^N$ (that is, $f \in AC(\overline{\mathbf{T}}^N)$) if the following two conditions are satisfied [4]:

(i) Given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$\sum_{R_k \in R'} |\Delta f(c_1^k, \cdots, c_N^k; h_1^k, \cdots, h_N^k)| < \epsilon$$

with $h_j^k = d_j^k - c_j^k$, $j = 1, 2, \cdots, N$; whenever

$$R' = \{R_k = [c_1^k, d_1^k] \times [c_2^k, d_2^k] \times \dots \times [c_N^k, d_N^k]\}$$

is a finite collection of pairwise non-overlapping sub-rectangles of $\overline{\mathbf{T}}^N$ with

$$\sum_{R_k \in R'} \prod_{j=1}^N (d_j^k - c_j^k) < \delta$$

(ii) Each of its marginal functions

$$f(x_1,x_2,\cdots,x_{i-1},0,x_{i+1},\cdots,x_N) \in AC(\overline{\mathbf{T}}^N(0_i)), \quad \forall i=1,\cdots,N.$$

Now, we extend the above mentioned theorems of Section 2 for higher dimensional space as following:

Theorem 4.1. If $f \in (\Lambda^1, \dots, \Lambda^N) BV^{(p)}(\overline{\mathbf{T}}^N) \cap L^p(\overline{\mathbf{T}}^N)$ $(p \ge 1)$ and $\mathbf{k} = (k_1, \dots, k_N) \in \mathbf{Z}^N$ is such that $k_1 \cdots k_N \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = O\left(\frac{1}{\left(\sum_{r_1=1}^{|k_1|}\cdots\sum_{r_N=1}^{|k_N|}\frac{1}{\lambda_{r_1}^1\cdots\lambda_{r_N}^N}\right)^{1/p}}\right).$$

Obviously, Theorem 4.1 generalizes the result (Theorem, [3]).

Corollary 4.1. If $f \in (\Lambda^1, \dots, \Lambda^N)^* BV^{(p)}(\overline{\mathbf{T}}^N) (p \ge 1)$ and $\mathbf{k} = (k_1, \dots, k_N) \in \mathbf{Z}^N$ is such that $k_1 \dots k_N \neq 0$, then

$$|\hat{f}(\mathbf{k})| = O\left(\frac{1}{\left(\sum_{r_1=1}^{|k_1|} \cdots \sum_{r_N=1}^{|k_N|} \frac{1}{\lambda_{r_1}^1 \cdots \lambda_{r_N}^N}\right)^{1/p}}\right).$$

Theorem 4.2. If $f \in r - BV(\overline{\mathbf{T}}^N)$ $(r \ge 1)$ and $\mathbf{k} = (k_1, \cdots, k_N) \in \mathbf{Z}^N$ is such that $k_1 \cdots k_N \ne 0$, then

$$|\hat{f}(\boldsymbol{k})| = \mathcal{O}\left(\frac{1}{|k_1\cdots k_N|}\right).$$

Theorem 4.3. If $f \in \text{Lip}(p; \alpha_1, \dots, \alpha_N)$ over $\overline{\mathbf{T}}^N$ $(p \ge 1, \alpha_1, \dots, \alpha_N \in (0, 1])$ and $\mathbf{k} = (k_1, \dots, k_N) \in \mathbf{Z}^N$ is such that $k_1 \cdots k_N \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = \mathcal{O}\left(\frac{1}{|k_1|^{\alpha_1}\cdots|k_N|^{\alpha_N}}\right).$$

Theorem 4.4. If $f \in AC(\overline{\mathbf{T}}^N)$ and $\mathbf{k} = (k_1, \dots, k_N) \in \mathbf{Z}^N$ is such that $k_1 \dots k_N \neq 0$, then

$$|\hat{f}(\boldsymbol{k})| = o\left(\frac{1}{|k_1 \cdots k_N|}\right).$$

The above results of this section can be proved in the same way as we do in Section 2.

References

- A. N. Bakhvalov, Fourier coefficients of functions from many-dimensional classes of bounded Λ-variation, Moscow Univ. Math. Bulletin, 66(1) (2011), 8–16.
- [2] M. I. Dyachenko and D. Waterman, Convergence of double Fourier series and W-classes, Trans. Amer. Math. Soc., 357(1) (2004), 397–407.

- [3] V. Fülöp and F. Móricz, Order of magnitude of multiple Fourier coefficients of functions of bounded variation, Acta Math. Hungar., 104(1-2) (2004), 95–104.
- [4] F. Móricz and A. Veres, On the absolute convergence of multiple Fourier series, Acta Math. Hungar., 117(3) (2007), 275–292.
- [5] M. Schramm and D. Waterman, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc., 85 (1982), 407–410.
- [6] J. R. Patadia and R. G. Vyas, Fourier series with small gaps and functions of generalized variations, J. Math. Anal. Appl., 182(1) (1994), 113–126.