A CHARACTERIZATION FOR FRACTIONAL INTEGRALS ON GENERALIZED MORREY SPACES

Eridani and M. I. Utoyo

(Airlangga University, Indonesia)

H. Gunawan

(Bandung Institute of Technology, Indonesia)

Received May 22, 2012

Abstract. This paper concerns with the fractional integrals, which are also known as the Riesz potentials. A characterization for the boundedness of the fractional integral operators on generalized Morrey spaces will be presented. Our results can be viewed as a refinement of Nakai's^[7].

Key words: fractional integrals, Morrey spaces

AMS (2010) subject classification: 26A33, 42B35, 43A15, 47B38, 47G10

1 Introduction

For $0 < \alpha < d$, we define the fractional integral (also known as the Riesz potential) $I_{\alpha}f$ by

$$I_{\alpha}f(x) := \int_{\mathbf{R}^d} \frac{f(y)}{|x-y|^{d-\alpha}} \mathrm{d}y, \qquad x \in \mathbf{R}^d,$$

for any suitable function f on \mathbf{R}^d . Clearly $I_{\alpha}f$ is well-defined for any locally bounded, compactly supported function f on \mathbf{R}^d . It is well-known that I_{α} is bounded from $L^p(\mathbf{R}^d)$ to $L^q(\mathbf{R}^d)$, that is,

$$\|I_{\alpha}f:L^q\| \leq C \|f:L^p\|$$

if and only if

$$\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d},$$

264 Eridani et al : A Characterization for Fractional Integrals on Generalized Morrey Spaces

with 1 . This result was proved by Hardy and Littlewood^[5,6] and Sobolev^[10] around the 1930's. Further development on the subject can be found in [11, 12].

Next, let $\mathbf{R}^+ := (0, \infty)$. For $1 \le p < \infty$ and a suitable function $\phi : \mathbf{R}^+ \to \mathbf{R}^+$, we define the generalized Morrey space $L^{p,\phi} = L^{p,\phi}(\mathbf{R}^d)$ to be the set of all functions $f \in L^p_{loc}(\mathbf{R}^d)$ for which

$$||f: L^{p,\phi}|| := \sup_{B} \frac{1}{\phi(B)} \left(\frac{1}{|B|} \int_{B} |f(y)|^{p} \mathrm{d}y\right)^{1/p} < \infty.$$

Here the supremum are taken over all open balls B = B(a, r) in \mathbb{R}^d and $\phi(B) = \phi(r)$, where $r \in \mathbb{R}^+$. For certain functions ϕ , the spaces $L^{p,\phi}$ reduce to some classical spaces. For instance, if $\phi(r) = r^{(\lambda-d)/p}$, where $0 \le \lambda \le d$, then $L^{p,\phi}$ is the classical Morrey space $L^{p,\lambda}$. For a brief history of the Morrey space and related spaces, see [8]. For more recent results, see [9, 13] and the references therein.

In this short paper, we shall revisit Nakai's theorems on the fractional integrals on the generalized Morrey spaces^[7]. In particular, we find that the sufficient condition imposed by Nakai for the boundedness of the operator turns out to be necessary. In other words, we obtain a characterization for which the fractional integral operators are bounded from $L^{p,\phi}$ to $L^{q,\psi}$.

2 Main Results

Let us begin with some assumptions and relevant facts that follow. As customary, the letters C, C_i , C_p and $C_{p,q}$ denote positive constants, which may depend on the parameters such as α , p,q and the dimension d of the ambient space, but not on the function f or the variable x. These constants may vary from line to line.

In the definition of $L^{p,\phi}$, the function ϕ is assumed to satisfy the following conditions:

$$\phi$$
 is almost decreasing : $t \le r \Rightarrow \phi(r) \le C_1 \phi(t);$
 $r^d \phi(r)^p$ is almost increasing : $t \le r \Rightarrow t^d \phi(t)^p \le C_2 r^d \phi(r)^p,$

with C_1 , $C_2 > 0$ being independent of *r* and *t*. These two conditions imply that

$$\phi$$
 satisfies the doubling condition : $1 \le \frac{t}{r} \le 2 \Rightarrow \frac{1}{C_3} \le \frac{\phi(t)}{\phi(r)} \le C_3$,

for some $C_3 > 0$ (which is also independent of *r* and *t*). Throughout this paper, we shall always assume that ϕ satisfies these conditions.

In [7], Nakai showed that I_{α} is bounded from $L^{p,\phi}$ to $L^{q,\psi}$ for

$$\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$$

if ϕ satisfies an additional condition, namely

$$\int_{r}^{\infty} t^{\alpha-1} \phi(t) \mathrm{d}t \le C_4 r^{\alpha} \phi(r), \tag{1}$$

and

$$r^{\alpha}\phi(r) \le C_5\psi(r),\tag{2}$$

for every $r \in \mathbf{R}^+$. By taking $\phi(r) = r^{(\lambda-d)/p}$ with $0 \le \lambda < d - \alpha p$ and $\psi(r) = r^{\alpha} \phi(r)$ with $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$, Nakai's result contains Spanne's, which states that I_{α} is bounded form $L^{p,\lambda}$ to $L^{q,\mu}$ for $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$, $0 \le \lambda < d - \alpha p$ and $\mu = \frac{q}{p} \lambda^{[8]}$. See also [3] for related results.

In the following, we shall show that the condition (2) is necessary for the fractional integral operator I_{α} to be bounded from $L^{p,\phi}$ to $L^{q,\psi}$. To do so, we need some lemmas. The first lemma shows particularly that the space $L^{p,\phi}$ is not trivial.

Lemma 2.1. If $B_0 := B(a_0, r_0)$, then $\chi_{B_0} \in L^{p,\phi}$ where χ_{B_0} is the characteristic function of the ball B_0 . Moreover, there exists C > 0 such that

$$\frac{1}{\phi(r_0)} \le \|\chi_{B_0}: L^{p,\phi}\| \le \frac{C}{\phi(r_0)}$$

Proof. Let B := B(a, r) denote an arbitrary ball in \mathbb{R}^d . It is easy to see that

$$\|\chi_{B_0}: L^{p,\phi}\| = \sup_B \frac{1}{\phi(r)} \left(\frac{|B \cap B_0|}{|B|}\right)^{1/p} \ge \frac{1}{\phi(r_0)} \left(\frac{|B_0 \cap B_0|}{|B_0|}\right)^{1/p} = \frac{1}{\phi(r_0)}.$$

Now, if $r \leq r_0$, then $\phi(r_0) \leq C \phi(r)$ and

$$\frac{1}{\phi(r)} \left(\frac{|B \cap B_0|}{|B|}\right)^{1/p} \leq \frac{1}{\phi(r)} \leq \frac{C}{\phi(r_0)}.$$

On the other hand, if $r_0 \leq r$, we have $r_0^d \phi(r_0)^p \leq C r^d \phi(r)^p$ and

$$\frac{1}{\phi(r)} \left(\frac{|B \cap B_0|}{|B|}\right)^{1/p} = \frac{C|B \cap B_0|^{1/p}}{r^{d/p}\phi(r)} \le \frac{C|B_0|^{1/p}}{r^{d/p}\phi(r)} \le \frac{Cr_0^{1/p}}{r_0^{d/p}\phi(r_0)} \le \frac{C}{\phi(r_0)}$$

This completes the proof.

Lemma 2.2. If $B_0 := B(a_0, r_0)$, then $r_0^{\alpha} \leq C I_{\alpha} \chi_{B_0}(x)$ for every $x \in B_0$.

265

Proof. If $x, y \in B_0 := B(a_0, r_0)$, then $|x - y| \le |x - a_0| + |a_0 - y| < 2r_0$. If we integrate both sides of the following inequality $r_0^{\alpha - d} \le C |x - y|^{\alpha - d}$ over B_0 , then we get the desired estimate.

The following theorem gives a characterization of the functions ϕ and ψ for which I_{α} is bounded from $L^{p,\phi}$ to $L^{q,\psi}$.

Theorem 2.3. Suppose that

$$\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d},$$

where $1 . Suppose further that <math>r^{\alpha} \phi(r)$ satisfies the integral condition (1). Then, I_{α} is bounded from $L^{p,\phi}$ to $L^{q,\psi}$ if and only if $r^{\alpha}\phi(r) \leq C\psi(r)$ for every $r \in \mathbf{R}^+$.

Proof. The sufficient part is proved in [7]. We shall now prove the necessary part. Assume that I_{α} is bounded from $L^{p,\phi}$ to $L^{q,\psi}$, and let $B_0 := B(a_0, r_0)$. If $x \in B_0$, then $r_0^{\alpha} \leq C I_{\alpha} \chi_{B_0}(x)$. Integrating over B_0 , we get

$$\begin{split} r_0^{\alpha} &\leq C \left(\frac{1}{|B_0|} \int_{B_0} |I_{\alpha} \chi_{B_0}(x)|^q \, dx \right)^{1/q} \leq C \, \psi(r_0) \|I_{\alpha} \chi_{B_0} : L_{\psi}^q \| \\ &\leq C \, \psi(r_0) \|\chi_{B_0} : L_{\phi}^p \| \leq C \, \psi(r_0) \, \phi(r_0)^{-1}. \end{split}$$

Note that the first inequality follows from Lemma 2.2, while the last one follows from Lemma 2.1. Since this is true for every $r_0 \in \mathbf{R}^+$, we are done.

3 Additional Results

In [4], there is the following theorem that serves as an extension of Adams and Chiarenza– Frasca's result on the fractional integral operator I_{α} [1, 2].

Theorem 3.1. (Gunawan-Eridani). Suppose that $1 and <math>\phi^p$ satisfies the integral condition, namely

$$\int_{r}^{\infty} \frac{\phi^{p}(t)}{t} dt \le C_{6} \phi^{p}(r), \tag{3}$$

for every $r \in \mathbf{R}^+$. If $\phi(r) \leq Cr^{\beta}$ for $-\frac{d}{p} \leq \beta < -\alpha$, then, for $q = \frac{\beta p}{\alpha + \beta}$, there exists $C_{p,\beta} > 0$ such that

$$||I_{\alpha}f:L^{q,\phi^{p/q}}|| \le C_{p,\beta} ||f:L^{p,\phi}||.$$

As in the previous part, we also have the characterization of ϕ for which I_{α} is bounded from $L^{p,\phi}$ to $L^{q,\phi^{p/q}}$.

Theorem 3.2. Suppose that $1 and <math>\phi^p$ satisfies the integral condition (3). If $-\frac{d}{p} \leq \beta < -\alpha$ and $q = \frac{\beta p}{\alpha + \beta}$, then I_{α} is bounded from L^p_{ϕ} to $L^q_{\phi^{p/q}}$ if and only if $\phi(r) \leq C r^{\beta}$ for every $r \in \mathbf{R}^+$.

Proof. The proof of the sufficient part can be found in [4]. As for the necessary part, we have the following observation: if $B_0 := B(a_0, r_0)$, then

$$egin{aligned} &r_0^lpha &\leq C \left(rac{1}{|B_0|} \int_{B_0} |I_lpha \chi_{B_0}(x)|^q \mathrm{d}x
ight)^{1/q} &\leq C \, \phi(r_0)^{p/q} \|I_lpha \chi_{B_0} : L^{q, \phi^{p/q}} \| \ &\leq C \, \phi(r_0)^{p/q} \, \|\chi_{B_0} : L^{p, \phi} \| \leq C \, \phi(r_0)^{p/q} \, \phi(r_0)^{-1}, \end{aligned}$$

which may be rewritten as $\phi(r_0) \leq Cr_0^{\beta}$. Since this inequality is valid for every $r_0 \in \mathbf{R}^+$, the theorem is proved.

References

- [1] Adams, D. R., "A Note on Riesz Potentials", Duke Math. J., 42(1975), 765-778.
- [2] Chiarenza, F. and Frasca, M., Morrey Spaces and Hardy-Littlewood Maximal Function', Rend. Mat., 7(1987), 273-279.
- [3] Eridani, H. Gunawan, and Nakai, E., On Generalized Fractional Integral Operators, Sci. Math. J., 60(2004), 539–50.
- [4] Gunawan, H. and Eridani, Fractional Integrals and Generalized Olsen Inequalities, Kyungpook Math. J., 49(2009), 31-39.
- [5] Hardy, G. H. and Littlewood, J. E., Some Properties of Fractional Integrals. I, Math. Zeit., 27(1927), 565-606.
- [6] Hardy, G. H. and Littlewood, J. E., Some Properties of Fractional Integrals. II, Math. Zeit., 34(1932), 403-439.
- [7] Nakai, E., Hardy-Littlewood Maximal Operator, Singular Integral Operators and the Riesz Potentials on Generalized Morrey Spaces, Math. Nachr., 166(1994), 95-103.
- [8] Peetre, J., On the Theory of $\mathcal{L}_{p,\lambda}$ Spaces, J. Funct. Anal., 4(1969), 71-87.
- [9] Sawano, Y., Generalized Morrey Spaces for Non-doubling Measures, Non-linear Differential Equations and Applications, 15(2008), 413-425.
- [10] Sobolev, S. L., On a Theorem in Functional Analysis (Russian), Mat. Sob., 46(1938), 471-497 [English translation in Amer. Math. Soc. Transl. ser. 2, 34 (1963), 39-68].
- [11] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
- [12] Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.

268 Eridani et al : A Characterization for Fractional Integrals on Generalized Morrey Spaces

[13] Sugano, S. and Tanaka, H., Boundedness of Fractional Integral Operators on Generalized Morrey Spaces, Sci. Math. Jpn. Online, 8(2003), 233-242.

Eridani

Department of Mathematics Airlangga University Surabaya 60115 Indonesia

E-mail: eridani.dinadewi@gmail.com

M. I. Utoyo Department of Mathematics Airlangga University Surabaya 60115 Indonesia

E-mial: imam_utoyo@unair.ac.id

H. Gunawan Department of Mathematics Bandung Institute of Technology Bandung 40132 Indonesia

E-mail: hgunawan@math.itb.ac.id