INTEGRABILITY AND L^{1}-CONVERGENCE OF DOUBLE COSINE TRIGONOMETRIC SERIES

J. Kaur and S. S. Bhatia
(Thapar University, India)
Received July 14, 2009
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

We study here L^{1}-convergence of new modified double cosine trigonometric sum and obtain a new necessary and sufficient condition for L^{1}-convergence of double cosine trigonometric series. Also, the results obtained by Moricz ${ }^{[1],[2]}$ are particular cases of ours.

Key words: L^{1}-convergence, conjugate Dirichlet kernel
AMS (2010) subject classification: 42A20, 42A32

1 Introduction

We consider the double cosine series

$$
\begin{equation*}
f(x, y)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{j} \lambda_{k} a_{j k} \cos j x \cos k y \tag{1.1}
\end{equation*}
$$

on the positive quadrant $T^{2}=[0, \pi] \times[0, \pi]$ of the two dimensional torus, where $\lambda_{0}=\frac{1}{2}$ and $\lambda_{j}=1$ for $j=1,2,3, \cdots$ and $\left\{a_{j k}\right\}$ is a double sequence of real numbers.

We denote by

$$
S_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_{j} \lambda_{k} a_{j k} \cos j x \cos k y, \quad m, n \geq 0
$$

the rectangular partial sum of the series (1.1) and $f(x, y)=\lim _{m+n \rightarrow \infty} S_{m n}(x, y)$.
We remind the reader the following classes of coefficient sequences due to [1].

[^0]Definition 1.1 ${ }^{[1]}$. We say that $\left\{a_{j k}\right\}$ belongs to the class $B V_{2}$ if

$$
\begin{equation*}
a_{j k} \rightarrow 0 \quad \text { as } \quad j+k \rightarrow \infty, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|\triangle_{11} a_{j k}\right|<\infty, \tag{1.3}
\end{equation*}
$$

where

$$
\triangle_{11} a_{j, k}=a_{j, k}-a_{j+1, k}-a_{j, k+1}+a_{j+1, k+1} .
$$

The condition (1.2) implies that $\left\{a_{j k}\right\}$ is a null sequence while (1.3) implies that $\left\{a_{j k}\right\}$ is a sequence of bounded variation.

Defintion 1.2 ${ }^{[1]}$ A null sequence $\left\{a_{j k}\right\}$ belongs to the class \mathcal{C}_{2} if for every $\varepsilon>0$ there exists $\delta>0$ such that for all $0 \leq m \leq M$ and $0 \leq n \leq N$, we have

$$
\begin{equation*}
C(m, M ; n, N ; \delta):=\iint_{D_{\delta}}\left|\sum_{j=m}^{M} \sum_{k=n}^{N} D_{j}(x) D_{k}(y) \triangle_{11} a_{j k}\right| \mathrm{d} x \mathrm{~d} y \leq \varepsilon \tag{1.4}
\end{equation*}
$$

or

$$
\iint_{D_{\delta}}\left|\sum_{j=m}^{\infty} \sum_{k=n}^{\infty} D_{j}(x) D_{k}(y) \triangle_{11} a_{j k}\right| \mathrm{d} x \mathrm{~d} y \leq \varepsilon, \quad \forall m, n \geq 0
$$

where

$$
D_{\delta}:=T-(\delta, \pi] \times(\delta, \pi]=\{(x, y): 0 \leq x, y \leq \pi \& \min (x, y) \leq \delta\} .
$$

Definition 1.3 $3^{[1]}$. A double sequence $\left\{a_{j k}\right\}$ is said to be quasi-convex if

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(j+1)(k+1)\left|\triangle_{22} a_{j k}\right|<\infty . \tag{1.5}
\end{equation*}
$$

Moricz ${ }^{[1]}$ introduced the following modified double cosine trigonometric sum

$$
\begin{equation*}
u_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_{j} \lambda_{k}\left(\sum_{i=j=k}^{m} \sum_{l=k}^{n} \triangle_{11} a_{i l}\right) \cos j x \cos k y \tag{1.6}
\end{equation*}
$$

and studied the L^{1}-convergence of double cosine trigonometric series whose coefficients belong to the class $B V_{2}, \mathrm{C}_{2}$ and the class of quasi-convex coefficients by making use of L^{1}-convergence of these modified double cosine trigonometric sums.

We introduce here the following new modified rectangular partial sums $g_{m n}$ of the series (1.1)

$$
\begin{equation*}
g_{m n}(x, y)=\frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{\sum_{r=j}^{m} \sum_{l=k}^{n} \triangle_{11}\left(a_{r l} \cos r x \cos l y\right)\right\} . \tag{1.7}
\end{equation*}
$$

It will turn out that $g_{m n}(x, y)$ approximate f better than $S_{m n}(x, y)$ since they converge to $f(x, y)$ in $L^{1}(T)$-metric while the classical rectangular partial sums $S_{m n}(x, y)$ may not.

We note that the single cosine series analogous to the modified sums was introduced by Jatinderdeep Kaur and S.S. Bhatia ${ }^{[3]}$.

Here we formulate the new class J_{d} of coefficient sequences as:
Definition 1.4. A double null sequence $\left\{a_{j k}\right\}$ of positive numbers is said to belong to the class J_{d} if there exists a double sequence $\left\{A_{j k}\right\}$ such that

$$
\begin{align*}
& A_{j k} \downarrow 0, \quad j+k \rightarrow \infty, \tag{1.8}\\
& \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} j k A_{j k}<\infty, \tag{1.9}\\
& \left|\triangle_{p q}\left(\frac{a_{j k}}{j k}\right)\right| \leq \frac{A_{j k}}{j k}, \quad 1 \leq p+q \leq 2 \tag{1.10}
\end{align*}
$$

for any nonnegative integers p, q and $j, k \in\{1,2,3, \cdots\}$.
The aim of this paper is to give necessary and sufficient conditions for the integrability and L^{1}-convergence of double cosine trigonometric series by using modified double cosine trigonometric sums (1.7) under a newly defined class J_{d} of coefficient sequences.

2 Lemma

The proof of our result is based on the following lemmas.
Lemma 2.1 ${ }^{[4]}$. Let $n \geq 1, r$ be a nonnegative integer and $x \in[\varepsilon, \pi]$. Then $\left|\tilde{D}_{n}^{r}(x)\right| \leq C_{\varepsilon} \frac{n^{r}}{x}$, where C_{ε} is a positive constant depending only on $\varepsilon, 0<\varepsilon<\pi$ and $\tilde{D}_{n}(x)$ is the conjugate Dirichlet kernel.

Lemma 2.2 ${ }^{[4]}$. $\left\|\tilde{D}_{n}^{r}(x)\right\|_{L^{1}}=O\left(n^{r} \log n\right), r=0,1,2,3, \cdots$, where $\tilde{D}_{n}^{r}(x)$ represents the $r^{\text {th }}$ derivative of conjugate Dirichlet-kernel.

3 Main Result

Our main result is the following theorem:
Theorem 3.1. If a double sequence $\left\{a_{j k}\right\}$ belongs to the class J_{d}, then $\left\|g_{m n}-f\right\| \rightarrow 0$ as $m+n \rightarrow \infty$.

Here ||.|| denotes the two-dimensional $L^{1}\left(T^{2}\right)$-norm.
Proof. First we shall show the point-wise limit f of the sum (1.7) exists in T^{2} and $f \in$
$L^{1}\left(T^{2}\right)$. We have

$$
\begin{align*}
g_{m n}(x, y)= & \frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{\sum_{r=j}^{m} \sum_{l=k}^{n} \triangle_{11}\left(a_{r l} \cos r x \cos l y\right)\right\} \\
= & \frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{r=j}^{m}\left[a_{r k} \cos r x \cos k y-a_{r, k+1} \cos r x \cos (k+1) y\right. \\
& -a_{r+1, k} \cos (r+1) x \cos k y+a_{r+1, k+1} \cos (r+1) x \cos (k+1) y \\
& +a_{r, k+1} \cos r x \cos (k+1) y-a_{r, k+2} \cos r x \cos (k+2) y \\
& \quad-a_{r+1, k+1} \cos (r+1) x \cos (k+1) y+a_{r+1, k+2} \cos (r+1) x \cos (k+2) y \\
& +\cdots+a_{r n} \cos r x \cos n y-a_{r, n+1} \cos r x \cos (n+1) y \\
& \left.\quad-a_{r+1, n} \cos (r+1) x \cos n y+a_{r+1, n+1} \cos (r+1) x \cos (n+1) y\right] \\
= & \frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n}\left[a_{j k} \cos j x \cos k y-a_{j+1, k} \cos (j+1) x \cos k y\right. \\
& \quad-a_{j, n+1} \cos j x \cos (n+1) y+a_{j+1, n+1} \cos (j+1) x \cos (n+1) y \\
& +a_{j+1, k} \cos (j+1) x \cos k y-a_{j+2, k} \cos (j+2) x \cos k y \\
& \quad-a_{j+1, n+1} \cos (j+1) x \cos (n+1) y+a_{j+2, n+1} \cos (j+2) x \cos (n+1) y \\
& +\cdots+a_{m n} \cos m x \cos n y-a_{m+1, k} \cos (m+1) x \cos k y \\
& \left.\left.\quad-a_{m, n+1} \cos m x \cos (n+1) y+a_{m+1, n+1} \cos (m+1) x \cos (n+1) y\right]\right\} \\
= & S_{m n}(x, y)-\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{a_{j, n+1} \cos j x \cos (n+1) y+a_{m+1, k} \cos (m+1) x \cos y\right\}
\end{align*}
$$

exists in T^{2} and that f is a Fourier series i.e. $f \in L^{1}\left(T^{2}\right)$.
Using double summation by parts and the given hypothesis, we get

$$
\begin{aligned}
g_{m n}(x, y)= & \frac{a_{00}}{2}+\sum_{j=1}^{m-1} \sum_{k=1}^{n-1} \triangle_{11}\left(\frac{a_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)-\sum_{j=1}^{m} \triangle_{10}\left(\frac{a_{j, n}}{j n}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{n}^{\prime}(y) \\
& -\sum_{k=1}^{n} \triangle_{01}\left(\frac{a_{m, k}}{m k}\right) \tilde{D}_{m}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)+\frac{a_{m, n}}{m n} \tilde{D}_{m}^{\prime}(x) \tilde{D}_{n}^{\prime}(y)-\sum_{j=1}^{m} n a_{j, n+1} \cos j x \cos (n+1) y \\
& -\sum_{k=1}^{n} m a_{m+1, k} \cos (m+1) x \cos y+m n a_{m+1, n+1} \cos (m+1) x \cos (n+1) y
\end{aligned}
$$

It is known from Lemma 2.1 that

$$
\begin{equation*}
\left|\tilde{D}_{n}^{\prime}(X)\right|=O(n) \quad \text { for } \quad 0<x \leq \pi \tag{3.2}
\end{equation*}
$$

J. Kaur et al: Integrability and L^{1}-convergence of Double Cosine Trigonometric Series

By (1.9), (1.10) we note that

$$
\sum_{j=1}^{m-1} \sum_{k=1}^{n-1} \triangle_{11}\left(\frac{a_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y) \leq \sum_{j=1}^{m-1} \sum_{k=1}^{n-1}\left(\frac{A_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)<\infty
$$

for all x and y such that $0<x, y \leq \pi$.
By (1.9), (1.10) and (3.2), we have

$$
\sum_{j=1}^{m} \triangle_{10}\left(\frac{a_{j n}}{j n}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{n}^{\prime}(y) \leq \sum_{j=1}^{m} \sum_{k=n}^{\infty}\left(\frac{A_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

uniformly in m, for all $0<x, y \leq \pi$.
Similarly,

$$
\sum_{k=1}^{n} \triangle_{01}\left(\frac{a_{m k}}{m k}\right) \tilde{D}_{m}^{\prime}(x) \tilde{D}_{k}^{\prime}(y) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

uniformly in n, for all $0<x, y \leq \pi$.
Since $\left\{a_{j k}\right\}$ is a double null sequence and by the use of the equation (3.2), we get

$$
\frac{a_{m n}}{m n} \tilde{D}_{m}^{\prime}(x) \tilde{D}_{n}^{\prime}(y) \rightarrow 0 \quad \text { as } \quad m+n \rightarrow \infty
$$

for all $0<x, y \leq \pi$.
Further, we know that $|\cos n x|$ is bounded in $(0, \pi]$.
Therefore, by (1.9) and (1.10) we have

$$
\sum_{j=1}^{m} n a_{j, n+1} \leq \sum_{j=1}^{m} \sum_{k=n+1}^{\infty} j k^{2}\left(\frac{A_{j k}}{j k}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

This implies that

$$
\sum_{j=1}^{m} n a_{j, n+1} \cos j x \cos (n+1) y \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

uniformly in m, for all $0<x, y \leq \pi$.
Similarly,

$$
\sum_{k=1}^{n} m a_{m+1, k} \cos (m+1) x \cos k y \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

uniformly in n, for all $0<x, y \leq \pi$.
Also, by (1.9) and (1.10), we have

$$
\begin{align*}
m n a_{m+1, n+1} & \leq \sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty} j^{2} k^{2} \triangle_{11}\left(\frac{a_{j k}}{j k}\right) \\
& \leq \sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty} j^{2} k^{2} \frac{A_{j k}}{j k} \rightarrow 0 \quad \text { as } \quad m+n \rightarrow \infty \tag{3.3}
\end{align*}
$$

Consequently, we get $\lim _{m+n \rightarrow \infty} g_{m n}=f(x, y)$ exists in $L^{1}\left(T^{2}\right)$.
Next, we consider

$$
\left.\left.\begin{array}{rl}
\left\|f-g_{m n}\right\| \leq & \int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty} \triangle_{11}\left(\frac{a_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=1}^{m} \triangle_{10}\left(\frac{a_{j n}}{j n}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{n}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{k=1}^{n} \triangle_{01}\left(\frac{a_{m k}}{m k}\right) \tilde{D}_{m}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\frac{a_{m n}}{m n} \tilde{D}_{m}^{\prime}(x) \tilde{D}_{n}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=1}^{m} n a_{j, n+1} \cos j x \cos (n+1) y\right| \mathrm{dxdy} \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{k=1}^{n} m a_{m+1, k} \cos (m+1) x \cos y\right| \mathrm{d} x \mathrm{~d} y \\
\leq & \quad \int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=m+1}^{\infty}\right| a_{m+1, n+1}\left|\int_{0}^{\pi} \int_{0}^{\pi}\right| \cos (m+1) x \cos (n+1) y \mid \mathrm{d} x \mathrm{~d} y \\
+ & \int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=1}^{m}\left(\frac{A_{j k}}{j k}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
j n
\end{array} \tilde{D}_{j}^{\prime}(x) \tilde{D}_{n}^{\prime}(y) \right\rvert\, \mathrm{d} x \mathrm{~d} y\right) .
$$

We note that from Lemma 2.2, $\left\|\frac{\tilde{D}_{n}^{\prime}(x)}{n^{2}}\right\|=O(1)$.
Further, by (1.9) and (1.10), we get

$$
\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty} j k\left(\frac{A_{j k}}{j^{2} k^{2}}\right) \tilde{D}_{j}^{\prime}(x) \tilde{D}_{k}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \rightarrow 0 \quad \text { as } \quad m+n \rightarrow \infty .
$$

Thus by using the equation (3.3) and the given hypothesis all the terms on the right hand side of the inequality (3.4) tend to zero as $m+n \rightarrow \infty$. Hence, the conclusion of Theorem 3.1 holds.

We draw the following corollaries from Theorem 3.1.
Corollary 3.2. Under the condition of Theorem 3.1, the sum f of the series (1.1) is the integrable and (1.1) is Fourier series of f.

Proof. It follows from Theorem 3.1 that $f \in L^{1}\left(T^{2}\right)$. Furthermore, it is known that the convergence in L^{1} - norm (the so-called strong convergence) implies that in weak convergence.

Now, consider

$$
\begin{aligned}
g_{m n}(x, y)= & \frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{\sum_{r=j}^{m} \sum_{l=k}^{n} \triangle_{11}\left(a_{r l} \cos r x \cos l y\right)\right\} \\
= & S_{m n}(x, y)-\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{a_{j, n+1} \cos j x \cos (n+1) y+a_{m+1, k} \cos (m+1) x \cos y\right\} \\
& +m n a_{m+1, n+1} \cos (m+1) x \cos (n+1) y
\end{aligned}
$$

for fixed $r, l \geq 1$, we get

$$
\begin{aligned}
& \frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} f(x, y) \cos r x \cos l y \mathrm{~d} x \mathrm{~d} y \\
& \quad=\lim _{m+n \rightarrow \infty} \frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} u_{m n}(x, y) \cos r x \cos l y \mathrm{~d} x \mathrm{~d} y \\
& \quad=a_{r l}-\lim _{m+n \rightarrow \infty}\left\{\sum_{j=1}^{m} n a_{j, n+1}+\sum_{k=1}^{n} m a_{m+1, k}+m n a_{m+1, n+1}\right\} \\
& \quad=a_{r l}
\end{aligned}
$$

Since the limit of each term in the brace is zero (as already shown in the proof of Theorem 3.1). This proves that (1.1) is the Fourier series of f.

Corollary 3.3. If a double sequence $\left\{a_{j k}\right\}$ belongs to the class J_{d}, then $\left\|S_{m n}-f\right\| \rightarrow 0$ as $m+n \rightarrow \infty$.

Proof. Consider

$$
\begin{aligned}
\left\|f-S_{m n}\right\|= & \left\|f-g_{m n}+g_{m n}-S_{m n}\right\| \leq\left\|f-g_{m n}\right\|+\left\|g_{m n}-S_{m n}\right\| \\
\leq & \left\|f-g_{m n}\right\|+\int_{0}^{\pi} \int_{0}^{\pi}\left|\frac{a_{m n}}{m n} \tilde{D}_{m}^{\prime}(x) \tilde{D}_{n}^{\prime}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{j=1}^{m} n a_{j, n+1} \cos j x \cos (n+1) y\right| \mathrm{d} x \mathrm{~d} y \\
& +\int_{0}^{\pi} \int_{0}^{\pi}\left|\sum_{k=1}^{n} m a_{m+1, k} \cos (m+1) x \cos y\right| \mathrm{d} x \mathrm{~d} y \\
& +m n\left|a_{m+1, n+1}\right| \int_{0}^{\pi} \int_{0}^{\pi}|\cos (m+1) x \cos (n+1) y| \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Using Theorem 3.1 the conclusion of the corollary 3.3 follows.
Remark 3.4. (a) We note that Theorem 3.1, Corollaries 3.2 and 3.3 can be considered as analogous results of Jatinderdeep Kaur and S.S. Bhatia [3] from one dimensional to two dimensional case.
(b) By making use of (1.10), we note that

$$
\begin{equation*}
\left|\triangle_{11} a_{j k}\right| \leq\left|\triangle_{10} a_{j k}\right|+\left|\triangle_{10} a_{j, k+1}\right| \leq A_{j k}+A_{j, k+1} \tag{3.5}
\end{equation*}
$$

It follows from (3.5) and the condition (1.9) that if $\left\{a_{j k}\right\}$ belongs to class J_{d}, then $\left\{a_{j k}\right\} \in$ $B V_{2} \cap \mathcal{C}_{2}$. Thus, Theorem 1.1, Corollaries 1.1 and 1.2 of [1] are particular cases of ours.
(c) Further, by setting $A_{j k}=\left|\triangle_{22} a_{j k}\right|$, it is not hard to verify that the class J_{d} contains all quasi-convex null sequences. Therefore, Corollary 3 of [2] holds in the case $\left\{a_{j k}\right\}$ belonging to the class J_{d}.

References

[1] Móricz, F., Integrability of Double Trigonometric Series with Special Coefficients, Anal. Math., 16 (1990), 39-56.
[2] Móricz, F., On the Integrability and L^{1}-convergence of Double Trigonometric Series, Studia Math., $98: 3(1991)$, 203-225.
[3] Kaur, J. and Bhatia, S.S., Convergence of New Modified Trigonometric Sums in The Metric Space L, The Journal of Nonlinear Sciences and Applications, 1:3(2008), 179-188.
[4] Sheng, S., The Extension of the Theorems of Č.V.Stanojević and V.B.Stanojević, Proc. Amer. Math. Soc., 110 (1990), 895-904.

School of Mathematics \& Computer Applications
Thapar University
Patiala (Punjab)-147004
India

Jatinderdeep Kaur
E-mail: jatinkaur4u@yahoo.co.in

S. S. Bhatia

E-mail: ssbhatia@thapar. edu

[^0]: Supported by the national NSF (10871226) of PRC.

