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Abstract. In this paper, the notion gf-wavelet packets on the positive half-lile is in-
troduced. A new method for constructing non-orthogonaleletvpackets related to Walsh
functions is developed by splitting the wavelet subspagestly instead of using the low-
pass and high-pass filters associated with the multirasalanalysis as used in the classi-
cal theory of wavelet packets. Further, the method oversahedifficulty of constructing
non-orthogonal wavelet packets of the dilation fagior 2.
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1 Introduction

In the early nineties a general scheme for the constructiomawelets was defined. This
scheme is based on the notion of multiresolution analysRA)Mintroduced by Mallat®. Im-
mediately specialists started to implement new waveldeays and in recent years, the concept
MRA of R" has been extended to many different setups, for exampldk®atiroduced mul-
tiresolution analysis and wavelets on locally compact Arebroups’, Land*¥ constructed
compactly supported orthogonal wavelets on the locally maech Cantor dyadic groug@ by
following the procedure of Daubechiés via scaling filters and these wavelets turn out to be
certain lacunary Walsh series on the real line. On the o#tmethJiang et al3 pointed out
a method for constructing orthogonal wavelets on local fieldiith a constant generating se-
guence and derived necessary and sufficient conditionsdoluéion of the refinement equation
to generate a multiresolution analysisL3{K ). Subsequently, the tight wavelet frames on local
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fields were constructed by Li and Jiangl{fl. Farkov”) extended the results of La#§ on the
wavelet analysis on the Cantor dyadic gratipo the locally compact Abelian grou@, which

is defined for an integep > 2 and coincides witl® when p = 2. Concerning the construc-
tion of wavelets on a half-line, Farkd¥ has given the general construction of all compactly
supported orthogonal-wavelets inL?(R*) and proved necessary and sufficient conditions for
scaling filters withp” many termgp,n > 2) to generate @-MRA analysis inL?(R*). These
studies were continued by Farkov and his colleagues in [9ydltere they have given some new
algorithms for constructing the corresponding biorthajamd nonstationary wavelets related
to the Walsh functions on the positive half-life”. On the otherhand, Shah and Debiffdth
have constructed dyadic wavelet frames on the positivelin@fR™ using the Walsh-Fourier
transform and have established a necessary condition amifi@ent condition for the system
{212y(2Ixek) 1 j € Z,ke Z*} to be a frame foL3(R™).

It is well-known that the classical orthonormal waveletdmbave poor frequency localiza-
tion. For example, if the wavelep is band limited, then the measure of the supgysfy)” is
2i-times that of supi. To overcome this disadvantage, Coifman ef/atonstructed univariate
orthogonal wavelet packets. The fundamental idea of wapaleket analysis is to construct a
library of orthonormal bases fa(R), which can be searched in real time for the best expansion
with respect to a given application.

Let ¢(x) and@(x) be the scaling function and the wavelet function associaféta mul-

tiresolution analysis{vj} LetW, be the corresponding wavelet subspaces:

jez:
W, :sp—an{wj_k:kez}.

Using the low-pass and high-pass filters associated wittMR@, the spacéV; can be split

into two orthogonal subspaces, each of them can further liiérgp two parts. Repeating this
processj times,W; is decomposed into/2subspaces each generated by integer translates of
a single function. If we apply this to eadh|, then the resulting basis & (R) which will
consist of integer translates of a countable number of fonst will give a better frequency
localization. This basis is called theavelet packet basisTo describe this more formally, we
introduce a parameterto denote the frequency. S&y = ¢ and define recursively

Wn(X) = Man(X=K),  @na(X) = ) Gean(2x—k),
kez kez

where {hc},., and{g«},. are the low-pass filter and high-pass filter corresponding (t9
and(x), respectively. Chui and i3 generalized the concept of orthogonal wavelet packets to
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the case of non-orthogonal wavelet packets so that theyeaptlied to the spline wavelets and
so on. The introduction of biorthogonal wavelet packetstattes to Cohen and Daubechfées
Sher? generalized the notion of univariate orthogonal wavelekpts to the case of multi-
variate wavelet packets for the dilation facfoe= 2, however this construction does not work
for p > 2. Other notable generalizations are the orthogonal versiosector-valued wavelet
packet8!, non-orthogonal wavelet packets witiscaling functiond? and theM-band framelet
packet&3

Recently, Shak? has constructeg-wavelet packets related to the Walsh functions on the
positive half-lineR*. He proved lemmas on the so-called splitting trick and s#veorems
concerning the Walsh-Fourier transform of thevavelet packets and the construction paf
wavelet packets to show that their translates form an odimal basis of >(R*). Subsequently,
the corresponding biorthogongtwavelet packets ang-wavelet frame packets oR™ were
studied by the author and Debnath in [18,19,22].

As one of a series of works on the positive half-liRe, the objective of this paper is to
construct non-orthogongi-wavelet packets related to Walsh functionsRohusing the splitting
trick of wavelets. The splitting trick in our method decorsps the wavelet subspaces directly
instead of using the low-pass and high-pass filters as usbeé iclassic theory of wavelet pack-
ets, and thus gives the Riesz basis of the wavelet subspaces.

We have organized the article as follows. In Section 2, wikesame basic preliminaries,
notation and definitions including Walsh functions, the $taFourier transform anpg-MRA. In
Section 3, we prove a crucial lemma called #mitting lemmawhich decomposes the wavelet
subspaces directly instead of using the low-pass and haghk-filters. By virtue of this lemma,
we construct thg-wavelet packets and prove that they generate Reisz badi$(R™).

2 Preliminaries and p-Wavelet Packets on R

Let p be a fixed natural number greater than 1. As usuaR let [0,+00), Z' = {0,,2,---}
andN =Z* —{0}. SetQy={0,1,2,---,p—1} andQ = Qo — {0}. Denote by[x] the integer
part ofx. Forx € R" and any positive integej;, we set

xj = [p'X](modp),  x_j = [p* Ix|(modp). (2.1)

We consider oiR " the addition defined as follows:

z=5 gp T Y gp!
J;)J JZOJ
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with {; = x; +y;(modp) (j € Z\ {0}), where; € Qg andx;, y; are calculated by (2.1). Note
thatz= xoyif z&y = x, wheres denotes subtraction modugpin R .
Forx € [0,1), letro(x) be given by

1, ifxe0,1/p)
ro(X) =
¢

Ep,

ifxepL+1p?), teq,
whereg, = exp(2ri/p). The extension of the functiory to R' is given by the equalityo(X+

1) =ro(x), xe R". Then, thegeneralized Walsh functiofsvy(x) : me Z*} are defined by

Wo(X) =1, Wi(X) = I‘L(ro(pjx))“j

wherem= zou, pl, Hj € Qo, Uk # 0. They have many properties similar to those of the Haar

functions and trigonometric series, and form a completeogonal system. Further, by a Walsh
polynomial we shall mean a finite linear combination of Wdlsictions.
Forx,yeR", let
X(xy) = eXp(%“ Ji(XjY—j + X—jyj)> : (22)
wherex;,y; are given by (2.1). Note that(x,m/p"1) = x(x/p",m) = wm(x/p") for all x €
[0,p"), mneZ . Also, ifx,y,§ € R" andx@y is p-adic irrational, then

XXDY, &) = x(%,&) x(¥%,€), and x(xoy,&) = X(%,&) X(¥,€)-

It is shown by Golubov et 8P that both the system§x(a,.)}a_o and {x(.,a)}5_, are
orthonormal bases i?[0,1].
By p-adic intervall C R™ of rangen we mean the intervals of the form

Il =18=[kp ™ (k+1)p™"), keZ".

The p-adic topology is generated by the collectionpsédic intervals and eaghadic inter-
val is both open and closed under fr@dic topology (see [17]). The famil{/[o, p):je Z}
forms a fundamental system of tipeadic topology orR™. Therefore, for each & j,k < p",
the Walsh functiomw;(x) is piecewise constant and hence continuous. Tgs) = 1 forx < 19.

The Walsh-Fourier transform of a functidne LY(R™) N L?(R*) is defined by

&)= [ f0ox0e)ax 23)
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wherex (x, &) is given by (2.2). The Walsh-Fourier operaorL!(R*)NL2(R*) — L2(R*), Ff =
f, extends uniquely to the whole spac&R*). The properties of the Walsh-Fourier trans-
form are quite similar to those of the classic Fourier tramsf (see[12,17]). In particular, if
f e L2(R"), thenf € L3(R™) and
11l 2oy = 1 fllzre-
Definition 2.1. LetH be a Hilbert space. A sequeng& },_, of H is said to be a Riesz ba-

sis forH if there exist constantd andB, 0 < A < B < » such that anyf € H can be represented

as a serie§ = Z c« fk converging inH with
K=1

AT < 3 Jal® < BJ |17, (24)
k=1

where|.|| is the norm ofL?(R™).

A function f € L2(R") is said to be stable if there exist positive constantandc, such

that
1/2 1/2
C1< > Iak|2> < §02< > Iak|2> :

kez+ kezt
for each sequencéay},.»+ € 12(Z*). In other words,f is stable if the system of functions

> af(xck)
kez+

{f(xek):ke Z*} form a Riesz system ih?(R*). Moreover, we recall that (see [8]}, is
stable inL?(R*) with constants; andc; if and only if
a< Y [f(akf <c, foraed cR".
kez+

In the following subsection, we introduce the notiongMmultiresolution analysis oR™
and give the formal definition gf-wavelets of spack?(R™).

Definition2.2. A p-multiresolution analysis df?(R*) is a nested sequence of closed sub-
spaceqV; } ,_, such that

(i) VjCVjyq forall jeZz,

(i) UjezVjis dense il?(RT) andczV; = {0},

(i) feVjifandonlyif f(p.) eV iforall jeZ,

(iv) there exists a functio in Vg, called the scaling function, such that the system of
functions{¢ (. ©k) : ke Z"} form a Riesz basis for subspadg

Since¢ (x) € Vo C V4, by Definition 2.2, there exists a finitely supported seqedag}, ., €
12(Z*) such that

000 = 3 ad(pxek). (25)

kezZ+
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The Walsh-Fourier transform of (2.5) is given by

¢ (&) =mo(p &) (p 1), (2.6)

wheremy(§) = Skez+ a X (K, €), is a generalized Walsh polynomial, called the mask or symbo
of the refinable functio and is ap-adic step function.

Let W be the wavelet subspace, the complementooh Vi. If 1,4, ..., Pp_1 are inW
such that{yy(xo k) : ke Z*,¢ € Q} form a Riesz basis fow, then, we callyn, ¢, ..., Pp_1
the basicp-wavelets associated with the scaling functip(x). Sincey, € W C V;, for each
¢ € Q, there exists a sequen¢ef }, ., With 3+ [af|?> < o such that

W)= 3 a(pxoK). (2.7)
Implementing the Walsh- Fourier tralr:eszform for both side§07) yields
Ge (&) =mi(pE) d(p 1), (28)
where
my(§) = k;aﬁm, teqQ, (2.9)

are the integral-periodic functions irf[0, 1] and are called thevavelet masks
By virtue of the property (ii) of Definition 2.2, we have
L2RY) =P DWW =Voe (D DW) (2.10)
jez j>0
whereD is the dilation operator such th@tf (x) = f(px), for any f € L(R*).
Setting

W = WI(X)>(U2 = wZ(X)v cs Wp—1 = wpfl(x)-

For each integen € Z*, we definew, as follows:

Gh(X) = @pr-5(X) = @H(PXE k), (211)

wherer ands are the unique numbers such that pr+src Z*,sc Qo.

The functions{w, : n € Z} will be called the basip-wavelet packets related to the Walsh
functions on the positive half-linB™ (see [20]).

Definition 2.3. Let{w,:ne€ Z"} be the basig-wavelet packets associated with the
MRA {V;}

ez of L2(R™). The collection of functions

T:{ah(pixek):neztjez,kez+} (2.12)

is called the genergs-wavelet packets corresponding to thé1RA {V,-} ez



Anal. Theory Appl., Vol. 28, No.4 (2012) 391

3 Splitting Trick and the Non-orthogonal p-Wavelet Packets

Foranyne Z*, define

Up = {f(x) f(x) = z bcan(XoK), {bk}yez+ € IZ(Z+)}. (31)
kez+

Lemma3.1. Let{w,:neZ*} be the basic p-wavelet packets associated with the p-MRA
{Vj}jez. Then, for all ne Z*, {awn (xS k) : k€ ZT} form a Riesz basis oflJ

Proof. We prove this result by induction an Since{yn, y»,--- ,p_1} is the basic set of
p-wavelets il and{yn (xo k), (xS k), -, p_1(x& k) : k€ Z*} constitutes Riesz basis of
W, therefore,

{L/Jl(px@ K), Po(pxeK), ..., Pp_1(pxek) 1k e Z+}

form a Riesz basis dbW. By virtue of Riesz basis and Definition 2.3, the system

{wl(xe k), (XS K),...,ap_1(Xxek) 1 ke z+}

constitutes Riesz basis W, and thus{ah(xok):1<n<p-1ke Z"} form a Riesz basis
of U,. Therefore, the claim is true when<ln < p— 1. Assume that the result is true for
n</,(¢>p).

Now, for n =/, there exist two unique numbersands such than= pr+s,sc Qg,r € Z+
andr < n= /. Sincer < n =/, the family of functions{w (x& k) : k € Z*} form a Riesz basis
of Un. Therefore, there exist constamisandc,, 0 < ¢; < ¢; < o such that

a< Y |a¢Eek<c
keZ+

Further, we have

N 1 R
S |amEek] = 23 |apiEak)lx(piE k)
kezZt pkez+
1 .
= 5.2 & (p e @ p k)|
kezZ+
1 A (p L n2yd A~ (-1 R BN
= =5 [@plek) += T [@aptEokop s+ +
pk/EZJr pk/ez+
x @ (p K@ pis 1))
pk’eZ+
and hence
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Thus, {an(xek) : ke ZT} forms a Riesz basis df,. This completes the proof of the
lemma.

Now we establish the splitting trick of oyr-wavelet packets.

Lemma 3.2 (Splitting lemma) For every ne Z*, the family of functions

{wpms(x@ K):s€ Qp,ke Z*}

constitutes Riesz basis DU,
Proof. First, we claim that

scQokeZ+

@unz{wx):f(x): S S biwmnis(xok), {bﬁ}kepel%z*)}. (32)

As for anys € Qo, by (2.11) and (3.1)upns(X© k) € DUy. Assume thaf (x) € DUy, then there
exists a sequency ..+ € 12(Z 1) such that

f(x) = Z Ckh(pxe k). (3.3)
kez+

Further, if there exist sequenc{:bﬁ}kez+ €12(z2*),s€ Qo, as for f (x) € DUy, such that
f(x) = % > bRwpnis(XEK). (3.4)
s€QokeZ*

Sincek € Z, there exist unique numbersinds such thak = pr+s,r € Z*,sc Qq. Then,
for this choice ok € Z*, we obtain

f(x) = z Ckn(pxe k)

kez+

= > Corh(PXOPr)+ 5 Cpris,Gh(PXS Prosy)
reZ+ reZ+
+od Y Cpras,  Gh(PXO Prosp-a)

rezZ+

= z CprWpn(XOT) + z Cpris, Wpn+1(XOT) + -+ + z Cpr+sp,1wpn+p—1(xer)
reZt reZ+ reZ+

= z z bﬁwpn—FS(X@k)v
seQokeZ+

whereb} = cpr1s,, ¢ € Qo and hence the equality (3.2) follows.
We now show that the set of functions

{wpn+s(x@ k) :se€ Qp,ke Z*}
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form a Riesz basis dDU,. In the light of Lemma 3.1, the familjw,(x&k) :ke Z*} is a
Riesz basis dfJ,. Therefore {wn(px&K) : k € Z*} constitutes a Riesz basis DtJ,. However,
{wn(pxek) : ke Z*} can be splitted intg-disjoint subsets as:

{wn(px@ pk) ke Z*},{wn(px@ pkesy) ke Z*},--- ,{wh(px@ pkosy_1) 1 ke Z*},

which can be written as
{wpn(x@ k) :ke Z+},{wpn+1(x@k) ke Z*}, ,{wpmp_l(x@k) ke Z+}.

Hence,{wpmrs(xe K):se Qo,ke Z*} form a Riesz basis dbUj,.

This is the splitting trick of our method. This splittingdki decomposes the wavelet sub-
spaces directly instead of using the low-pass fiitg( ) and the high-pass filters,(§),/ € Q
by the theory ofp-wavelet packets (see [20,22]), and thus gives the Riesg bathe wavelet
subspaces. Applying the splitting trick to the wavelet gpa¢we can dividéV into p-subspaces
as follows:

Theorem 3.3. Let {wh:neZ*} be the p-wavelet packets associated with the scaling
function@ (x). Then the set of functions

{wh(x@k) pt<n<p —1,kez+}

forms a Riesz basis @/W .

Proof. \We prove the theorem by induction gn Since{w, : 1 <n < p— 1} are the basic
p-wavelets related to the Walsh functions and the fanidy(xok):1<n<p-1keZ*}
form a Riesz basis diV. Therefore, the claim is true for = 1. Assume that it holds for
j(j >1), then

{oqq(x@k) pl<n<p —1ke Z*}

constitutes a Riesz basis DfW.
Using Splitting Lemma 3.2 for the cager 1, we get

{wpn(x@ K), Wont1 (XS K), ..., Wpnip-1(xOK) : Pl <n< pl —1Lke Z*}

form a Riesz basis abi+1w. So{wn(xe K):pl<n<p*l-1ke Z*} form a Riesz basis
of DI+lw.
In the next two theorems, we provide various ways to consRigsz basis of (R™) which

is extracted out from thp-wavelet packet® (see Eq.(2.12)).
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Theorem 3.4. For each fixed j> 0,k € Z™, the family of functions
{wn(pzx@k):pj’léné pj—l,EeZ,keZ+} (3.5)

forms a Riesz basis of[R™).
Proof. Since{wn(x&k):p~t<n<p/ —1kez*t} forms a Riesz basis db'W. By
Theorem 3.3, for eache Z the set of functions

{oqq(péx@ kK :pt<n<p -—1ke Z*} (3.6)

constitutes Riesz basis @il*‘W. Also, for each fixedj > 0, L2(R™) = @,z DI*W, there-
fore, the set of function$oqq(p”x@ K:pl<n<p -1/cZke Z*} forms a Riesz basis
of L2(R™).

Itis clear from the above construction that the Riesz basit%(R*) varies with respect to
the integerj > 0. Thus, for the cas¢= 1, the sub-collection of

P= {ah(pfx@k):nezﬂﬁez,kez*}

gives us the known bas{swg(p”xe k):keZ™ le Z}. Furthermore, in the above construction,
the integerj is fixed and the dilation parametéwvaries over all integers. In order to construct
the Riesz basis frorf?, we allow j and/ in P to vary simultaneously.

LetS={(j,¢): j € N,{ € Z} be a disjoint covering o, then for eachr € Z, there exist a
unique pair(j, /) € Ssuch that = j + ¢. Moreover, this collectioi®is called am-finite covering
of Z if there exists a positive integdr< o such that for al(j,/) € S j < J.

Theorem 3.5. Suppos€ a,:ne Z*} are the p-wavelet packets associated with the scal-
ing functiong (x). Then, the family of functions

{%(pﬂx@k):p"‘léné pj—l,k62+,(j,€)68} (3.7)

constitutes Riesz basis of(R") if S is an n-finite cover df.

Proof. Since for each fixed, family of the functions
{oqq(x@k) pl<n<p —1,kez+}

constitutes Riesz basis G'W and hence{wn(p'xek): p/~t <n<pl—1,kez*} form a

Riesz basis oD W,
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For each fixedj, let §; = {(j,¢) : (j,¢) € S}. SinceSis n-inite, soS can be written as a

finite disjoint union ofS;. Therefore, by this property & we have

L’RY) =P P D'*'w. (3.8)

JeN(j.0)es;

Thus for each fixed > 0, the family of functions

{an(pxek):pit<n<pi-1kezt (j,0) €S}

form a Riesz basis of@ DITAW. Using (3.8), it follows that

(i.0)es

{an(pxok):pt<n<pl - 1kez* (j,0) e s}

form a Riesz basis df?(R™).
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