EXISTENCE PROBLEMS OF ADDITIVE SELECTION MAPS FOR ANOTHER TYPE SUBADDITIVE SET-VALUED MAP

Yongjie Piao and Hailan Jin
(Yanbian University, China)

Received Apr. 9, 2011; Revised Sept. 7, 2012

Abstract. In this paper, we consider the following subadditive set-valued map $F: X \longrightarrow$ $P_{0}(Y)$:

$$
F\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right) \subseteq r F\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s F\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right), \quad \forall x_{i} \in X, \quad i=1,2, \cdots, r+s
$$

where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set-valued map.

Key words: additive selection map, subadditive, additive selection, cone
AMS (2010) subject classification: 54C65, 54C60, 39B52, 47H04, 49J54

1 Introduction and Preliminaries

The stability problem of functional equations was originated from a question of Ulam ${ }^{[1]}$ concerning the stability of group homomorphisms. In 1941, D.H Hyers ${ }^{[2]}$ gave a first affirmative partial answer to the question of Ulam for Banach spaces. The famous stability theorem is as follows:

Theorem 0. Let E_{1} be a normed vector space and E_{2} a Banach space. Suppose that the mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \tag{0}
\end{equation*}
$$

for all $x, y \in E_{1}$, with $\varepsilon>0$ a constant. Then the limit

$$
g(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in E_{1}$ and g is the unique additive mapping satisfying

$$
\|f(x)-g(x)\| \leq \varepsilon
$$

for all $x \in E_{1}$.
Later, Hyers' Theorem has been generalized by many authors ${ }^{[3-8]}$.
Let X a real vector space. We denote by $P_{0}(X)$ the family of all nonempty subsets of X.
If Y is a topological vector space, the family of all closed convex subsets of Y denoted by $\operatorname{ccl}(Y)$.

Let A and B are two nonempty subsets of the real vector space X, λ and μ are two real numbers. Define

$$
\begin{aligned}
& A+B=\{x \mid x=a+b, a \in A, b \in B\} ; \\
& \lambda A=\{x \mid x=\lambda a, a \in A\} .
\end{aligned}
$$

The next properties are obvious:
Lemma. If A and B are two nonempty subsets of the real vector space X, λ and μ are two real numbers, then

$$
\lambda(A+B)=\lambda A+\lambda B ; \quad(\lambda+\mu) A \subseteq \lambda A+\mu A
$$

Furthermore, if A is a convex subset and $\lambda \mu \geq 0$, then we have the following formula ${ }^{[9]}$:

$$
(\lambda+\mu) A=\lambda A+\mu A
$$

A subset $A \subset X$ is said to be a cone if $A+A \subseteq A$, and $\lambda A \subseteq A$ for all $\lambda>0$.
If the zero in X belongs to A, we say that A is a zero cone.
Let X and Y be two real vector spaces, $f: X \longrightarrow Y$ a single-valued map, and $F: X \longrightarrow P_{0}(Y)$ a set-valued map. f is called an additive selection of F, if $f(x+y)=f(x)+f(y)$ for all $x, y \in X$, and $f(x) \in F(x)$ for all $x \in X$.

Let $B(0, \varepsilon)$ denote the open ball with center 0 and radius ε in E_{2} in Theorem 0 , then the inequality (0) may be written as

$$
f(x+y) \in B(0, \varepsilon)+f(x)+f(y),
$$

and hence

$$
f(x+y)+B(0, \varepsilon) \subseteq f(x)+B(0, \varepsilon)+f(y)+B(0, \varepsilon) .
$$

where $B(0, \varepsilon)+x$ denote the open ball with center x and radius ε in E_{2}.
Thus, if we define a set-valued mapping F by $F(x)=f(x)+B(0, \varepsilon)$ for each $x \in E_{1}$, then we get

$$
F(x+y) \subseteq F(x)+F(y)
$$

and

$$
g(x) \in F(x)
$$

for all $x, y \in E_{1}$.
Hence, Theorem 0 shows that $g(x)$ is the unique additive selection of the set-valued mapping $F(x)$ with the property $F(x+y) \subseteq F(x)+F(y)$, where F is determined by f.

In [10], the author introduced the concept of subadditive set-valued map and proved that such a map has a unique additive selection.

The result improves and generalizes the corresponding conclusions in [11] and [12]. The definition of this map is stated as follows:

Let X and Y be two real vector spaces, $K \subseteq X$ be a zero cone, $r \in \mathbf{N}$ with $r>1, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}>$ 0 and $\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{r} \geq 0$ with $\bar{\alpha}_{1}+\bar{\alpha}_{2}+\cdots+\bar{\alpha}_{r}>0$. A set-valued map $F: K \longrightarrow P_{0}(Y)$ is called $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right)-\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{r}\right)$-type subadditive set-valued map, if for any $x_{1}, x_{2}, \cdots, x_{r} \in K$, the following holds:

$$
F\left(\sum_{i=1}^{r} \alpha_{i} x_{i}\right) \subset \sum_{i=1}^{r} \bar{\alpha}_{i} F\left(x_{i}\right)
$$

In this paper, we define a new subadditive set-valued mapping satisfying some inclusion relation on a zero cone in a real vector space, and then prove that the map has a unique additive selection map.

2 Main Results

Theorem 1. Let K be a zero cone of a real vector space X, Y a Banach space, r and s two given positive integers. If a set-valued map $F: K \longrightarrow \operatorname{ccl}(Y)$ satisfies that for any $x_{1}, x_{2}, \cdots, x_{r}, x_{r+1}, \cdots, x_{r+s} \in K$, the following holds

$$
\begin{equation*}
F\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right) \subseteq r F\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s F\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right) \tag{1}
\end{equation*}
$$

and for each $x \in K$, $\sup \{\operatorname{diam}(F(x): x \in K\}<+\infty$, then F has a unique additive selection map.
Proof. Take an element $x \in K$ and let $x_{1}=x_{2}=\cdots=x_{r+1}=\cdots=x_{r+s}=x$, then (1) becomes the following

$$
F((r+s) x) \subseteq r F(x)+s F(x)=(r+s) F(x)
$$

For any fixed $n \in \mathbf{N}$, replacing x by $(r+s)^{n} x$, then the above formula becomes

$$
F\left((r+s)^{n+1} x\right) \subseteq(r+s) F\left((r+s)^{n} x\right)
$$

hence we obtain

$$
\frac{F\left((r+s)^{n+1} x\right)}{(r+s)^{n+1}} \subseteq \frac{F\left((r+s)^{n} x\right)}{(r+s)^{n}}
$$

Let $F_{n}(x)=\frac{F\left((r+s)^{n} x\right)}{(r+s)^{n}}$ for each $x \in K$ and $n \in \mathbf{N}$, then for each fixed $x \in K,\left\{F_{n}(x)\right\}_{\mathbf{N} \cup\{0\}}$ is a decreasing sequence of closed convex subsets of a Banach space Y, and the following holds

$$
\left.\operatorname{diam}\left(F_{n}(x)\right)=\frac{1}{(r+s)^{n}} \operatorname{diam} F\left((r+s)^{r}\right) x\right), \quad \forall x \in K, \quad n \in \mathbf{N}
$$

Hence by given condition, $\lim _{n \rightarrow+\infty} \operatorname{diam}\left(F_{n}(x)\right)=0$ for all $x \in K$. Using Cantor theorem for the sequence $\left\{F_{n}(x)\right\}_{n \in \mathbf{N} \cup\{0\}}$, we can conclude that for each $x \in K$, the intersection $\bigcap_{n=0}^{+\infty} F_{n}(x)$ is a singleton set. Let $f(x)$ denote the intersection for each $x \in K$, then we can obtain a single valued map $f: K \rightarrow Y$, and f is also a selection of F since $f(x) \in F_{0}(x)=F(x)$ for all $x \in K$.

For any $x_{1}, x_{2}, \cdots, x_{r}, x_{r+1}, x_{r+2}, \cdots, x_{r+s} \in K$, by the definition of F_{n},

$$
\begin{aligned}
& F_{n}\left(x_{1}+x_{2}+\cdots+x_{r}+x_{r+1}+x_{r+2}+\cdots+x_{r+s}\right) \\
= & \frac{F\left((r+s)^{n}\left(x_{1}+x_{2}+\cdots+x_{r}+x_{r+1}+x_{r+2}+\cdots+x_{r+s}\right)\right)}{(r+s)^{n}} \\
= & \frac{F\left((r+s)^{n} x_{1}+(r+s)^{n} x_{2}+\cdots+(r+s)^{n} x_{r}+(r+s)^{n} x_{r+1}+\cdots+(r+s)^{n} x_{r+s}\right)}{(r+s)^{n}} \\
\subseteq & \frac{r F\left(\frac{(r+s)^{n} x_{1}+(r+s)^{n} x_{2}+\cdots+(r+s)^{n} x_{r}}{r}\right)+s F\left(\frac{(r+s)^{n} x_{r+1}+(r+s)^{n} x_{r+2}+\cdots+(r+s)^{n} x_{r+s}}{s}\right)}{(r+s)^{n}} \\
= & r F_{n}\left(\frac{x_{1}+x_{2}+\cdots+x_{r}}{r}\right)+s F_{n}\left(\frac{x_{r+1}+x_{r+2}+\cdots+x_{r+s}}{s}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right) & =\bigcap_{n=0}^{+\infty} F_{n}\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right) \\
& \subseteq \bigcap_{n=0}^{+\infty}\left[r F_{n}\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s F_{n}\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right)\right]
\end{aligned}
$$

On the other hand, for each $n \in \mathbf{N} \cup\{0\}$,

$$
\begin{aligned}
& f\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right) \in F_{n}\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right) \\
& f\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right) \in F_{n}\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right),
\end{aligned}
$$

hence we obtain

$$
\begin{aligned}
& \left\|f\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right)-\left[r f\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s f\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right)\right]\right\| \\
& \quad \leq r \operatorname{diam}\left[F_{n}\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)\right]+s \operatorname{diam}\left[F_{n}\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right)\right] \longrightarrow 0, \quad \text { as } n \longrightarrow 0
\end{aligned}
$$

And therefore, we obtain the following equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{r} x_{i}+\sum_{j=1}^{s} x_{r+j}\right)=r f\left(\frac{\sum_{i=1}^{r} x_{i}}{r}\right)+s f\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right) . \tag{2}
\end{equation*}
$$

If $r=s=1$, then it is easy to know from (2) that f is additive. From now on, suppose that $r \geq 2$ or $s \geq 2$.

Let $x_{1}=x_{2}=\cdots=x_{r}=x_{r+1}=\cdots=x_{r+s}=0$, then (2) becomes $f(0)=r f(0)+s f(0)$, hence $f(0)=0$. For any $x \in K$, take $x_{1}=x_{x}=\cdots=x_{r}=x$ and $x_{r+1}=\cdots_{r+s}=0$, then (2) becomes $f(r x)=r f(x)$, and replacing x by $\frac{x}{r}$, then we obtain $r f\left(\frac{x}{r}\right)=f(x)$, and therefore

$$
r^{2} f\left(\frac{x}{r^{2}}\right)=r\left[r f\left(\frac{\left(\frac{x}{r}\right)}{r}\right)\right]=r f\left(\frac{x}{r}\right)=f(x) .
$$

Repeating the process, we obtain its general form $r^{k} f\left(\frac{x}{r^{k}}\right)=f(x)$ for any $k \in \mathbf{N}$ and $x \in K$. Similarly, let $x_{1}=x_{2}=\cdots=x_{r}=0$ and $x_{r+1}=\cdots=x_{r+s}=x$, then we obtain from (2) that $f(x)=\operatorname{sf}\left(\frac{x}{s}\right)$, hence we have its general form $s^{k} f\left(\frac{x}{s^{k}}\right)=f(x)$ for any $k \in \mathbf{N}$ and $x \in K$.

If $r \geq 2$, then we will obtain from (2) that

$$
\begin{align*}
& f\left(\frac{x_{1}+x_{2}+\cdots+x_{r}}{r}\right) \\
= & f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-1}+0}{r}+\frac{x_{r}+0+\cdots+0}{r}\right)(\text { the number of } 0 \text { is } s) \\
= & r f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-1}}{r^{2}}\right)+s f\left(\frac{x_{r}}{s r}\right) \\
= & f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-1}}{r}\right)+f\left(\frac{x_{r}}{r}\right) \\
= & f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-2}+0+0}{r}+\frac{x_{r-1}+0+\cdots+0}{r}\right)+f\left(\frac{x_{r}}{r}\right)(\text { the number of } 0 \quad \text { is } s) \\
= & {\left[r f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-2}}{r^{2}}\right)+s f\left(\frac{x_{r-1}}{s r}\right)\right]+f\left(\frac{x_{r}}{r}\right) } \\
= & f\left(\frac{x_{1}+x_{2}+\cdots+x_{r-2}}{r}\right)+f\left(\frac{x_{r-1}}{r}\right)+f\left(\frac{x_{r}}{r}\right) \\
= & \cdots \\
= & f\left(\frac{x_{1}}{r}\right)+f\left(\frac{x_{2}}{r}\right)+\cdots+f\left(\frac{x_{r-1}}{r}\right)+f\left(\frac{x_{r}}{r}\right), \tag{3}
\end{align*}
$$

hence

$$
r f\left(\frac{x_{1}+x_{2}+\cdots+x_{r}}{r}\right)=r\left[f\left(\frac{x_{1}}{r}\right)+f\left(\frac{x_{2}}{r}\right)+\cdots+f\left(\frac{x_{r-1}}{r}\right)+f\left(\frac{x_{r}}{r}\right)\right],
$$

and therefore,

$$
f\left(x_{1}+x_{2}+\cdots+x_{r}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{r-1}\right)+f\left(x_{r}\right) .
$$

Thus, f is additive.

Similarly, if $s \geq 2$, then we have

$$
\begin{align*}
& f\left(\frac{x_{r+1}+\cdots+x_{r+s}}{s}\right) \\
= & f\left(\frac{0+0+\cdots+0+x_{r+1}}{s}+\frac{0+x_{r+2}+\cdots+x_{r+s}}{s}\right)(\text { the number of } 0 \quad \text { is } r) \\
= & r f\left(\frac{x_{r+1}}{r s}\right)+s f\left(\frac{x_{r+2}+x_{r+3}+\cdots+x_{r+s}}{s^{2}}\right) \\
= & f\left(\frac{x_{r+1}}{s}\right)+f\left(\frac{x_{r+2}+x_{r+3}+\cdots+x_{r+s}}{s}\right) \\
= & f\left(\frac{x_{r+1}}{s}\right)+f\left(\frac{0+0+\cdots+0+x_{r+2}}{s}+\frac{0+0+x_{r+3}+\cdots+x_{r+s}}{s}\right) \text { (the number of } 0 \text { is } r \text {) } \\
= & f\left(\frac{x_{r+1}}{s}\right)+r f\left(\frac{x_{r+2}}{r s}\right)+s f\left(\frac{x_{r+3}+\cdots+x_{r+s}}{s^{2}}\right) \\
= & f\left(\frac{x_{r+1}}{s}\right)+f\left(\frac{x_{r+2}}{s}\right)+f\left(\frac{x_{r+3}+\cdots+x_{r+s}}{s}\right) \\
= & \cdots \\
= & f\left(\frac{x_{r+1}}{s}\right)+f\left(\frac{x_{r+2}}{s}\right)+\cdots+f\left(\frac{x_{r+s}}{s}\right) . \tag{4}
\end{align*}
$$

Hence

$$
s f\left(\frac{x_{r}+x_{r+1}+\cdots+x_{r+s}}{s}\right)=s\left[f\left(\frac{x_{r+1}}{s}\right)+f\left(\frac{x_{r+2}}{s}\right)+\cdots+f\left(\frac{x_{r+s}}{s}\right)\right]
$$

that is,

$$
f\left(x_{r}+x_{r+1}+\cdots+x_{r+s}\right)=f\left(x_{r+1}\right)+f\left(x_{r+2}\right)+\cdots+f\left(x_{r+s}\right)
$$

This shows that f is additive.
Next, let us prove the uniqueness of the additive selection maps of F.
Suppose that f_{1} and f_{2} are two additive selection maps of F, then for each $n \in \mathbf{N}$ and $x \in K$, we have

$$
n f_{i}(x)=f_{i}(n x) \in F(n x), \quad i=1,2
$$

hence $n\left\|f_{1}(x)-f_{2}(x)\right\|=\left\|f_{1}(n x)-f_{2}(n x)\right\| \leq \operatorname{diam} F(n x)$, i.e., $\left\|f_{1}(x)-f_{2}(x)\right\| \leq \frac{1}{n} \operatorname{diam} F(n x)$. Let $n \rightarrow+\infty$, then by (ii), $f_{1}(x)=f_{2}(x)$ for each $x \in K$. This shows that the additive selection map of F is unique.

Using the same method as in Theorem 1, we can obtain more general form than Theorem 1, but we omit its proof.

Theorem 2. Let K be a zero cone of a real vector space X, Y a Banach space and $r_{1}, r_{2}, \cdots, r_{k}$ given positive integers. If a set-valued map $F: K \longrightarrow \operatorname{ccl}(Y)$ satisfies that for any $x_{1}, x_{2}, \cdots, x_{r_{1}}, x_{r_{1}+1}, \cdots, x_{r_{1}+r_{2}}, \cdots, x_{r_{1}+r_{2}+\cdots+r_{k}} \in K$, the following holds

$$
\begin{align*}
& F\left(\sum_{i=1}^{r_{r}} x_{i}+\sum_{i=1}^{r_{2}} x_{r_{1}+i}+\cdots+\sum_{i=1}^{r_{k}} x_{r_{1}+r_{2}+\cdots+r_{k-1}+i}\right) \\
& \quad \subseteq r_{1} F\left(\frac{\sum_{i=1}^{r} x_{i}}{r_{1}}\right)+r_{2} F\left(\frac{\sum_{i=1}^{r_{2}} x_{r_{1}+i}}{r_{2}}\right)+\cdots r_{k} F\left(\frac{\sum_{i=1}^{r_{k}} x_{r_{1}+r_{2}+\cdots+r_{k-1}+i}}{r_{k}}\right), \tag{5}
\end{align*}
$$

and for each $x \in K$, sup $\{\operatorname{diam}(F(x): x \in K\}<+\infty$, then F has an unique additive selection map.

References

[1] Ulam, S. M., Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New Yoyk, 1940.
[2] Hyers, D. H., On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. USA, 27(1941), 222224.
[3] Aoki, T., On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[4] Rassias, Th. M., On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc, 72(1987), 297-300.
[5] Rassias, Th. M., (Ed.) Functional Equations and Inequalitis, Kluwer Academic, Dordrecht, 2000.
[6] Rassias, Th. M., On the Stability of Functional Equations in Banach Spaces, J. MAth. Anal. Appl., 251(2000), 264-284.
[7] Rassias, Th. M., On the Stability of Functional Equations and a Problem of Ulam, Acta Math. Appl., 62(2000), 23-130.
[8] Gǎvruta, P., A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[9] Nikodem, K., K-convex and K-convave set Valued Functions. Zeszyty Naukowe Politechniki Lodzkiej, Mat. 559, Rdzprawy Naukowe 114, Lodz 1989.
[10] Piao, Y. J., On Unique Existence of Additive Selection Maps for A Weak Subadditive Set-Valued Map, Chinese Quarterly J. of Math., to appear.
[11] Piao, Y. J., On Existence and Uniqueness of Additive Selection Map for $(\alpha, \beta)-(\beta, \alpha)$-type Subadditive Setvalued Maps, Journal of Northeast Normal University(Natural Science), 41:4(2009), 32-34.(In Chinese).
[12] Dorian Popa, Additive Selections of (α, β)-subadditive Set Valued Maps, GLASNIK Math., 36:56(2001), 11-16.

Department of Mathematics

Science of College
Yanbian University
Yanji, 133002
P. R. China

Y. J. Piao

E-mail: pyj6216@hotmail.com
H. L. Jin

E-mail: hljin98@ybu.edu.cn

