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Abstract. In this paper we prove some interesting extensions and generalizations of Enestrom-

Kakeya Theorem concerning the location of the zeros of a polynomial in a complex plane.

We also obtain some zero-free regions for a class of related analytic functions. Our results

not only contain some known results as a special case but also a variety of interesting results

can be deduced in a unified way by various choices of the parameters.
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1 Introduction and Statement of Results

The following well-known result is due to Enestrom and Kakeya[7].

Theorem A. If P(z) = anzn +an−1zn−1 + · · · · · ·+a1z+a0 is a polynomial of degree n, such

that an ≥ an−1 ≥ ·· · · · · ≥ a1 ≥ a0 > 0, then P(z) has no zeros in | z |< 1.

With the help of Theorem A, one gets the following equivalent form of Enestrom-Kakeya

Theorem by considering the polynomial znP(1/z).

Theorem B. If

P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z+ a0

is a polynomial of degree n, such that

an ≥ an−1 ≥ ·· · · · · ≥ a1 ≥ a0; a0 > 0,

then P(z) has no zeros in | z |< 1.

In the literature[1, 4−10], there already exist some extensions and generalizations of Enestrom-

Kakeya Theorem. Aziz and Zarger[3] relaxed the hypothesis of Theorem A in several ways and
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have proved some extensions and generalizations of this result. As a generalization of Enestrom-

Kakeya Theorem, they proved:

Theorem C. If P(z) = anzn +an−1zn−1 + · · · · · ·+a1z+a0 is a polynomial of degree n, such

that for some k ≥ 1

kan ≥ an−1 ≥ ·· · · · · ≥ a1 ≥ a0 > 0, (1)

then P(z) has all its zeros in the disk | z+ k−1 |≤ k.

Remark 1. Since the circle | z+k−1 |≤ k is contained in the circle | z |≤ 2k−1, it follows

from Theorem C that all the zeros of P(z) = anzn + an−1zn−1 + · · ·+ a1z + a0, satisfying (I) lie

in the circle.

| z |≤ 2k−1. (2)

Aziz and Mohammad[2] have studied the zeros of a class of related analytic functions and among

other things have obtained.

Theorem D. Let f (z) =
∞

∑
j=0

a jz
j 6= 0 be analytic in | z |≤ t. If | arg a j |≤ α ≤ π/2, j =

0,1,2, · · · and for some finite non-negative integer k,

| a0 |≤ t | a1 |≤ · · · ≤ tk | ak |≥ tk+1 | ak+1 |≥ · · · ,

then f (z) does not vanish in

| z |≤
t

(

2tk

∣

∣

∣

∣

ak

a0

∣

∣

∣

∣

−1

)

cosα + sinα +
2sin α

| a0 |
|

∞

∑
j=0

t j | a j |

.

The aim of this paper is to present some more extensions and generalizations of Enestrom-

Kakeya Theorem. We also study the zeros of a class of related analytic functions. We start by

presenting the following interesting generalization of Theorem C.

Theorem 1. If P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z + a0 is a polynomial of degree n. If

for some real number ρ ≥ 0, such that

ρ + an ≥ an−1 ≥ ·· · · · · ≥ a1 ≥ a0 > 0, (3)

then P(z) has all its zeros in

| z+
ρ

an

|≤ 1+
ρ

an

. (4)

Remark 2. Theorem C is a special case of Theorem 1 for the choice of ρ = (k − 1)an,

where k ≥ 1. Applying Theorem 1 to polynomial P(tz) we obtain the following result :
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Corollary 1. Let P(z) =
∞

∑
j=0

a j | z j |6= 0 be a polynomial of degree n. If for some real

numbers ρ ≥ 0 and t > 0, such that

ρ = tnan ≥ tn−1an−1 ≥ ·· · ≥ ta1 ≥ a0 ≥ 0

then all zeros of P(z) lie in

| z+
ρ

tn−1an−1

|≤ t +
ρ

tn−1an

.

Taking ρ = an−1 −an ≥ 0 in Theorem 1, we immediately get the following result:

Corollary 2. Let P(z)
∞

∑
j=0

a j | z j |6= 0 be a polynomial of degree n such that an ≤ an−1 ≥

·· · ≥ a1 ≥ a0 > 0, then P(z) has all its zeros in

| z−1+
an−1

an

|≤
an−1

an

.

Next, we prove the following results:

Theorem 2. If

P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z+ a0

is a polynomial of degree n such that

an ≤ an−1 ≥ ·· · ≥ a1 ≥ aλ+1 ≥ aλ ; aλ ≤ aλ−1 ≤ ·· · ≤ a0; a0 > 0,

then all zeros of P(z) lie in the disk

| z |≤ 1+
2(a0 −aλ )

an

. (6)

For λ = 0, Theorem 2 reduces to Theorem 1.

The following result immediately follows by applying Theorem 2 to the polynomial P(tz)

where t is some positive real number.

Corollary 3. Let

P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z+ a0,

be a polynomial of degree n such that

tnan ≥ tn−1an−1 ≥ ·· · ≥ tλ+1aλ+1 ≥ tλ aλ ≥ aλ ; tλ aλ ≤ ·· · ≤ a0,

then all zeros of P(z) lie in the disk

|z| ≤ t

{

1+
2(a0 − tλ aλ )

tnan

}

.
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Corollary 3 for λ = n with the help of Theorem B applied to polynomial P(tz) yields the

following interesting result:

Corollary 4. Let

P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z+ a0,

be a polynomial of degree n such that

tnan ≤ tn−1an−1 ≤ ·· · ≤ ta1 ≤ a0; a0 ≥ 0,

then all the zeros of P(z) lie in the ring shaped region

t ≤ |z| ≤ t

{

2a0

tnan

−1

}

.

Now we shall present the following interesting generalization of Theorem A analogous to

(2).

Theorem 3. Let

P(z) = anzn + an−1zn−1 + · · · · · ·+ a1z+ a0,

be a polynomial of degree n, if for some k ≥ 1,

kaλ ≤ aλ+1 ≥ ·· · ≥ a1 ≥ a0 ≥ 0, and an ≥ an−1 ≥ ·· · ≥ aλ , (7)

then all the zeros of P(z) lie in the region

|z| ≤ 1+ 2(k−1)
aλ

an

. (8)

For λ = n, we get Theorem C and for k = 1, it reduces to Enestrom - Kakeya Theorem.

Remark 3. Theorem 3 is applicable to situations where Enestrom-Kakeya Theorem pro-

vides no information. To see this consider the polynomial

P(z) = 3z5 + 3z4 + z3 + 2z2 + 2z+ 2.

Here Enestrom-Kakeya Theorem is not applicable, but according to Theorem 3 all the zeros

of P(z) lie in the disk

|z| ≤ 1+
2(2−1)

3
=

5

3
,



184 A. Aziz et al : On the Zeros of a Class of Polynomials and Related Analytic Functions

which is much better than the bound obtained by the Cauchy’s classical Theorem [7,Theorem

27.2].

Finally, we shall present the following result for analytic functions which is a generalization

of Theorem D, analogous to Theorem 3:

Theorem 4. Let

f (z) =
∞

∑
j=0

a jz
j 6= 0

be analytic in | z |≤ t. If | arg a j |≤ α ≤ π/2, j = 0,1,2, · · · and for some finite non-negative

integer λ and some k, 0 < k ≤ 1,

| a0 |≤ t | a1 |≤ · · · ≤ tλ | aλ |≥ tλ+1 | aλ+1 |≥ · · · ,

then f (z) does not vanish in

| z |≤
t

(1−2k)+

{
∣

∣

∣

∣

aλ

a0

∣

∣

∣

∣

tλ

}

cosα + sinα +
2sin α

| a0 |

∞

∑
j=0

t j | a j |

.

For k = 1, it reduces to Theorem D.

2 Proofs of the Theorems

Proof of Theorem 1. Consider

F(z) = (1− z)P(z) = (1− z)(anzn + an−1zn−1 + · · · · · ·+ a1z+ a0)

= −anzn+1 +(an −an−1)z
n +(an−1 −an−2)z

n−1 + · · ·+(a1 −a0)z+ a0.

Therefore, for | z |> 1, we have

| F(z) | = | −a1zn+1 +(an −an−1)z
n +(an−1 −an−2)z

n−1 + · · ·+(a1 −a0)z+ a0 |

= | −anzn+1 −ρzn + anzn +(ρ −an−1)z
n +(an−1 −an−2)z

n−1 + · · ·+(a1 −a0)z+ a0 |

≥ | anz+ ρ || zn | −{| ρ + an −an−1 || zn | + | an−1 −an−2 | zn−1 |

+ · · ·+ |a1 −a0| | z | + | a0 |}

= | zn |

[

| anz+ ρ | −
{

| ρ + an −an−1+ | an−1 −an−2‖
1

| z |
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+ · · ·+ | a1 −a0 |
1

| zn−1 |
+ | a0 |

1

| zn |

}

]

> | zn |
[

| anz+ ρ |

−
{

(ρ + an −an−1)+ (an−1 −an−2)+ · · ·+(a1 −a0)+ a0

}]

= | zn |
[

| anz+ ρ | −(ρ + an)
]

> 0, if | anz+ ρ |> (ρ + an).

Therefore all the zeros of F(z) whose modulus is greater than 1 lie in
∣

∣

∣

∣

z+
ρ

an

∣

∣

∣

∣

≤ 1+
ρ

an

.

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the inequality

(4). Since the zeros of P(z) are also the zeros of F(z) , it follows that all the zeros of P(z) lie in

the region.
∣

∣

∣

∣

z+
ρ

an

∣

∣

∣

∣

≤ 1+
ρ

an

,

which proves the desired result.

Proof of Theorem 2. Consider

F(z) = (1− z)P(z) = (1− z)(anzn + an−1zn−1 + · · · · · ·+ a1z+ a0)

= −anzn+1 +(an −an−1)z
n +(an−1 −an−2)z

n−1 + · · ·+(a1 −a0)z+ a0.

Therefore, for | z |> 1, using the hypothesis we have

| F(z) | ≥ | an || zn+1 | − | zn |
{

| (an −an−1)+

(

an−1 −an−2

z

)

+ · · ·+

(

aλ+1 −aλ

zn−λ−1

)

+

(

aλ −aλ−1

zn−λ

)

+ · · ·+

(

a1 −a0

zn−1

)

+

(

a0

zn

)

≥ | an || z |n+1 + | z |n −

{

| an −an−1 | +

∣

∣

∣

∣

an−1 −an−2

z

∣

∣

∣

∣

|

+ · · ·+

∣

∣

∣

∣

aλ+1 −aλ

zn−λ−1

∣

∣

∣

∣

+

∣

∣

∣

∣

aλ −aλ−1

zn−λ

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

a1 −a0

zn−1

∣

∣

∣

∣

+

∣

∣

∣

∣

a0

zn

∣

∣

∣

∣

}

≥ | zn | {| z || an | −(an −an−1)+ (an−1 −an−2)+

+ · · ·+ (aλ+1 −aλ )+ (aλ −aλ−1)+ · · ·+(a1 −a0)+ (a0)}

≥ | zn | {| z || an | −(an + 2a0 −2aλ )}

= | an || zn

{

| z | −
an + 2a0 −2aλ

| an |

}

> 0 if | z |>
an + 2a0 −2aλ

| an |
= 1−

2(aλ −a0)

| an |
.
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Therefore, all the zeros of F(z), whose modulus is greater than 1 lie in

| z |≤ 1−
2(aλ −a0)

| an |
.

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the inequality

(6). Since all the zeros of P(z) are also the zeros of F(z), so it follows that all the zeros of P(z)

lie in

| z |≤ 1−
2(aλ −a0)

| an |
.

which completes the proof of the desired result.

Proof of Theorem 3. Consider

F(z) = (1− z)P(z) = (1− z)(anzn + an−1zn−1 + · · · · · ·+ a1z+ a0)

= −anzn+1 +(an −an−1)z
n +(an−1 −an−2)z

n−1 + · · ·+(a1 −a0)z+ a0.

Therefore, for | z |> 1, using the hypothesis we have

| F(z) | ≥ | an || zn+1 | −{| (an −an−1)z
n + · · ·+(aλ −aλ−1)z

λ + · · ·+(a1 −a0)z+ a0 |}

≥ | an || zn+1 | − | zn | {| an −an−1 | +

∣

∣

∣

∣

an−1 −an−2

z

∣

∣

∣

∣

· · ·+

∣

∣

∣

∣

aλ+1 −aλ

zn−λ−1

∣

∣

∣

∣

+

· · ·+

∣

∣

∣

∣

kaλ −aλ

zn−λ

∣

∣

∣

∣

+

∣

∣

∣

∣

kaλ −aλ−1

zn−λ

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

a1 −a0

zn−1

∣

∣

∣

∣

+

∣

∣

∣

∣

a0

zn

∣

∣

∣

∣

≥ | an || zn+1 | + | zn | −

{

| an −an−1 | +

∣

∣

∣

∣

an−1 −an−2

z

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

aλ+1 −aλ

zn−λ−1

∣

∣

∣

∣

+

∣

∣

∣

∣

aλ −aλ−1

zn−λ

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

a1 −a0

zn−1

∣

∣

∣

∣

+

∣

∣

∣

∣

a0

zn

∣

∣

∣

∣

}

≥ | zn || an | [| z | −{(an −an−1)+ (an−1 −an−2)+ · · ·+(aλ+1 −aλ )

(kaλ −aλ−1)+ (kaλ −aλ )+ (a1 −a0)+ (a0)}]

≥ | zn || an |

{

| z | −
(an + 2(k−1)aλ )

| an |

}

> 0 if | z |>
(an + 2(k−1)aλ )

an

.

therefore all the zeros of F(z) whose modulus is greater than 1, lie in the region

| z |> 1+
2(k−1)aλ

an

.
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But all those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the

inequality (8). Since all the zeros of P(z) are also the zeros of F(z). Hence all the zeros of P(z)

lie in

| z |≤ 1+
2(k−1)aλ

an

,

which completes the Proof of Theorem 3

Proof of Theorem 4. It is obvious that lim t ja j = 0. Consider

F(z) = (z− t) f (z) = −ta0 +
∞

∑
j=0

(a j−1ta j)z
j−1 − ta0 + zG(z).

Since | arg a j |≤ α ≤ π
2
, j = 0,1,2, · · · .

It can be easily verified that

| ta j −a j−1 |≤| ta j −a j−1 | cosα +(| a j | + | a j−1 |)sinα .

Hence for | z |= t, we have

| G(z) | = |
∞

∑
j=0

(a j−1 − ta j)z
j−1 |≤

∞

∑
j=0

| (a j−1 − ta j)z
j−1 |

=
∞

∑
j=0

| t | a j | − | a j−1 || t j−1 cos α +
∞

∑
j=0

(t | a j | + | a j−1 |)t
j−1 sin α

≤

[

(

|t | a1 | − | a0 | |+
∞

∑
j=2

| t | a j | − | a j−1 || t j−1
)

cosα

+
∞

∑
j=1

(t | a j | + | a j−1 |)t
j−1 sinα

]

≤
[(

|t | a1 | −k | a0 | −(1− k) | a0 | |

+
∞

∑
j=2

| t | a j | − | a j−1 || t j−1
)

cos α +
∞

∑
j=1

(t | a j | + | a j−1 |)t
j−1 sin α

]

≤
[{

(1−2k)|a0|+ t|a1|+ t2|a2|+ · · ·+ tλ |aλ |

−tλ−1|aλ−1|− tλ+1|aλ+1|+ · · ·
}

cosα + sinα + 2sinα
∞

∑
j=1

| a j | t j

]

= {(1−2k)|a0|+ 2tλ |aλ |}cos α + 2sinα
∞

∑
j=1

| a j | t j

= |a0|

{

(1−2k)|a0|+ 2tλ

∣

∣

∣

∣

aλ

a0

∣

∣

∣

∣

}

cosα + 2sinα
∞

∑
j=1

| a j | t j = |a0|H say

Since G(0) = 0 , using Schwarz Lemma that |G(z)| ≤ |a0|M for |z| ≤ t.

From equation (11), it follows that

|F(z)| ≤ t|a0|− |z||a0|M ≥ |a0|(t −M|z|), for |z| ≤ t,
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therefore, |F(z)| > 0, if

|z| >
1

M
.

Consequently F(z) ,and therefore f (z) does not vanish in |z| ≤ 1
M

, which is equivalent to the

desired result.
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