Some Results Concerning Growth of Polynomials

Ahmad Zireh*, E. Khojastehnejhad and S. R. Musawi
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

Received 19 July 2011

$$
\begin{aligned}
& \text { Abstract. Let } P(z) \text { be a polynomial of degree } n \text { having no zeros in }|z|<1 \text {, then for } \\
& \text { every real or complex number } \beta \text { with }|\beta| \leq 1 \text {, and }|z|=1, R \geq 1 \text {, it is proved by Dewan } \\
& \text { et al. [4] that } \\
& \qquad \begin{aligned}
\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \leq & \frac{1}{2}\left\{\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \max _{|z|=1}^{n|P(z)|}\right. \\
& \left.-\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|-\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \min _{|z|=1}|P(z)|\right\} .
\end{aligned}
\end{aligned}
$$

In this paper we generalize the above inequality for polynomials having no zeros in $|z|<k, k \leq 1$. Our results generalize certain well-known polynomial inequalities.
Key Words: Polynomial, inequality, maximum modulus, growth of polynomial.
AMS Subject Classifications: 30A10, 30C10, 30E15

1 Introduction and statement of results

It is well known that if $P(z)$ is a polynomial of degree n, then for $|z|=1$ and $R \geq 1$

$$
\begin{equation*}
|P(R z)|+|Q(R z)| \leq\left(R^{n}+1\right) \max _{|z|=1}|P(z)|, \tag{1.1}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ (see [6]).
On the other hand, concerning the estimate of $|P(z)|$ on the disc $|z| \leq R, R \geq 1$, we have, as a simple consequence of the principle of maximum modulus (see also [6]), if $P(z)$ is a polynomial of degree n, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

[^0]The result is best possible and the equality holds for polynomials having zeros at the origin.

It was shown by Ankeny and Rivlin [1] that if $P(z)$ doe not vanish in $|z|<1$, then the inequality (1.2) can be replaced by

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|, \quad R \geq 1 . \tag{1.3}
\end{equation*}
$$

The inequality (1.3) is sharp and the equality holds for $P(z)=\alpha z^{n}+\gamma$, where $|\alpha|=|\gamma|$.
The inequality (1.3) was generalized by Jain [5] who proved that if $P(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then for $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \\
\leq & \frac{1}{2}\left\{\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right\} \max _{|z|=1}|P(z)| . \tag{1.4}
\end{align*}
$$

Aziz and Dawood [3] used

$$
\begin{equation*}
\min _{|z|=1}|P(z)| \tag{1.5}
\end{equation*}
$$

to obtain a refinement of the inequality (1.3) and proved, if $P(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{|z|=1}|P(z)| . \tag{1.6}
\end{equation*}
$$

The result is best possible and the equality holds for $P(z)=\alpha z^{n}+\gamma$ with $|\alpha|=|\gamma|$.
As refinement of the inequality (1.4) and generalization of the inequality (1.6), Dewan and Hans [4] have proved that if $P(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then for $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{align*}
\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \leq & \frac{1}{2}\left\{\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \max _{|z|=1}|P(z)|\right. \\
& \left.-\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|-\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \min _{|z|=1}|P(z)|\right\} . \tag{1.7}
\end{align*}
$$

The result is best possible and the equality holds for $P(z)=\alpha z^{n}+\gamma$ with $|\alpha|=|\gamma|$.
Whereas if $P(z)$ has all its zeros in $|z| \leq 1$, then for any $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\min _{|z|=1}\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \geq\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right| \min _{|z|=1}|P(z)| . \tag{1.8}
\end{equation*}
$$

The result is best possible and the equality holds for $P(z)=m e^{i \alpha} z^{n}, m>0$.
In this paper, we obtain further generalizations of the inequalities (1.7) and (1.8). More precisely, we prove

Theorem 1.1. $P(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number β with $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\min _{|z|=1}\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \geq k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \min _{|z|=k}|P(z)| . \tag{1.9}
\end{equation*}
$$

The result is best possible and the equality holds for

$$
P(z)=a\left(\frac{z}{k}\right)^{n} .
$$

If we take $k=1$ in Theorem 1.1, then the inequality (1.9) reduces to the inequality (1.8). If we take $\beta=0$ in Theorem 1.1, we have the following interesting result:

Corollary 1.1. If $P(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then for $R \geq 1$

$$
\begin{equation*}
k^{n} \min _{|z|=R}|P(z)| \geq R^{n} \min _{|z|=k}|P(z)| \tag{1.10}
\end{equation*}
$$

The result is best possible and the equality holds for $P(z)=a(z / k)^{n}$.
We next generalize the inequality (1.7) by using Theorem 1.1, more precisely
Theorem 1.2. If $P(z)$ is a polynomial of degree n having no zeros in $|z|<k, k \leq 1$, then for every real or complex number β with $|\beta| \leq 1, R \geq 1$ and $|z|=1$ we have

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \\
\leq & \frac{1}{2}\left\{\left(k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|+\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right) \max _{|z|=k}|P(z)|\right. \\
& \left.-\left(k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|-\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right) \min _{|z|=k}|P(z)|\right\} . \tag{1.11}
\end{align*}
$$

The inequality (1.11) is sharp and the equality holds for $P(z)=\alpha z^{n}+\gamma k^{n}$ with $|\alpha|=|\gamma|$.
If we take $k=1$ in Theorem 1.2, then the inequality (1.11) reduces to (1.7).
If we take $\beta=0$ in Theorem 1.2, then we get a generalization of the inequality (1.6).
Corollary 1.2. If $P(z)$ is a polynomial of degree n having no zeros in $|z|<k, k \leq 1$, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R^{n}+k^{n}}{2 k^{n}}\right) \max _{|z|=k}|P(z)|\left(\frac{R^{n}-k^{n}}{2 k^{n}}\right) \min _{|z|=k}|P(z)| . \tag{1.12}
\end{equation*}
$$

The inequality (1.12) is sharp and the equality holds for $P(z)=\alpha z^{n}+\gamma k^{n}$ with $|\alpha|=|\gamma|$.

2 Lemmas

For the proof of our theorems, we need the following lemmas. The first lemma is due to Aziz [2].

Lemma 2.1. If $P(z)$ is a polynomial of degree n, having all its zeros in the closed disk $|z| \leq k$, $k \leq 1$, then for $R \geq 1$

$$
\begin{equation*}
|P(R z)| \geq\left(\frac{R+k}{1+k}\right)^{n}|P(z)|, \quad|z|=1 \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $F(z)$ be a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, and $P(z)$ be a polynomial of degree not exceeding that of $F(z)$. If $|P(z)| \leq|F(z)|$ for $|z|=k, k \leq 1$, then for any β with $|\beta| \leq 1$ and $|z|=1, R \geq 1$ we have

$$
\begin{equation*}
\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \leq\left|F(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} F(z)\right| . \tag{2.2}
\end{equation*}
$$

Proof. From Rouche's Theorem, it is obvious that for α with $|\alpha|<1, F(z)+\alpha P(z)$ has as many zeros in $|z|<k$ as $F(z)$ and so has all of its zeros in $|z|<k$. On the other hand by the inequality $|P(z)| \leq|F(z)|$ for $|z|=k$, any zero of $F(z)$ that lies on $|z|=k$, is the zero of $P(z)$. Therefore $F(z)+\alpha P(z)$ has all its zeros in $|z| \leq k$. On applying Lemma 2.1, we get for α with $|\alpha|<1$ and $|z|=1, R \geq 1$,

$$
|F(R z)+\alpha P(R z)| \geq\left(\frac{R+k}{1+k}\right)^{n}|F(z)+\alpha P(z)|
$$

Therefore, for any β with $|\beta|<1$, we have

$$
\left(F(R z)+\alpha P(R z)+\beta\left(\frac{R+k}{1+k}\right)\right)^{n}(F(z)+\alpha P(z)) \neq 0
$$

i.e.,

$$
\begin{equation*}
T(z)=F(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} F(z)+\alpha\left(P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right) \neq 0 \tag{2.3}
\end{equation*}
$$

where $|z|=1$.
Hence for an appropriate choice of the argument α, one gets

$$
\left|F(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} F(z)\right| \neq|\alpha|\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| .
$$

Therefore we have

$$
\begin{equation*}
\left|F(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} F(z)\right| \geq\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \tag{2.4}
\end{equation*}
$$

where $|z|=1$.

If the inequality (2.3) is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right|=1$ such that for $R \geq 1$,

$$
\left|F\left(R z_{0}\right)+\beta\left(\frac{R+k}{1+k}\right)^{n} F\left(z_{0}\right)\right|<\left|P\left(R z_{0}\right)+\beta\left(\frac{R+k}{1+k}\right)^{n} P\left(z_{0}\right)\right| .
$$

We take

$$
\alpha=-\frac{F\left(R z_{0}\right)+\beta\left(\frac{R+k}{1+k}\right)^{n} F\left(z_{0}\right)}{P\left(R z_{0}\right)+\beta\left(\frac{R+k}{1+k}\right)^{n} P\left(z_{0}\right)},
$$

then $|\alpha|<1$ and with this choice of α, we have from (2.3), $T\left(z_{0}\right)=0$ for $\left|z_{0}\right|=1$. But this contradicts the fact that $T(z) \neq 0$ for $|z|=1$. For β with $|\beta|=1$, (2.4) follows by continuity. This completes the proof of Lemma 2.2.

If we take

$$
F(z)=\left(\frac{z}{k}\right)^{n} \max _{|z|=k}|P(z)|
$$

in Lemma 2.2 we have
Lemma 2.3. Let $P(z)$ be a polynomial of degree n, then for any $|\beta| \leq 1, R \geq 1, k \leq 1$ and $|z|=1$ we have

$$
\begin{equation*}
\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \leq k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \max _{|z|=k}|P(z)| . \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let $P(z)$ be a polynomial of degree n, then for any β with $|\beta| \leq 1, R \geq 1$ and $|z|=1$ we have

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|+\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \\
\leq & \left.\left\{k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|+\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right\}\right\}_{|z|=k} \max ^{n}|P(z)|, \tag{2.6}
\end{align*}
$$

where $Q(z)=(z / k)^{n} \overline{P\left(k^{2} / \bar{z}\right)}$ and $k \leq 1$.
Proof. Let $M=\max _{|z|=k}|P(z)|$. For α with $|\alpha|>1$, it follows by Rouche's Theorem that the polynomial $G(z)=P(z)-\alpha M$ has no zeros in $|z|<k$. Correspondingly the polynomial

$$
H(z)=\left(\frac{z}{k}\right)^{n} \overline{G\left(k^{2} / \bar{z}\right)}
$$

has all its zeros in $|z| \leq k$ and $|G(z)|=|H(z)|$ for $|z|=k$. On applying Lemma 2.2, we have for $|\beta| \leq 1$ and $|z|=1, R \geq 1$

$$
\left|G(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} G(z)\right| \leq\left|H(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} H(z)\right|
$$

Therefore by the equality

$$
H(z)=\left(\frac{z}{k}\right)^{n} \overline{G\left(\frac{k^{2}}{\bar{z}}\right)}=\left(\frac{z}{k}\right)^{n} \overline{P\left(\frac{k^{2}}{\bar{z}}\right)}-\bar{\alpha}\left(\frac{z}{k}\right)^{n} M=Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n} M,
$$

i.e.,

$$
H(z)=Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n} M .
$$

We have

$$
\begin{aligned}
& \left|\{P(R z)-\alpha M\}+\beta\left(\frac{R+k}{1+k}\right)^{n}\{P(z)-\alpha M\}\right| \\
\leq & \left|\left\{Q(R z)-\bar{\alpha} R^{n}\left(\frac{z}{k}\right)^{n} M\right\}+\beta\left(\frac{R+k}{1+k}\right)^{n}\left\{Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n} M\right\}\right| .
\end{aligned}
$$

This implies

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)-\alpha\left(1+\left(\frac{R+k}{1+k}\right)^{n}\right) M\right| \\
\leq & \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n}\left(R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right) M\right| . \tag{2.7}
\end{align*}
$$

As $|P(z)|=|Q(z)|$ for $|z|=k$, i.e., $M=\max _{|z|=k}|P(z)|=\max _{|z|=k}|Q(z)|$ therefore, by applying Lemma 2.3 for the polynomial $Q(z)$, we have

$$
\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right|<|\alpha| k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M
$$

where $|z|=1,|\beta| \leq 1$ and $|\alpha|>1$.
Now by suitable choice of the argument α, we get for $|z|=1$ and $|\beta| \leq 1$,

$$
\begin{align*}
& \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n}\left(R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right) M\right| \\
= & |\alpha| k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M-\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| . \tag{2.8}
\end{align*}
$$

Combining (2.7) and (2.8), we have

$$
\begin{aligned}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-|\alpha|\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M \\
\leq & \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)-\alpha\left(1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right) M\right| \\
\leq & \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-\bar{\alpha}\left(\frac{z}{k}\right)^{n}\left(R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right) M\right| \\
= & |\alpha| k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M-\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| .
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-|\alpha|\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M \\
\leq & |\alpha| k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| M-\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| .
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|+\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \\
\leq & |\alpha|\left\{k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|+\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right\} M .
\end{aligned}
$$

Making $|\alpha| \rightarrow 1$, the lemma follows.
If we take $\beta=0$ in Lemma 2.4, we have the following generalization of the inequality (1.1).

Corollary 2.1. Let $P(z)$ be a polynomial of degree n, then for any $R \geq 1$ and $|z|=1$ we have

$$
\begin{equation*}
|P(R z)|+|Q(R z)| \leq \frac{R^{n}+k^{n}}{k^{n}} \max _{|z|=k}|P(z)|, \tag{2.9}
\end{equation*}
$$

where $Q(z)=(z / k)^{n} \overline{P\left(k^{2} / \bar{z}\right)}$ and $k \leq 1$.
If we take $\beta=0$ in Lemma 2.3, we have the following generalization of the inequality (1.2).

Corollary 2.2. Let $P(z)$ be a polynomial of degree n, then for any $R \geq 1, k \leq 1$ we have

$$
\begin{equation*}
k^{n} \max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=k}|P(z)| \tag{2.10}
\end{equation*}
$$

3 Proof of theorems

Proof of Theorem 1.1: If $P(z)$ has a zero on $|z|=k$, then the inequality (1.9) is trivial. Therefore we assume that $P(z)$ has all its zeros in $|z|<k$. Then $m=\min _{|z|=k}|P(z)|>0$ and for α with $|\alpha|<1$, we have $\left|\alpha m(z / k)^{n}\right|<m \leq|P(z)|$, where $|z|=k$. Thereby Rouche's theorem implies that the polynomial $G(z)=P(z)-\alpha m(z / k)^{n}$ has all its zeros in $|z|<k$. Applying Lemma 2.1, we get for $R \geq 1,|\alpha|<1$ and $|z|=1$,

$$
\left|P(R z)-\alpha m R^{n}\left(\frac{z}{k}\right)^{n}\right| \geq\left(\frac{R+k}{1+k}\right)^{n}\left|P(z)-\alpha m\left(\frac{z}{k}\right)^{n}\right| .
$$

Therefore for $|\beta|<1$ the polynomial

$$
P(R z)-\alpha m R^{n}\left(\frac{z}{k}\right)^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\left\{P(z)-\alpha m\left(\frac{z}{k}\right)^{n}\right\}
$$

i.e.,

$$
T(z)=\left\{P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right\}-\alpha m\left(\frac{z}{k}\right)^{n}\left\{R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right\}
$$

will have no zeros on $|z|=1$. As $|\alpha|<1$, we have for $|\beta|<1$

$$
\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \geq\left|m\left(\frac{z}{k}\right)^{n}\left\{R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right\}\right|,
$$

i.e.,

$$
\begin{equation*}
\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \geq m k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|, \tag{3.1}
\end{equation*}
$$

for $|z|=1$.
For β with $|\beta|=1$, (3.1) follows by continuity. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2: Let $m=\min _{|z|=k}|P(z)|$. For α with $|\alpha|<1$, we have $|\alpha m|<m \leq$ $|P(z)|$, where $|z|=k$.

Therefore by Rouche's theorem the polynomial $G(z)=P(z)-\alpha m$ has no zeros in $|z| \leq k$. Correspondingly the polynomial

$$
H(z)=\left(\frac{z}{k}\right)^{n} \overline{G\left(k^{2} / \bar{z}\right)}
$$

has all its zeros in $|z| \leq k$ and $|G(z)|=|H(z)|$ for $|z|=k$. Therefore, by Lemma 2.2, we have for $|\beta| \leq 1$ and $|z|=1, R \geq 1$,

$$
\left|G(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} G(z)\right| \leq\left|H(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} H(z)\right| .
$$

Hence by the equality

$$
H(z)=\left(\frac{z}{k}\right)^{n} \overline{G\left(\frac{k^{2}}{\bar{z}}\right)}=\left(\frac{z}{k}\right)^{n} \overline{P\left(\frac{k^{2}}{\bar{z}}\right)}-\bar{\alpha} m\left(\frac{z}{k}\right)^{n}=Q(z)-\bar{\alpha} m\left(\frac{z}{k}\right)^{n}
$$

satsfies

$$
\begin{aligned}
& \left|\{P(R z)-\alpha m\}+\beta\left(\frac{R+k}{1+k}\right)^{n}\{P(z)-\alpha m\}\right| \\
\leq & \left|\left\{Q(R z)-\bar{\alpha} R^{n} m\left(\frac{z}{k}\right)^{n}\right\}+\beta\left(\frac{R+k}{1+k}\right)^{n}\left\{Q(z)-\bar{\alpha} m\left(\frac{z}{k}\right)^{n}\right\}\right| .
\end{aligned}
$$

This implies

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-|\alpha| m\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \\
\leq & \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-\bar{\alpha} m\left(\frac{z}{k}\right)^{n}\right| R^{n}+\left|\beta\left(\frac{R+k}{1+k}\right)^{n}\right| . \tag{3.2}
\end{align*}
$$

As $|P(z)|=|Q(z)|$ for $|z|=k$, i.e., $m=\min _{|z|=k}|P(z)|=\min _{|z|=k}|Q(z)|$. On applying Theorem 1.1 for the polynomial $Q(z)$

$$
\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \geq k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| m
$$

where $|z|=1$ and $|\beta| \leq 1$.
Now by suitable choice of the argument α, we get for $|z|=1$ and $|\beta| \leq 1$,

$$
\begin{align*}
& \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-\bar{\alpha} m\left(\frac{z}{k}\right)^{n}\right| R^{n}+\left|\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \\
= & \left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right|-|\alpha| m k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| . \tag{3.3}
\end{align*}
$$

Thereby we can rewrite (3.2) as

$$
\begin{aligned}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-|\alpha| m\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \\
\leq & \left.\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)-|\alpha| m k^{-n}\right| R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n} \right\rvert\,
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \\
\leq & -|\alpha|\left\{k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|-\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right\} m
\end{aligned}
$$

for $|z|=1$.
Making $|\alpha| \rightarrow 1$, we get for $|z|=1$ and $R \geq 1$,

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|-\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \\
\leq & -\left\{k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|-\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right\} m \tag{3.4}
\end{align*}
$$

On the other hand, by Lemma 2.4, we have for $|z|=1$ and $R \geq 1$,

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right|+\left|Q(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} Q(z)\right| \tag{3.5}\\
\leq & \left\{k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|+\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right\} \max _{|z|=k}|P(z)| \tag{3.6}
\end{align*}
$$

Addition of the inequalities (3.4) and (3.5) easily leads to the inequality (1.11) and the theorem follows.

Acknowledgments

The paper is supported partially by a research grant from Shahrood University of Technology. The authors are grateful to the referees for careful reading of the paper and for the comments.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5 (1955), 849-852.
[2] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc., 35 (1987), 247-256.
[3] Z. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306-313.
[4] K. K. Dewan and S. Hans, Some polynomial inequalities in the complex domain, Anal. Theory Appl., 26 (2010), 1-6.
[5] V. K. Jain, Generalization of certain well known inequalities for polynomials, Glasnik Matematicki, 32 (1997), 45-51.
[6] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.

[^0]: *Corresponding author. Email addresses: azireh@shahroodut.ac.ir (A. Zireh), khojastehnejadelahe@ gmail.com (E. Khojastehnejhad), r-musawi@yahoo. com (S. R. Musawi)

