Order of Magnitude of Multiple Fourier Coefficients

R. G. Vyas ${ }^{1, *}$ and K. N. Darji ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, The Maharaja Sayajirao
University of Baroda, Vadodara, Gujarat, India
${ }^{2}$ Department of Science and Humanity, Tatva Institute of Technological Studies, Modasa, Sabarkantha, Gujarat, India
Received 26 May 2011

Abstract. The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like $\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}$ and $r-B V$, over $[0,2 \pi]^{N}$, are estimated.
Key Words: Order of magnitude of multiple Fourier coefficients, function of $\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}$, $r-B V$ and $\operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$.
AMS Subject Classifications: 42B05, 26B30, 26D15

1 Introduction

Recently, V. Fülöp and F. Móricz [3] studied the order of magnitude of multiple Fourier coefficients of functions in $\operatorname{BV}\left(\overline{\mathbf{T}}^{N}\right)$, where $\mathbf{T}=[0,2 \pi)$, in the sense of Vitali and Hardy. Here, we have generalized these results by estimating the order of magnitude of multiple Fourier coefficients of complex valued functions in $\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}, r-B V$ and $\operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$ over $\overline{\mathbf{T}}^{N}$.
Definition 1.1. For a given $f \in L^{p}\left(\overline{\mathbf{T}}^{2}\right), 1 \leq p<\infty$, the p-integral modulus of continuity of f is defined as

$$
\omega^{(p)}\left(f ; \delta_{1}, \delta_{2}\right)=\sup \left\{\left(\frac{1}{4 \pi^{2}} \iint_{\overline{\mathbf{T}}^{2}}|\Delta f(x, y ; h, k)|^{p} d x d y\right)^{1 / p}: 0<h \leq \delta_{1}, 0<k \leq \delta_{2}\right\}
$$

where

$$
\Delta f(x, y ; h, k)=f(x+h, y+k)-f(x, y+k)-f(x+h, y)+f(x, y)
$$

For every $f \in L^{p}\left(\overline{\mathbf{T}}^{2}\right), \omega^{(p)}\left(f ; \delta_{1}, \delta_{2}\right) \rightarrow 0$ as $\max \left\{\delta_{1}, \delta_{2}\right\} \rightarrow 0$.
${ }^{*}$ Corresponding author. Email addresses: drrgvyas@yahoo.com (R. G. Vyas), darjikiranmsu@gmail.com (K. N. Darji)

For $p \geq 1$ and $\alpha_{1}, \alpha_{2} \in(0,1]$, we say that $f \in \operatorname{Lip}\left(p ; \alpha_{1}, \alpha_{2}\right)$ if

$$
\omega^{(p)}\left(f ; \delta_{1}, \delta_{2}\right)=\mathcal{O}\left(\delta_{1}^{\alpha_{1}} \delta_{2}^{\alpha_{2}}\right) \text { as } \delta_{1} \text { and } \delta_{2} \rightarrow 0 .
$$

For $p=\infty$, we write $\omega\left(f ; \delta_{1}, \delta_{2}\right)$ for $\omega^{(\infty)}\left(f ; \delta_{1}, \delta_{2}\right)$, Definition 1.1 gives the modulus of continuity of f and in that case the class $\operatorname{Lip}\left(p ; \alpha_{1}, \alpha_{2}\right)$ reduces to $\operatorname{Lipschitz}$ class $\operatorname{Lip}\left(\alpha_{1}, \alpha_{2}\right)$.

Definition 1.2. Let \mathbf{L} be the class of all non-decreasing sequences $\Lambda^{\prime}=\left\{\lambda_{n}^{\prime}\right\} \quad(n=1,2, \cdots)$ of positive numbers such that $\sum_{n}\left(\lambda_{n}^{\prime}\right)^{-1}$ diverges. For given $\Lambda=\left(\Lambda^{1}, \Lambda^{2}\right)$, where $\Lambda^{k}=$ $\left\{\lambda_{n}^{k}\right\} \in \mathbf{L}$ for $k=1,2$ and $p \geq 1$. A complex valued measurable function f defined on a rectangle $R:=[a, b] \times[c, d]$ is said to be of $p-\left(\Lambda^{1}, \Lambda^{2}\right)$-bounded variation (that is, $f \in$ $\left.\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}(R)\right)$, if

$$
V_{\wedge_{p}}(f, R)=\sup _{P=P_{1} \times P_{2}}\left(\sum_{i=1}^{m} \sum_{j=1}^{l} \frac{\left|\Delta f\left(x_{i}, y_{j}\right)\right|^{p}}{\lambda_{i}^{1} \lambda_{j}^{2}}\right)^{1 / p}<\infty,
$$

where

$$
\begin{array}{ll}
\Delta f\left(x_{i}, y_{j}\right)=\Delta f\left(x_{i}, y_{j} ; \Delta x_{i}, \Delta y_{j}\right), & \Delta x_{i}=x_{i+1}-x_{i}, \\
\Delta y_{j}=y_{j+1}-y_{j}, & P_{1}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{m}=b
\end{array}
$$

and

$$
P_{2}: c=y_{0}<y_{1}<y_{2}<\cdots<y_{l}=d .
$$

If $f \in\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}(R)$ is such that the marginal functions $f(a, \cdot) \in \Lambda^{2} B V^{(p)}([c, d])$ and $f(\cdot, c) \in \Lambda^{1} B V^{(p)}([a, b])$ (refer [6]) for the definition of $\left.\Lambda B V^{(p)}([a, b])\right)$, then f is said to be of $p-\left(\Lambda^{1}, \Lambda^{2}\right)^{*}$-bounded variation over R (that is, $f \in\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}(R)$).

If $f \in\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}(R)$ then f is bounded and each of the marginal function $f(\cdot, t) \in$ $\Lambda^{1} B V^{(p)}([a, b])$ and $f(s, \cdot) \in \Lambda^{2} B V^{(p)}([c, d])$, where $t \in[c, d]$ and $s \in[a, b]$ are fixed.

Note that, for $\Lambda^{1}=\Lambda$ and $\Lambda^{2}=\{1\}$ (that is, $\lambda_{n}^{1}=\lambda_{n}$ and $\lambda_{n}^{2}=1, \forall n$) the class $\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}(R)$ and the class $\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}(R)$ reduce to the class $\Lambda B V^{(p)}(R)$ and the class $\Lambda^{*} B V^{(p)}(R)$ respectively; for $p=1$, we omit writing p, the class $\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}(R)$ and the class $\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}(R)$ reduce to the class $\left(\Lambda^{1}, \Lambda^{2}\right) B V(R)$ (Definition 2, [1]) and the class $\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V(R)$ respectively and for $p=1$ the class $\Lambda B V^{(p)}(R)$ and the class $\Lambda^{*} B V^{(p)}(R)$ reduce to the class $\Lambda B V(R)$ and the class $\Lambda^{*} B V(R)$ respectively (Definition 3, [2]). Moreover, for $\Lambda^{1}=\Lambda^{2}=\{1\}$ and for $p=1$ the class $\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}(R)$ and the class $\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}(R)$ reduces to the class $B V_{V}(R)$ (bounded variation in the sense of Vitali) and the class $B V_{H}(R)$ (bounded variation in the sense of Hardy) respectively.

Observe that the characteristic function of $E=\{(x, y) ; x \in[0,1]$ and $y \in[0,1-x]\}$ is in $\Lambda B V^{(p)}\left([0,1]^{2}\right)$ if

$$
\begin{equation*}
\sum_{n}\left(\frac{1}{\lambda_{n}}\right)^{2}<\infty . \tag{1.1}
\end{equation*}
$$

If Λ satisfies (1.1), the requirement of measurability cannot be omitted from Definition 1.2, otherwise the class $\Lambda B V^{(p)}$ would include functions which are not Lebesgue measurable. Even under the assumption of measurability, Dyachenko and Waterman (Proposition 1, [2]) proved that there exists a $f \in \Lambda B V(R)$ which is everywhere discontinuous.
Definition 1.3. For a given positive integer r, a complex valued function f defined on a rectangle $R:=[a, b] \times[c, d]$ is said to be of r-bounded variation (that is, $f \in r-B V(R)$) if the following two conditions are satisfied:
(i)

$$
V_{r}(f, R)=\sup _{P=P_{1} \times P_{2}} V_{r}(f, R, P)<\infty,
$$

where

$$
V_{r}(f, R, P)=\left(\sum_{i=1}^{m-r} \sum_{j=1}^{n-r}\left|\Delta^{r} f\left(x_{i}, y_{j}\right)\right|\right)
$$

$P, P_{1}, P_{2}, \Delta f\left(x_{i}, y_{j}\right)$ are defined in Definition 1.2 and

$$
\Delta^{k} f\left(x_{i}, y_{j}\right)=\Delta^{k-1}\left(\Delta f\left(x_{i}, y_{j}\right)\right), \quad k \geq 2
$$

so that

$$
\Delta^{r} f\left(x_{i}, y_{j}\right)=\sum_{s=1}^{r} \sum_{t=1}^{r}(-1)^{s+t}\binom{r}{s}\binom{r}{t} f\left(x_{i+r-s}, y_{j+r-t}\right) .
$$

(ii) The marginal functions $f(\cdot, c) \in r-B V([a, b])$ and $f(a, \cdot) \in r-B V([c, d])$.

It is easy to prove that $f \in r-B V(R)$ implies f is bounded on $R, B V_{H}(R) \subset r-B V(R)$ and each of the marginal functions $f\left(\cdot, y_{0}\right) \in r-B V([a, b])$ and $f\left(x_{0}, \cdot\right) \in r-B V([c, d])$ (refer to (Definition 4, pp. 115, [6]) for the definition of $r-B V[a, b]$), where $y_{0} \in[c, d]$ and $x_{0} \in[a, b]$ are fixed.

Definition 1.4. A function f defined on the rectangle $R:=[a, b] \times[c, d]$ is said to be absolutely continuous (that is, $f \in A C(R)$) if the following two conditions are satisfied:
(i) Given $\epsilon>0$, there exists $\delta=\delta(\epsilon)>0$ such that

$$
\sum_{\left\{R_{k}\right\} \in R}\left|f\left(a_{k}, c_{k}\right)-f\left(b_{k}, c_{k}\right)-f\left(a_{k}, d_{k}\right)+f\left(b_{k}, d_{k}\right)\right|<\epsilon,
$$

whenever $\left\{R_{k}:=\left[a_{k}, b_{k}\right] \times\left[c_{k}, d_{k}\right]\right\}_{k=1,2, \cdots}$, is a infinite collection of pairwise nonoverlapping sub-rectangles of R with

$$
\sum_{\left\{R_{k}\right\} \in R}\left(b_{k}-a_{k}\right)\left(d_{k}-c_{k}\right)<\delta .
$$

(ii) The marginal functions $f(\cdot, c) \in A C([a, b])$ and $f(a, \cdot) \in A C([c, d])$.

An absolutely continuous function f on R is uniformly continuous and each of the marginal functions $f\left(\cdot, y_{0}\right) \in A C([a, b])$ and $f\left(x_{0}, \cdot\right) \in A C([c, d])$, where $y_{0} \in[c, d]$ and $x_{0} \in[a, b]$ are fixed.

2 New results for functions of two variables

For any $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \overline{\mathbf{T}}^{2}$ and $\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$, denote their scalar product by $\mathbf{k} \cdot \mathbf{x}=k_{1} x_{1}+k_{2} x_{2}$.
For any $f \in L^{1}\left(\overline{\mathbf{T}}^{2}\right)$, where f is 2π-periodic in each variable, its Fourier series is defined as

$$
f(\mathbf{x}) \sim \sum_{\mathbf{k} \in \mathbf{Z}^{2}} \hat{f}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x})},
$$

where

$$
\hat{f}(\mathbf{k})=\frac{1}{(2 \pi)^{2}} \int_{\overline{\mathbf{T}}^{2}} f(\mathbf{x}) e^{-i(\mathbf{k} \cdot \mathbf{x})} d \mathbf{x}
$$

denotes the $\mathbf{k}^{\text {th }}$ Fourier coefficient of f.
We prove the following theorems.
Theorem 2.1. If $f \in\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}\left(\overline{\mathbf{T}}^{2}\right) \cap L^{p}\left(\overline{\mathbf{T}}^{2}\right)(p \geq 1)$ and $\boldsymbol{k}=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ is such that $k_{1} \cdot k_{2} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left(\sum_{i=1}^{\left|k_{1}\right|} \sum_{j=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{i}^{1} \lambda_{j}}\right)^{1 / p}}\right)
$$

Theorem 2.1 generalizes the result (Theorem 1 (iii), [5]) for functions of two variables.
Corollary 2.1. If $f \in\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{2}\right)(p \geq 1)$ and $\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ is such that $k_{1} \cdot k_{2} \neq 0$, then

$$
|\hat{f}(\mathbf{k})|=\mathcal{O}\left(\frac{1}{\left(\sum_{i=1}^{\left|k_{1}\right|} \sum_{j=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{i}^{1} \lambda_{j}^{2}}\right)^{1 / p}}\right)
$$

Theorem 2.2. If $f \in r-B V\left(\overline{\mathbf{T}}^{2}\right)$ and $k=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ is such that $k_{1} \cdot k_{2} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left|k_{1} \cdot k_{2}\right|}\right)
$$

Theorem 2.3. If $f \in \operatorname{Lip}\left(p ; \alpha_{1}, \alpha_{2}\right)$ over $\overline{\mathbf{T}}^{2}\left(p \geq 1, \alpha_{1}, \alpha_{2} \in(0,1]\right)$ and $\boldsymbol{k}=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ is such that $k_{1} \cdot k_{2} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left|k_{1}\right|^{\alpha_{1}}\left|k_{2}\right|^{\alpha_{2}}}\right)
$$

Theorem 2.4. If $f \in A C\left(\overline{\mathbf{T}}^{2}\right)$ and $\boldsymbol{k}=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ is such that $k_{1} \cdot k_{2} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=o\left(\frac{1}{\left|k_{1} \cdot k_{2}\right|}\right) .
$$

3 Proof of the results

Proof of Theorem 2.1: Since

$$
\hat{f}\left(k_{1}, k_{2}\right)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f\left(x_{1}, x_{2}\right) e^{-i k_{1} x_{1}} e^{-i k_{2} x_{2}} d x_{1} d x_{2}
$$

we have

$$
\begin{aligned}
4\left|\hat{f}\left(k_{1}, k_{2}\right)\right|= & \frac{1}{4 \pi^{2}} \left\lvert\, \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(f\left(x_{1}+\frac{\pi}{k_{1}}, x_{2}+\frac{\pi}{k_{2}}\right)-f\left(x_{1}, x_{2}+\frac{\pi}{k_{2}}\right)\right.\right. \\
& \left.-f\left(x_{1}+\frac{\pi}{k_{1}}, x_{2}\right)+f\left(x_{1}, x_{2}\right)\right) e^{-i k_{1} x_{1}} e^{-i k_{2} x_{2}} d x_{1} d x_{2} \mid .
\end{aligned}
$$

Because of the periodicity of f in each variable, we get

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2}= & \int_{0}^{2 \pi} \int_{0}^{2 \pi} \left\lvert\, f\left(x_{1}+\frac{\pi}{k_{1}}, x_{2}+\frac{\pi}{k_{2}}\right)\right. \\
& \left.-f\left(x_{1}, x_{2}+\frac{\pi}{k_{2}}\right)-f\left(x_{1}+\frac{\pi}{k_{1}}, x_{2}\right)+f\left(x_{1}, x_{2}\right) \right\rvert\, d x_{1} d x_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)= & f\left(x_{1}+\frac{r_{1} \pi}{k_{1}}, x_{2}+\frac{r_{2} \pi}{k_{2}}\right)-f\left(x_{1}+\frac{\left(r_{1}-1\right) \pi}{k_{1}}, x_{2}+\frac{r_{2} \pi}{k_{2}}\right) \\
& -f\left(x_{1}+\frac{r_{1} \pi}{k_{1}}, x_{2}+\frac{\left(r_{2}-1\right) \pi}{k_{2}}\right)+f\left(x_{1}+\frac{\left(r_{1}-1\right) \pi}{k_{1}}, x_{2}+\frac{\left(r_{2}-1\right) \pi}{k_{2}}\right),
\end{aligned}
$$

for any $r_{1}, r_{2} \in \mathbf{Z}$. Therefore

$$
\begin{equation*}
\left|\hat{f}\left(k_{1}, k_{2}\right)\right| \leq \frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} \tag{3.1}
\end{equation*}
$$

Dividing both sides by $\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}$ and then summing over $r_{1}=1$ to $\left|k_{1}\right|$ and $r_{2}=1$ to $\left|k_{2}\right|$, we get

$$
\left|\hat{f}\left(k_{1}, k_{2}\right)\right|\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right) \leq \frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right|}{\left(\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}\right)^{\frac{1}{p}+\frac{1}{q}}}\right) d x_{1} d x_{2}
$$

where q is the index conjugate to p.
Applying Hölder's inequality on the right side of the above inequality, we have

$$
\begin{aligned}
& \left|\hat{f}\left(k_{1}, k_{2}\right)\right|\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right) \\
\leq & \frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{\left.\mid \Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right)^{p}}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}}\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right)^{\frac{1}{q}} d x_{1} d x_{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\hat{f}\left(k_{1}, k_{2}\right)\right|\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{1}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}} & \leq \frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \sum_{r_{2}=1}^{\left|k_{2}\right|} \frac{\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right|^{p}}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2}}\right)^{\frac{1}{p}} d x_{1} d x_{2} \\
& \leq \frac{1}{4} V_{\Lambda_{p}}\left(f, \overline{\mathbf{T}}^{2}\right) .
\end{aligned}
$$

This completes the proof.
Proof of Corollary 2.1: Observe that $f \in\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{2}\right)$ then f is bounded and $\left(\Lambda^{1}, \Lambda^{2}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{2}\right) \subset\left(\Lambda^{1}, \Lambda^{2}\right) B V^{(p)}\left(\overline{\mathbf{T}}^{2}\right)$.

Hence the corollary follows.
Proof of Theorem 2.2: Proceeding as in the proof of Theorem 2.1, from (3.1) it follows that

$$
\left|\hat{f}\left(k_{1}, k_{2}\right)\right| \leq\left(\frac{1}{16 \pi^{2}}\right) \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2}
$$

Similarly, we get

$$
\left|\hat{f}\left(k_{1}, k_{2}\right)\right| \leq\left(\frac{1}{16 \pi^{2}}\right)^{r} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\Delta^{r} f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} .
$$

Summing the above inequality over $r_{1}=1$ to $\left|k_{1}\right|-r$ and $r_{2}=1$ to $\left|k_{2}\right|-r$, we get

$$
\left(\left|k_{1}\right|-r\right)\left(\left|k_{2}\right|-r\right)\left|\hat{f}\left(k_{1}, k_{2}\right)\right| \leq\left(\frac{1}{16 \pi^{2}}\right)^{r} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \sum_{r_{1}=1}^{\left|k_{1}\right|-r} \sum_{r_{2}=1}^{\left|k_{2}\right|-r}\left|\Delta^{r} f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} .
$$

This together with

$$
\sum_{r_{1}=1}^{\left|k_{1}\right|-r\left|k_{2}\right|-r} \sum_{r_{2}=1}^{r}\left|\Delta^{r} f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right| \leq V_{r}\left(f ;[0,2 \pi]^{2}\right),
$$

$\left|k_{1}\right| \approx\left|k_{1}\right|-r$ and $\left|k_{2}\right| \approx\left|k_{2}\right|-r$ implies

$$
\left|\hat{f}\left(k_{1}, k_{2}\right)\right|=\mathcal{O}\left(\frac{1}{\left|k_{1} k_{2}\right|}\right) .
$$

Proof of Theorem 2.3: Proceeding as in the proof of Theorem 2.1, one gets (3.1). By applying Hölder's inequality to the right side of (3.1), we obtain

$$
\left|\hat{f}\left(k_{1}, k_{2}\right)\right|=\mathcal{O}(1)\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\Delta f_{r_{1} r_{2}}\left(x_{1}, x_{2}\right)\right|^{p} d x_{1} d x_{2}\right)^{1 / p}
$$

Hence the result follows.
Proof of Theorem 2.4: Theorem 2.4 can be proved in a similar way to the proof of Theorem 2.1.

4 Extension of the results for functions of several variables

For any $\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right) \in \overline{\mathbf{T}}^{N}$ and $\mathbf{k}=\left(k_{1}, \cdots, k_{N}\right) \in \mathbf{Z}^{N}$ denotes their scalar product by

$$
\mathbf{k} \cdot \mathbf{x}=k_{1} x_{1}+\cdots+k_{N} x_{N} .
$$

For $f \in L^{1}\left(\overline{\mathbf{T}}^{N}\right)$, where f is complex valued function which is 2π-periodic in each variable, its Fourier series is defined as

$$
f(\mathbf{x}) \sim \sum_{\mathbf{k} \in \mathbf{Z}^{N}} \hat{f}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x})}
$$

where

$$
\hat{f}(\mathbf{k})=\frac{1}{(2 \pi)^{N}} \int_{\overline{\mathbf{T}}^{N}} f(\mathbf{x}) e^{-i(\mathbf{k} \cdot \mathbf{x})} d \mathbf{x}
$$

denotes the $\mathbf{k}^{\text {th }}$ Fourier coefficient of f.
Given $\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right) \in \mathbf{T}^{N}$ and $\mathbf{h}=\left(h_{1}, \cdots, h_{N}\right) \in \mathbf{T}^{N}$, define

$$
\begin{aligned}
\Delta f(\mathbf{x} ; \mathbf{h}) & =T_{\mathbf{h}} f(\mathbf{x})-f(\mathbf{x})=\Delta f\left(x_{1}, \cdots, x_{N} ; h_{1}, \cdots, h_{N}\right) \\
& =\sum_{\eta_{1}=0}^{1} \cdots \sum_{\eta_{N}=0}^{1}(-1)^{\eta_{1}+\cdots+\eta_{N}} f\left(x_{1}+\eta_{1} h_{1}, \cdots, x_{N}+\eta_{N} h_{N}\right) .
\end{aligned}
$$

For $p \geq 1$, the p-integral modulus of continuity of a function $f \in L^{p}\left(\overline{\mathbf{T}}^{N}\right)$ is defined as

$$
\omega^{(p)}\left(f ; \delta_{1}, \cdots, \delta_{N}\right)=\sup \left\{\left(\frac{1}{(2 \pi)^{N}} \int_{\overline{\mathbf{T}}^{N}}|\Delta f(\mathbf{x} ; \mathbf{h})|^{p} d \mathbf{x}\right)^{1 / p}: 0<h_{j} \leq \delta_{j}, j=1, \cdots, N\right\} .
$$

Obviously, $\omega^{(p)}\left(f ; \delta_{1}, \cdots, \delta_{N}\right) \rightarrow 0$ as $\max \left\{\delta_{1}, \cdots, \delta_{N}\right\} \rightarrow 0$.
For $p=\infty$, we omit writing p, one gets $\omega\left(f ; \delta_{1}, \cdots, \delta_{N}\right)$, the modulus of continuity of f.
A function $f \in L^{p}\left(\overline{\mathbf{T}}^{N}\right)$ is said to belongs to $\operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$, the Lipschitz class in the mean of order p, if $\omega^{(p)}\left(f ; \delta_{1}, \cdots, \delta_{N}\right)=\mathcal{O}\left(\delta_{1}^{\alpha_{1}}, \cdots, \delta_{N}^{\alpha_{N}}\right)$ as $\delta_{i} \rightarrow 0, \forall i=1, \cdots, N$.

For $p=\infty$, the class $\operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$ reduces to the $\operatorname{Lipschitz}$ class $\operatorname{Lip}\left(\alpha_{1}, \cdots, \alpha_{N}\right)$. Obviously, $\operatorname{Lip}\left(\alpha_{1}, \cdots, \alpha_{N}\right) \subset \operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$.

For given $\Lambda=\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)$, where $\Lambda^{1}, \cdots, \Lambda^{N} \in \mathbf{L}$ and $p \geq 1$. A function $f: \overline{\mathbf{T}}^{N} \rightarrow \mathbf{C}$ is said to be of $p-\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)$ bounded variation (that is, $f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right)$) if

$$
V_{\Lambda_{p}}\left(f, \overline{\mathbf{T}}^{N}\right)=\sup _{P}\left(\sum_{r_{1}=1}^{s_{1}} \cdots \sum_{r_{N}=1}^{s_{N}} \frac{\left|\Delta f\left(x_{1}^{r_{1}-1}, \cdots, x_{N}^{r_{N}-1} ; h_{1}^{r_{1}}, \cdots, h_{N}^{r_{N}}\right)\right|^{p}}{\lambda_{r_{1}}^{1} \lambda_{r_{2}}^{2} \cdots \lambda_{r_{N}}^{N}}\right)^{1 / p}<\infty,
$$

where the supremum is extended over all partitions $P=P_{1} \times P_{2} \times \cdots \times P_{N}$ of the closed cube $\overline{\mathbf{T}}^{N}, P_{j}=\left\{0=x_{j}^{0}<x_{j}^{1}<\cdots<x_{j}^{s_{j}}=2 \pi\right\}$ and $s_{j} \geq 1 ; r_{j}=1,2, \cdots, s_{j} ; h_{j}^{r_{j}}=x_{j}^{r_{j}}-x_{j}^{r_{j}-1} ; j=1,2, \cdots, N$.

Moreover, a function $f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right)$ is said to be of $p-\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)^{*}$ bounded variation (that is, $f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right)$), if for each of its marginal functions

$$
f\left(x_{1}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{N}\right) \in\left(\Lambda^{1}, \cdots, \Lambda^{i-1}, \Lambda^{i+1}, \cdots, \Lambda^{N}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{N}\left(0_{i}\right)\right),
$$

$\forall i=1,2, \cdots, N$, where

$$
\overline{\mathbf{T}}^{N}\left(0_{i}\right)=\left\{\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{N}\right) \in \overline{\mathbf{T}}^{N-1}: 0 \leq x_{k} \leq 2 \pi, \text { for } k=1, \cdots, i-1, i+1, \cdots, N\right\} .
$$

It is easy to prove that $\left.f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right)\right)$ implies it is bounded. In particular f is Lebesgue integrable over $\overline{\mathbf{T}}^{N}$.

Similarly, we say that a function $f \in r-B V\left(\overline{\mathbf{T}}^{N}\right)$ if the following two conditions are satisfied:
(i)

$$
V_{r}\left(f, \overline{\mathbf{T}}^{N}\right)=\sup _{P}\left(\sum_{r_{1}=1}^{s_{1}} \cdots \sum_{r_{N}=1}^{s_{N}}\left|\Delta^{r} f\left(x_{1}^{r_{1}-1}, \cdots, x_{N}^{r_{N}-1} ; h_{1}^{r_{1}}, \cdots, h_{N}^{r_{N}}\right)\right|\right)<\infty,
$$

where, for $k \geq 2$,

$$
\Delta^{k} f\left(x_{1}^{r_{1}-1}, \cdots, x_{N}^{r_{N}-1} ; h_{1}^{r_{1}}, \cdots, h_{N}^{r_{N}}\right)=\Delta^{k-1}\left(\Delta f\left(x_{1}^{r_{1}-1}, \cdots, x_{N}^{r_{N}-1} ; h_{1}^{r_{1}}, \cdots, h_{N}^{r_{N}}\right)\right)
$$

(ii) Each of its marginal functions

$$
f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{N}\right) \in r-B V\left(\overline{\mathbf{T}}^{N}\left(0_{i}\right)\right), \quad \forall i=1, \cdots, N .
$$

A function $f=f\left(x_{1}, \cdots, x_{N}\right)$ is said to be absolutely continuous over $\overline{\mathbf{T}}^{N}$ (that is, $f \in$ $A C\left(\overline{\mathbf{T}}^{N}\right)$) if the following two conditions are satisfied [4]:
(i) Given $\epsilon>0$, there exists $\delta=\delta(\epsilon)>0$ such that

$$
\sum_{R_{k} \in R^{\prime}}\left|\Delta f\left(c_{1}^{k}, \cdots, c_{N}^{k} ; h_{1}^{k}, \cdots, h_{N}^{k}\right)\right|<\epsilon
$$

with $h_{j}^{k}=d_{j}^{k}-c_{j}^{k}, j=1,2, \cdots, N$; whenever

$$
R^{\prime}=\left\{R_{k}=\left[c_{1}^{k}, d_{1}^{k}\right] \times\left[c_{2}^{k}, d_{2}^{k}\right] \times \cdots \times\left[c_{N}^{k}, d_{\mathrm{N}}^{k}\right]\right\}
$$

is a finite collection of pairwise non-overlapping sub-rectangles of $\overline{\mathbf{T}}^{N}$ with

$$
\sum_{R_{k} \in R^{\prime}} \prod_{j=1}^{N}\left(d_{j}^{k}-c_{j}^{k}\right)<\delta .
$$

(ii) Each of its marginal functions

$$
f\left(x_{1}, x_{2}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{N}\right) \in A C\left(\overline{\mathbf{T}}^{N}\left(0_{i}\right)\right), \quad \forall i=1, \cdots, N .
$$

Now, we extend the above mentioned theorems of Section 2 for higher dimensional space as following:
Theorem 4.1. If $f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right) \cap L^{p}\left(\overline{\mathbf{T}}^{N}\right)(p \geq 1)$ and $\boldsymbol{k}=\left(k_{1}, \cdots, k_{N}\right) \in \mathbf{Z}^{N}$ is such that $k_{1} \cdots k_{N} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \cdots \sum_{r_{N}=1}^{\left|k_{N}\right|} \frac{1}{\lambda_{r_{1}}^{1} \cdots \lambda_{r_{N}}^{N}}\right)^{1 / p}}\right) .
$$

Obviously, Theorem 4.1 generalizes the result (Theorem, [3]).
Corollary 4.1. If $f \in\left(\Lambda^{1}, \cdots, \Lambda^{N}\right)^{*} B V^{(p)}\left(\overline{\mathbf{T}}^{N}\right)(p \geq 1)$ and $\mathbf{k}=\left(k_{1}, \cdots, k_{N}\right) \in \mathbf{Z}^{N}$ is such that $k_{1} \cdots k_{N} \neq 0$, then

$$
|\hat{f}(\mathbf{k})|=\mathcal{O}\left(\frac{1}{\left(\sum_{r_{1}=1}^{\left|k_{1}\right|} \cdots \sum_{r_{N}=1}^{\left|k_{N}\right|} \frac{1}{\lambda_{r_{1}}^{1} \cdots \lambda_{r_{N}}^{N}}\right)^{1 / p}}\right)
$$

Theorem 4.2. If $f \in r-B V\left(\overline{\mathbf{T}}^{N}\right)(r \geq 1)$ and $\boldsymbol{k}=\left(k_{1}, \cdots, k_{N}\right) \in \mathbf{Z}^{N}$ is such that $k_{1} \cdots k_{N} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left|k_{1} \cdots k_{N}\right|}\right) .
$$

Theorem 4.3. If $f \in \operatorname{Lip}\left(p ; \alpha_{1}, \cdots, \alpha_{N}\right)$ over $\overline{\mathbf{T}}^{N}\left(p \geq 1, \alpha_{1}, \cdots, \alpha_{N} \in(0,1]\right)$ and $\boldsymbol{k}=\left(k_{1}, \cdots, k_{N}\right) \in$ \mathbf{Z}^{N} is such that $k_{1} \cdots k_{N} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=\mathcal{O}\left(\frac{1}{\left|k_{1}\right|^{\alpha_{1} \cdots\left|k_{N}\right|^{\alpha_{N}}}}\right) .
$$

Theorem 4.4. If $f \in A C\left(\overline{\mathbf{T}}^{N}\right)$ and $\boldsymbol{k}=\left(k_{1}, \cdots, k_{N}\right) \in \mathbf{Z}^{N}$ is such that $k_{1} \cdots k_{N} \neq 0$, then

$$
|\hat{f}(\boldsymbol{k})|=o\left(\frac{1}{\left|k_{1} \cdots k_{N}\right|}\right) .
$$

The above results of this section can be proved in the same way as we do in Section 2.

References

[1] A. N. Bakhvalov, Fourier coefficients of functions from many-dimensional classes of bounded Λ-variation, Moscow Univ. Math. Bulletin, 66(1) (2011), 8-16.
[2] M. I. Dyachenko and D. Waterman, Convergence of double Fourier series and W-classes, Trans. Amer. Math. Soc., 357(1) (2004), 397-407.
[3] V. Fülöp and F. Móricz, Order of magnitude of multiple Fourier coefficients of functions of bounded variation, Acta Math. Hungar., 104(1-2) (2004), 95-104.
[4] F. Móricz and A. Veres, On the absolute convergence of multiple Fourier series, Acta Math. Hungar., 117(3) (2007), 275-292.
[5] M. Schramm and D. Waterman, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc., 85 (1982), 407-410.
[6] J. R. Patadia and R. G. Vyas, Fourier series with small gaps and functions of generalized variations, J. Math. Anal. Appl., 182(1) (1994), 113-126.

