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Abstract. In this paper we prove some interesting extensions and generalizations of Enestrom-
Kakeya Theorem concerning the location of the zeros of a polynomial in a complex plane.
We also obtain some zero-free regions for a class of related analytic functions. Our results
not only contain some known results as a special case but also a variety of interesting results

can be deduced in a unified way by various choices of the parameters.
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1 Introduction and Statement of Results

The following well-known result is due to Enestrom and Kakeyam.
Theorem A. [fP(z) =a,Z"+a, 17" '+ +a1z+ag is a polynomial of degree n, such
thata, > a,_1 > - >ay > ay >0, then P(z) has no zeros in | z |< 1.
With the help of Theorem A, one gets the following equivalent form of Enestrom-Kakeya
Theorem by considering the polynomial z"P(1/z).
Theorem B. If
P(z) = and' +ay 12" 4 +aiz+ag

is a polynomial of degree n, such that

then P(z) has no zeros in | z |< 1.

oll, 4-10]

In the literatur , there already exist some extensions and generalizations of Enestrom-

Kakeya Theorem. Aziz and Zarger'® relaxed the hypothesis of Theorem A in several ways and
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have proved some extensions and generalizations of this result. As a generalization of Enestrom-
Kakeya Theorem, they proved:

Theorem C. IfP(z) = a 7" +a, 12" ' 4 +a1z+ag is a polynomial of degree n, such
that for some k > 1

ka, > ap_1 > -+ >a; >ay>0, (1)

then P(z) has all its zeros in the disk | z+k—1 |< k.
Remark 1. Since the circle | z4k — 1 |< k is contained in the circle | z |< 2k — 1, it follows
from Theorem C that all the zeros of P(z) = a,z" +a, 12" +--- + a1z + ao, satisfying (I) lie

in the circle.

| 2|< 2k — 1. (2)

Aziz and Mohammad? have studied the zeros of a class of related analytic functions and among
other things have obtained.
Theorem D. Let f(z) = Y. a;z/ # 0 be analytic in | z |<t. If |arga; |< o <®/2, j=
j=0

0,1,2,--- and for some finite non-negative integer k,
lag |[<tlay|<- <t*|ax [>T [y > -+,

then f(z) does not vanish in

<2tk

The aim of this paper is to present some more extensions and generalizations of Enestrom-

t

2sina | & '
—1>cosa+sina—|— - 1Y ¢ a;
| ao | =0

|z |<

Ak
ap

Kakeya Theorem. We also study the zeros of a class of related analytic functions. We start by
presenting the following interesting generalization of Theorem C.
Theorem 1. If P(z) = a, 2" +a, 12" '+ +a1z+ ag is a polynomial of degree n. If

for some real number p > 0, such that
Ptan>ay 1> >ay > ag >0, (3)

then P(z) has all its zeros in

e+ L1+ £ (4)

a ;
Remark 2. Theorem C is a special case of Theorem 1 for the choice of p = (k— 1)ay,,

where k > 1. Applying Theorem 1 to polynomial P(¢z) we obtain the following result :
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Corollary 1. Let P(z) = ¥, a’ | 2/ |# 0 be a polynomial of degree n. If for some real
j=0
numbers p > 0 and t > 0, such that

then all zeros of P(z) lie in

p p
<t .
|Z+l”7161n_1 |_ +tn71an
Taking p = a,—1 — a, > 0in Theorem 1, we immediately get the following result:

Corollary 2. Let P(z) ¥ a’ | 2/ |# 0 be a polynomial of degree n such that a, < a, | >
j=0
- >ay > ap >0, then P(z) has all its zeros in

An—1

Ap—1

lz—14 |<

n n
Next, we prove the following results:
Theorem 2. If
P(x)=and" +ap 12" - +a1z+ap

is a polynomial of degree n such that
ap<ap1 > >a1>ay >ay; ap <ay_;<---<ap ap>0,

then all zeros of P(z) lie in the disk

|z|§1+M. (6)

n
For A = 0, Theorem 2 reduces to Theorem 1.
The following result immediately follows by applying Theorem 2 to the polynomial P(z)
where ¢ is some positive real number.

Corollary 3. Let
P(z) =and" +ap12" 4o + aiz+ ao,
be a polynomial of degree n such that
"a, > 1" ay > > ay > tay >ap; ey < <ag,

then all zeros of P(z) lie in the disk

2(ap — t*
,Z,S,{HM},
"a,
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Corollary 3 for A = n with the help of Theorem B applied to polynomial P(rz) yields the

following interesting result:

Corollary 4. Let
P(z) = ayd" +ay 12" e +aiz+ap,
be a polynomial of degree n such that
"ay <t" la, 1 < <ta;<ap;  ap>0,
then all the zeros of P(z) lie in the ring shaped region

2
t§|z|§t{ﬂ—1}.
t"a,

Now we shall present the following interesting generalization of Theorem A analogous to

2).

Theorem 3. Let
P(z) = ayd" +ay 12" 4 +aiz+ag,
be a polynomial of degree n, if for some k > 1,
kay <ajiy>-->ay>a0>0, and a, > a1 > - > ay, (7)
then all the zeros of P(z) lie in the region
\z\§1+2(k—1)zi. (8)

n

For A = n, we get Theorem C and for k = 1, it reduces to Enestrom - Kakeya Theorem.
Remark 3. Theorem 3 is applicable to situations where Enestrom-Kakeya Theorem pro-

vides no information. To see this consider the polynomial
P(z) =32 +32* + 22 +222 + 2z + 2.

Here Enestrom-Kakeya Theorem is not applicable, but according to Theorem 3 all the zeros
of P(z) lie in the disk

22—
<1+
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which is much better than the bound obtained by the Cauchy’s classical Theorem [7,Theorem
27.2].

Finally, we shall present the following result for analytic functions which is a generalization

of Theorem D, analogous to Theorem 3:

Theorem 4. Let

flz) = iajzj #0
=0

be analytic in |z |<t. If |arg a; |< « < 7/2, j=0,1,2,--- and for some finite non-negative
integer A and some k, 0 < k <1,

lag |<tlar|< <t ap =M [ap >0,
then f(z) does not vanish in

t
|z |<

2sina & '
a—ltl}cosa—i-sina—i— - Y i a
ap ‘610’ =0

(1—2k)+{

For k = 1, it reduces to Theorem D.

2 Proofs of the Theorems
Proof of Theorem 1. Consider

F(z) = (1-2)P(x)=(1—2)(and" +an 17" 4 +a1z+ap)

= —a, @t (ay—ap 1)+ (@1 — @y 2)? 4+ (@1 — a0)z+ ap.
Therefore, for | z |> 1, we have

|F)| = |—ai™ + (a0 —an-1)7" + (an1 — @p—2)Z" "+ -+ (a1 —ao)z+ap |

= | =@ —p+ @+ (p — an-1)Z" + (an-1 — an-2)?" "+ + (a1 —ag)z+ap |

> laz+p || —{lp+an—an1 ||| +]an1—an2| |

+--+lar—aol|z|+|ao |}

1
’Zn ’ |:‘ anz+p ’ _{ ‘p+an_an—l+ ‘ an—1 _an—ZH_

|z |
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bt la-al ot o]
DY al—ao S ao [
|2t 2" |
> ]z”]{\anz—i—p!
_{(p+an_an71)+(an71_an72)+"’+(al_aO)+GO}]
= 12| [ Jawz+p | ~(p+a)]
> 0, if |aiz+p|>(p+an).

Therefore all the zeros of F(z) whose modulus is greater than 1 lie in

z+£
a

n

<142

an

185

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the inequality

(4). Since the zeros of P(z) are also the zeros of F(z) , it follows that all the zeros of P(z) lie in

the region.
e+ 2 <1+ ﬂ,
an an
which proves the desired result.
Proof of Theorem 2. Consider
F(z) = (1-2)P)=1—-2)(and"+ap 12" "4 +ajz+ap)

= —a, 2" (@ — an )7 ¥ (an) — an2)Z T - (@) —ap)z + ag.

Therefore, for | z|> 1, using the hypothesis we have

ap—1 —dp-2
FOI > Lol 2 =12 1 {] -+ (22 252)
Gh+1— A a —ay—i ay — aop ao
+.--+( =1 )+< s >-|-..-—|—< pr )+(Z—n>
ap—1 — Qy—
> |an||z|”+1+|z|”—{|an—an1|+%|
Ary1 —ay| | |9r —ar—1 ay —ap| lag
+- z”_l_] Zn—l + 4 anl Z_n}
> ‘Zn‘{’ZHan’_(an_an—l)+(an_1—an_2)+
+"'+(a/I-H_al)—’—(a/l_a?u—l)‘f’"'-f—(a]—a0)+(a0)}
Z ‘Zn‘{’ZHan’—(an—i—Zao—Zal)}
n an+2ap0 —2ay
= lan |||zl ———FF
| an |
2a0 —2 2ay —
> 0 if |Z|>“"+“—0“l_1_ (ay, —ap)

| an | B | an |
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Therefore, all the zeros of F(z), whose modulus is greater than 1 lie in

But those zeros of F (z) whose modulus is less than or equal to 1 already satisfy the inequality
(6). Since all the zeros of P(z) are also the zeros of F(z), so it follows that all the zeros of P(z)
lie in

2(a) —a
lz]<1— (170).

| ay |

which completes the proof of the desired result.

Proof of Theorem 3. Consider

F(z) = (1-2)P(2)=(1—2)(and" +an12" 4+ +aiz+ ap)

= _anzrhLl + (an - anfl)zn + (anfl - an72)Zn71 +--- 4 (611 - aO)Z+aO-

Therefore, for | z |> 1, using the hypothesis we have

FE@| > [anll 2% =1l (= ap)?" + 4 (@ —ap )P+ + (a1 —ao)z+ao |}
>y |2 =12 {lan = age |+ e |
e e e e R

> Janll 412 = { = 4 22
boq az:_lz_—?l _'_a)LZ—n_a/{lq +m+alzn—71610 %}
> 12 [ an | [ 2] ~{(@n— @)+ (@n1 = an2) 4+ (@r11 —a2)
(kay —ay—y) + (kay —ay) + (a1 —ao) + (ao) }]
> |2 {12 -l Dl
> Oif\d>(%+2f_lmm.
;

therefore all the zeros of F(z) whose modulus is greater than 1, lie in the region

2(k—1)ay

n

lz|>1+
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But all those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the
inequality (8). Since all the zeros of P(z) are also the zeros of F(z). Hence all the zeros of P(z)
lie in

lz|< 1+ 2(1{;71)@’

n

which completes the Proof of Theorem 3

Proof of Theorem 4. Tt is obvious that lim t/a ;= 0. Consider

F(z) = (z—1)f(z) = —tap+ i(aj_ltaj)zjfl —tap+2G(2).
=0

Since |arga; [<a <%, j=0,1,2,---.
It can be easily verified that

|taj—aj_i|<|taj—aj_1|cosa+(|aj|+]|aj_]|)sina.

Hence for | z |= ¢, we have

(6@ | = | X (a1—1a)F "< X | (@1 —ta) " |
j=0 Jj=0
= Y |tlaj|—|aj_1]|t/ Tcoso+ ¥ (t]a;|+|aj_1|)t/ 'sina
j=0 Jj=0
< (el [ =Tal [+ £ |t1a;] = a1 || 7! cosa
j:

+ Y (tlaj [+ |aj-1 )/ Sina]
=1

IN

(It1an [ =kl a0 | =(1 =0 |ao ||

+ ¥ tlaj|—|aj-1| tjfl) cosa+ Y (t]aj|+|aj ])tjlsinoc]
= =1

IN

[{(1 —2k)|ag| +t]ar |+ Plaz| + - +1*|ay |

—*Va, | —t“l\auﬂ+---}cosa+sina+25in0‘ Y |aj [j]
=1

= {(1—2k)|ag| +2t*|ay |} cos a + 2sin & ‘);1 laj|t/

\ao\{(l—zk)yaowrzzl

a—l'}cosa—l—%inaz laj |t/ = |ag|H say
ap i
j=1

Since G(0) =0, using Schwarz Lemma that |G(z)| < |ag|M for |z] <t.

From equation (11), it follows that

|F(2)] < tlao| = |zllaolM > |ao|(t = Mlz[), for || <1,
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therefore, |F(z)| > 0, if

g >
Z M

Consequently F(z) ,and therefore f(z) does not vanish in |z| < -, which is equivalent to the

desired result.
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