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Abstract. We use an iteration scheme to approximate common fixed points of nearly

asymptotically nonexpansive mappings. We generalize corresponding theorems of [1] to

the case of two nearly asymptotically nonexpansive mappings and those of [9] not only to a

larger class of mappings but also with better rate of convergence.
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1 Introduction

Throughout this paper, N denotes the set of all positive integers. Let E be a real Banach

space and C a nonempty subset of E . A mapping T : C →C is called asymptotically nonexpan-

sive if for a sequence {kn} ⊂ [1,∞) with lim
n→∞

kn = 1, we have

‖T nx−T ny‖ ≤ kn‖x− y‖

for all x,y ∈C and n ∈ N. T is called uniformly L-Lipschitzian if for some L > 0, ‖T nx−T ny‖ ≤

L‖x − y‖ for all x,y ∈ C and n ∈ N. Also, T is called a contraction if for some 0 < k < 1,

‖T x−Ty‖ ≤ k‖x− y‖ for all x,y ∈C.

Fix a sequence {an} ⊂ [0,∞) with lim
n→∞

an = 0, then according to Agarwal et al[1], T is said

to be nearly asymptotically nonexpansive if kn ≥ 1 for all n ∈ N with lim
n→∞

kn = 1 such that

‖T nx−T ny‖ ≤ kn(‖x− y‖+ an)
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for all x,y ∈C. T will be nearly uniformly L-Lipschitzian if kn ≤ L for all n ∈ N.

Note that every asymptotically nonexpansive mapping is nearly asymptotically nonexpan-

sive and every nearly asymptotically nonexpansive mapping is nearly uniformly L-Lipschitzian.

We know that Picard and Mann iteration processes for a mapping T : C →C are defined as:







x1 = x ∈C,

xn+1 = T xn , n ∈ N
(1.1)

and






x1 = x ∈C,

xn+1 = (1−αn)xn + αnT xn, n ∈ N
(1.2)

respectively, where {αn} is in (0,1).

Recently, Agarwal et al.[1] introduced the following iteration scheme:



















x1 = x ∈C,

xn+1 = (1−αn)T
nxn + αnT nyn,

yn = (1−βn)xn + βnT nxn, n ∈ N,

(1.3)

where {αn} and {βn} are in (0,1). They showed that this scheme converges at a rate same as

that of Picard iteration.

On the other hand, we state without error terms the iteration scheme studied by Yao and

Chen [9] for common fixed points of two mappings:







x1 = x ∈C,

xn+1 = αnxn + βnT nxn + γnSnxn, n ∈ N,
(1.4)

where {αn} and {βn} are in [0,1] and αn +βn+γn = 1. They did not show the rate of convergence

of this scheme.

We introduce the following iteration scheme to compute the common fixed points of two

mappings.


















x1 = x ∈C,

xn+1 = (1−αn)T
nxn + αnSnyn,

yn = (1−βn)xn + βnT nxn, n ∈ N,

(1.5)

where {αn} and {βn} are in (0,1).

It is to be noted that (1.5) reduces to
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• (1.3) when S = T.

• (1.2) when T = I.

Moreover, when T = I,(1.4) reduces to Mann iteration scheme.

Having noted that both (1.5) and (1.4) reduce to Mann iteration scheme, we will show that

(1.5) is better than (1.4) . Actually, we will see that the rate of convergence of (1.5) is the same as

that of Picard iteration while that of (1.4) is the same as Mann iteration thus establishing that our

iteration scheme (1.5) converges faster than (1.4) . We will then use it to prove that a common

fixed point exists for nearly asymptotically nonexpansive self mappings. In this way, we will

generalize corresponding theorems of [1] to the case of two nearly asymptotically nonexpansive

mappings and those of [9] not only for a larger class of mappings but also with better rate of

convergence.

Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E, that is, the space of all continuous

linear functionals f on E. The space E has : (i) Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖−‖x‖

t

exists for each x and y in S; (ii) Fréchet differentiable norm (see e.g. [8]) if for each x in S, the

above limit exists and is attained uniformly for y in S and in this case, it is also well-known that

〈h,J(x)〉+
1

2
‖x‖2 ≤

1

2
‖x+ h‖2 ≤ 〈h,J(x)〉+

1

2
‖x‖2 + b(‖h‖) (1.6)

for all x,h in E, where J is the Fréchet derivative of the functional 1
2
‖.‖2

at x ∈ E, 〈., .〉 is

the pairing between E and E∗, and b is an increasing function defined on [0,∞) such that

limt↓0
b(t)

t
= 0; (iii) Opial property [6] if for any sequence {xn} in E,xn ⇀ x implies that

limsupn→∞ ‖xn − x‖< limsupn→∞ ‖xn − y‖ for all y∈E with y 6= x and (iv) Kadec-Klee property

if for every sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ together imply xn → x as n → ∞.

Let δ be the modulus of uniform convexity. Recall that if E is a uniformly convex Banach

space then (see e.g. [3])

‖tx+(1− t)y‖ ≤ 1−2t(1− t)δ ‖x− y‖ (1.7)

for all t ∈ [0,1] and for all x,y ∈ E such that ‖x‖ ≤ 1,‖y‖ ≤ 1.

A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in C and each

x ∈ E, xn ⇀ x and T xn → y imply that x ∈C and T x = y.

First we state the following lemmas to be used later on.

Lemma 1[7]. Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1

for all n∈N. Let {xn} and {yn} be two sequences of E such that limsup
n→∞

‖xn‖≤ r, limsup
n→∞

‖yn‖≤ r

and lim
n→∞

‖tnxn +(1− tn)yn‖ = r hold for some r ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.
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Lemma 2. If {rn}, {tn} and {sn} are sequences of nonnegative real numbers such that

rn+1 ≤ (1+ tn)rn + sn, ∑∞
n=1 tn < ∞ and ∑∞

n=1 sn < ∞, then lim
n→∞

rn exists.

Lemma 3[1]. Let E be a uniformly convex Banach space satisfying Opial’s condition and

let C be a nonempty closed convex subset of E. Let T be a uniformly continuous nearly asymp-

totically nonexpansive mapping of C into itself. Then I−T is demiclosed with respect to zero.

Lemma 4[5]. Let E be a reflexive Banach space such that E∗ has the Kadec-Klee property.

Let {xn} be a bounded sequence in E and x∗,y∗ ∈W = ωw(xn)(weak limit set of {xn}). Suppose

lim
n→∞

‖txn +(1− t)x∗− y∗‖ exists for all t ∈ [0,1]. Then x∗ = y∗.

2 Convergence Theorems

Follwing the method of Agarwal et al. [1], first we calculate the rate of convergence of

both (1.4) and (1.5) . Recall that if xn → q, yn → q, then we say that {xn} is better than {yn} if

‖xn −q‖ ≤ ‖yn −q‖ for all n. See [2].

Proposition 1. Let C be a nonempty closed convex subset of a normed space E. Let S and

T be two self contractions of C. If {xn} defined by both (1.4) and (1.5) converge to a common

fixed point p of S and T, then {xn} in (1.4) converges at a rate same as that of Mann while {xn}

in (1.5) converges at a rate same as that of Picard.

Proof. Let p be a common fixed point of S and T . For Picard iteration scheme,

‖xn+1 − p‖ = ‖T xn − p‖ ≤ k‖xn − p‖ .

For Mann iteration scheme,

‖xn+1 − p‖ = ‖(1−αn)(xn − p)+ αn(T xn − p)‖ ≤ (1−αn)‖xn − p‖+ αnk‖xn − p‖

= (1− (1− k)αn)‖xn − p‖ ≤ ‖xn − p‖ .

For the scheme (1.4) studied by Yao and Chen,

‖xn+1 − p‖ = ‖αn(xn − p)+ βn(T xn − p)+ γn(Sxn − p)‖

≤ (αn + βnk + γnk)‖xn − p‖ = (αn +(1−αn)k)‖xn − p‖

= (αn (1− k)+ k)‖xn − p‖ ≤ ‖xn − p‖ ,

because k ≤ (αn (1− k)+ k) ≤ 1 for all k ∈ (0,1).
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Finally, for our iteration scheme (1.5) ,

‖xn+1 − p‖ = ‖(1−αn)(T xn − p)+ αn(Syn − p)‖

≤ (1−αn)k‖xn − p‖+ αnk‖yn − p‖

= k[(1−αn)‖xn − p‖+ αn(‖(1−βn)(xn − p)+ βn(T xn − p)‖)]

≤ k[(1−αn + αn(1−βn)+ αnβnk]‖xn − p‖

= k[(1− (1− k)αnβn]‖xn − p‖

≤ k‖xn − p‖ .

Clearly, (1.4) converges at the rate equal to Mann iteration while (1.5) at that equal to Picard.

Hence our scheme has a better rate of convergence.

Our next theorem is the key for our later results. From here onwards, F denotes the set of

common fixed points of the mappings T and S.

Theorem 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space

E. Let T and S be two nearly asymptotically nonexpansive self mappings of C with a sequence

{an} such that
∞

∑
n=1

an < ∞ and
∞

∑
n=1

(kn−1) < ∞. Let {xn} be defined by the iteration scheme (1.5),

where {αn},{βn} are in [ε ,1− ε ] for all n ∈ N and for some ε in (0,1). If F 6= ∅, then

lim
n→∞

‖xn −T xn‖ = 0 = lim
n→∞

‖xn −Sxn‖ .

Proof. Let q ∈ F. Then

‖xn+1 −q‖ = ‖(1−αn)T
nxn + αnSnyn −q‖

≤ (1−αn)‖T nxn −q‖+ αn ‖Snyn −q‖

≤ (1−αn)kn (‖xn −q‖+ an)+ αnkn (‖yn −q‖+ an)

= kn [(1−αn)‖xn −q‖+ αn ‖yn −q‖+ an]

≤ kn







(1−αn)‖xn −q‖+ αn (1−βn)‖xn −q‖

+αnβn ‖T nxn −q‖+ an







≤ kn







(1−αn)‖xn −q‖+ αn (1−βn)‖xn −q‖

+knαnβn ‖xn −q‖+ knαnβnan + an







= kn







(1−αn + αn (1−βn)+ knαnβn)‖xn −q‖

+knαnβnan + an
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≤ kn [(1+(kn −1))‖xn −q‖+(kn + 1)an]

=
(

1+
(

k2
n −1

))

‖xn −q‖+ kn(kn + 1)an

≤
(

1+
(

k2
n −1

))

‖xn −q‖+ K(K + 1)an,

where K = supn∈N kn. Thus by Lemma 1, lim
n→∞

‖xn −q‖ exists. Call it c.

Now

‖yn −q‖ = ‖βnT nxn +(1−βn)xn −q‖

= ‖βn(T
nxn −q)+ (1−βn)(xn −q)‖

≤ βn ‖T nxn −q‖+(1−βn)‖xn −q‖

≤ βnkn(‖xn −q‖+ an)+ (1−βn)‖xn −q‖

= (1+ βn(kn −1))‖xn −q‖+ βnknan

implies that

limsup
n→∞

‖yn −q‖ ≤ c. (2.1)

Also

‖T nxn −q‖ ≤ kn (‖xn −q‖+ an)

for all n = 1, 2,. . . , so

limsup
n→∞

‖T nxn −q‖ ≤ c. (2.2)

Next,

‖Snyn −q‖ ≤ kn (‖yn −q‖+ an)

gives by (2.1) that

limsup
n→∞

‖Snyn −q‖ ≤ c.

Moreover, c = lim
n→∞

‖xn+1 −q‖ = lim
n→∞

‖(1−αn) (T nxn −q)+αn (Snyn −q)‖ gives by Lemma 1,

lim
n→∞

‖T nxn −Snyn‖ = 0. (2.3)

Now

‖xn+1 −q‖ = ‖(1−αn)T nxn + αnSnyn −q‖

= ‖(T nxn −q)+ αn (Snyn −T nxn)‖

≤ ‖T nxn −q‖+ αn ‖T nxn −Snyn‖

yields that

c ≤ liminf
n→∞

‖T nxn −q‖
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so that (2.2) gives lim
n→∞

‖T nxn −q‖ = c.

In turn,

‖T nxn −q‖ ≤ ‖T nxn −Snyn‖+‖Snyn −q‖

≤ ‖T nxn −Snyn‖+ kn (‖yn −q‖+ an)

implies

c ≤ liminf
n→∞

‖yn −q‖. (2.4)

By (2.1) and (2.4), we obtain

lim
n→∞

‖yn −q‖ = c. (2.5)

Moreover, ‖T nxn −q‖ ≤ kn (‖xn −q‖+ an) implies that

limsup
n→∞

‖T nxn −q‖ ≤ c.

Thus c = lim
n→∞

‖yn −q‖ = lim
n→∞

‖(1−βn)(xn −q)+ βn (T nxn −q)‖ gives by Lemma 1 that

lim
n→∞

‖T nxn − xn‖ = 0. (2.6)

Now

‖yn − xn‖ = βn ‖T nxn − xn‖ .

Hence by (2.6),

lim
n→∞

‖yn − xn‖ = 0. (2.7)

Also note that

‖xn+1 − xn‖ = ‖(1−αn)T nxn + αnSnyn − xn‖

≤ ‖T nxn − xn‖+ αn ‖T nxn −Snyn‖→ 0 as n → ∞,

so that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+‖yn − xn‖→ 0 as n → ∞.

Furthermore, from

‖xn −Snyn‖ ≤ ‖xn −T nxn‖+‖T nxn −Snyn‖→ 0 as n → ∞,

we find

‖xn+1 −Snyn‖ ≤ ‖xn+1 − xn‖+‖xn −Snyn‖ ,
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so that

lim
n→∞

‖xn+1 −Snyn‖ = 0. (2.8)

We shall now make use of the fact that every nearly asymptotically nonexpansive mapping is

nearly uniformly L-Lipschitzian. Then

‖xn+1 −Txn+1‖ ≤
∥

∥xn+1 −T n+1xn+1

∥

∥+
∥

∥T n+1xn+1 −T n+1xn

∥

∥

+
∥

∥T n+1xn −T xn+1

∥

∥

≤
∥

∥xn+1 −T n+1xn+1

∥

∥+ L(‖xn+1 − xn‖+ an)

+L(‖T nxn − xn+1‖+ an)

=
∥

∥xn+1 −T n+1xn+1

∥

∥+ L(‖xn+1 − xn‖+ an)

+L(αn ‖T nxn −Snyn‖+ an)

yields

lim
n→∞

‖xn −Txn‖ = 0. (2.9)

Now

‖xn −Snxn‖ ≤ ‖xn − xn+1‖+‖xn+1 −Snyn‖+‖Snyn −Snxn‖

≤ ‖xn − xn+1‖+‖xn+1 −Snyn‖+ L(‖yn − xn‖+ an) → 0 as n → ∞.

and

‖xn+1 −Sxn+1‖ ≤
∥

∥xn+1 −Sn+1xn+1

∥

∥+
∥

∥Sn+1xn+1 −Sxn+1

∥

∥

≤
∥

∥xn+1 −Sn+1xn+1

∥

∥+ L(‖Snxn+1 − xn+1‖+ an)

≤
∥

∥xn+1 −Sn+1xn+1

∥

∥+ L







‖Snxn+1 −Snyn‖

+‖Snyn − xn+1‖+ an







≤
∥

∥xn+1 −Sn+1xn+1

∥

∥+ L2 ‖xn+1 − yn‖+ L‖Snyn − xn+1‖+(L + 1)an

give us

lim
n→∞

‖xn −Sxn‖ = 0.

Lemma 5. For any p1, p2 ∈ F, lim
n→∞

‖txn +(1− t)p1 − p2‖ exists for all t ∈ [0,1] under the

condition of Theorem 1.

Proof. By Theorem 1 lim
n→∞

‖xn − p‖ exists for all p ∈ F and therefore {xn} is bounded.

Thus there exists a real number r > 0 such that {xn} ⊆ D ≡ Br(0) ∩C, so that D is a closed

convex nonempty subset of C. Put

gn(t) = ‖txn +(1− t)p1 − p2‖
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for all t ∈ [0,1]. Then lim
n→∞

gn(0) = ‖p1 − p2‖ and lim
n→∞

gn(1) = lim
n→∞

‖xn − p2‖ exist. Let t ∈ (0,1).

Define Bn : D → D by:

Bnx = (1−αn)T
nx+ αnSnAnx

Anx = (1−βn)x+ βnT nx.

Then Bnxn = xn+1, Bn p = p for all p ∈ F. Also

‖Anx−Any‖ = ‖(1−βn)x+ βnT nx)− ((1−βn)y+ βnT ny)‖

≤ ‖(1−βn) (x− y)+ βn(T
nx−T ny)‖

= (1−βn)‖x− y‖+ βnkn(‖x− y‖+ an)

= (1−βn)‖x− y‖+ βnkn‖x− y‖+ βnankn

≤ (1−βn)kn ‖x− y‖+ βnkn‖x− y‖+ βnankn

≤ kn ‖x− y‖+ βnankn

and

‖Bnx−Bny‖ = ‖[(1−αn)T
nx+ αnSnAnx]− [(1−αn)T

ny+ αnSnAny)]‖

= ‖[(1−αn)(T
nx−T ny)+ αn(S

nAnx−SnAny)]‖

≤ (1−αn)kn (‖x− y‖+ an)+ αnkn (‖Anx−Any‖+ an)

= (1−αn)kn‖x− y‖+ αnkn ‖Anx−Any‖+ knan

≤ (1−αn)k
2
n‖x− y‖+ αnkn (kn ‖x− y‖+ βnankn)+ knan

≤
(

(1−αn)k
2
n + αnk2

n

)

‖x− y‖+ αnβnank2
n + k2

nan

= k2
n ‖x− y‖+ αnβnank2

n + k2
nan = k2

n (‖x− y‖+ bn) ,

where bn = αnβnan + an. Note that bn → 0 as n → ∞.

Set

Rn,m = Bn+m−1Bn+m−2...Bn, m ≥ 1.

Then Rn,mxn = xn+m and Rn,m p = p for all p ∈ F. Also

‖Rn,mx−Rn,my‖ ≤ ‖Bn+m−1Bn+m−2...Bnx−Bn+m−1Bn+m−2...Bny‖

≤ k2
n+m−1 (‖Bn+m−2...Bnx−Bn+m−2...Bny‖+ bn+m−1)

≤ k2
n+m−1 ‖Bn+m−2...Bnx−Bn+m−2...Bny‖+ k2

n+m−1bn+m−1
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≤ k2
n+m−1k2

n+m−2 (‖Bn+m−3...Bnx−Bn+m−3...Bny‖+ bn+m−2)

+k2
n+m−1bn+m−1

≤ k2
n+m−1k2

n+m−2 ‖Bn+m−3...Bnx−Bn+m−3...Bny‖

+k2
n+m−1k2

n+m−2bn+m−2 + k2
n+m−1bn+m−1

≤ k2
n+m−1k2

n+m−2 ‖Bn+m−3...Bnx−Bn+m−3...Bny‖

+k2
n+m−1k2

n+m−2 (bn+m−2 + bn+m−1)

...

≤

(

n+m−1

∏
j=n

k2
j

)(

‖x− y‖+
n+m−1

∑
j=n

b j

)

= Kn,m (‖x− y‖+ ηn,m) ,

where

Kn,m =

(

n+m−1

∏
j=n

k2
j

)

and

ηn,m =
n+m−1

∑
j=n

b j.

For the sake of simplicity, set

ηn,m =
n+m−1

∑
j=n

b j, ηn =
∞

∑
j=n

b j,

Kn,m =

(

n+m−1

∏
j=n

k2
j

)

, Kn =

(

∞

∏
j=n

k2
j

)

,

tn = txn +(1− t)p1,

ρn,m = t ‖xn − p1‖+ ηn,m,

σn,m = (1− t)‖xn − p1‖+ ηn,m,

en,m = t p1 +(1−2t)Rn,mtn − (1− t)Rn,mxn,

un,m = [Rn,mtn − tRn,mxn − (1− t)p1]‖xn − p1‖ ,

vn,m = [p1 + Rn,mxn −2Rn,mtn]ηn,m,

wn,m = (p1 −Rn,mtn) / Kn,mρn,m,

zn,m = (Rn,mtn −Rn,mxn) / Kn,mσn,m,

λn,m = Kn,mρn,mσn,m.
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Then

‖wn,m‖ =

∥

∥

∥

∥

Rn,mtn − p1

Kn,m (t ‖xn − p1‖+ ηn,m)

∥

∥

∥

∥

≤
Kn,m (‖tn − p1‖+ ηn,m)

Kn,m (t ‖xn − p1‖+ ηn,m)
= 1

and similarly ‖zn,m‖ ≤ 1. Note that

ρn,m + σn,m = t ‖xn − p1‖+ ηn,m +(1− t)‖xn − p1‖+ ηn,m = ‖xn − p1‖+ 2ηn,m.

Moreover,

‖wn,m − zn,m‖ =

∥

∥

∥

∥

p1 −Rn,mtn

Kn,mρn,m
−

Rn,mtn −Rn,mxn

Kn,mσn,m

∥

∥

∥

∥

=

∥

∥

∥

∥

σn,m p1 −σn,mRn,mtn −ρn,mRn,mtn + ρn,mRn,mxn

λn,m

∥

∥

∥

∥

=

∥

∥

∥

∥

σn,m p1 − (‖xn − p1‖+ 2ηn,m)Rn,mtn + ρn,mRn,mxn

λn,m

∥

∥

∥

∥

=

∥

∥

∥

∥

un,m − vn,m

λn,m

∥

∥

∥

∥

,

because

‖un,m − vn,m‖ =

∥

∥

∥

∥

∥

∥

∥

‖xn − p1‖Rn,mtn −‖xn − p1‖tRn,mxn − (1− t)p1 ‖xn − p1‖

−p1ηn,m −Rn,mxnηn,m + 2Rn,mtnηn,m

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

−((1− t)‖xn − p1‖+ ηn,m) p1 +(‖xn − p1‖+ 2ηn,m)Rn,mtn

−(t ‖xn − p1‖+ ηn,m)Rn,mxn

∥

∥

∥

∥

∥

∥

∥

and

‖twn,m +(1− t)zn,m‖ =

∥

∥

∥

∥

t (p1 −Rn,mtn)

Kn,mρn,m
+

(1− t)(Rn,mtn −Rn,mxn)

Kn,mσn,m

∥

∥

∥

∥

=

∥

∥

∥

∥

σn,mt (p1 −Rn,mtn)+ ρn,m(1− t)(Rn,mtn −Rn,mxn)

λn,m

∥

∥

∥

∥

=
1

λn,m

∥

∥

∥

∥

∥

∥

∥

((1− t)‖xn − p1‖+ ηn,m) t (p1 −Rn,mtn)

+(t ‖xn − p1‖+ ηn,m)(1− t)(Rn,mtn −Rn,mxn)

∥

∥

∥

∥

∥

∥

∥
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=
1

λn,m

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

t (1− t) p1 ‖xn − p1‖+ t p1ηn,m

−t (1− t)Rn,mtn ‖xn − p1‖− tRn,mtnηn,m

+t(1− t)Rn,mtn ‖xn − p1‖+(1− t)Rn,mtnηn,m

−t(1− t)Rn,mxn ‖xn − p1‖− (1− t)Rn,mxnηn,m

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=
1

λn,m

∥

∥

∥

∥

∥

∥

∥

t (1− t)‖xn − p1‖(p1 −Rn,mxn)

+[t p1 +(1−2t)Rn,mtn − (1− t)Rn,mxn]ηn,m

∥

∥

∥

∥

∥

∥

∥

=
1

λn,m
‖t (1− t)‖xn − p1‖(p1 −Rn,mxn)+ en,mηn,m‖

=
1

λn,m
‖t (1− t)‖xn − p1‖(p1 − xn+m)+ en,mηn,m‖ .

From (1.7), we get

2t (1− t)λn,mδ

(

‖un,m − vn,m‖

λn,m

)

≤ λn,m −‖t (1− t)‖xn − p1‖(p1 − xn+m)+ en,mηn,m‖

≤ λn,m − t (1− t)‖xn − p1‖‖xn+m − p1‖+‖en,m‖ηn,m.

But

λn,m = Kn,m (t ‖xn − p1‖+ ηn,m) ((1− t)‖xn − p1‖+ ηn,m)

≤ Kn

[

t (1− t)‖xn − p1‖
2 +(‖xn − p1‖+ ηn)ηn

]

≤ Kn

[

t (1− t)‖xn − p1‖
2 + M1ηn

]

,

where M1 = sup(‖xn − p1‖+ ηn) .

Therefore

2λn,mδ

(

‖un,m − vn,m‖

λn,m

)

≤ Kn

[

‖xn − p1‖
2 +

M1ηn

t (1− t)

]

−‖xn − p1‖‖p1 − xn+m‖+
‖en,m‖ηn

t (1− t)
.

Let λ = sup{λnKn : n ∈ N} . Since E is uniformly convex, δ (s)/s is nondecreasing. Therefore

2λδ

(

‖un,m − vn,m‖

λ

)

≤ Kn

[

‖xn − p1‖
2 +

M1ηn

t (1− t)

]

−‖xn − p1‖‖p1 − xn+m‖+
‖en,m‖ηn

t (1− t)
.

Moreover, δ (0) = 0, lim
n→∞

ηn = 0, lim
n→∞

Kn = 1 and δ is continuous, therefore

lim
m,n→∞

‖un,m − vn,m‖ = 0.
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By the triangle inequality,

‖un,m‖ ≤ ‖un,m − vn,m‖+‖vn,m‖ = ‖un,m − vn,m‖+ M2ηn,m

for some M2 > 0. This gives

lim
m,n→∞

‖un,m‖ = 0.

Since

lim
n→∞

‖xn − p1‖ > 0,

we have

lim
m,n→∞

‖Rn,mtn − tRn,mxn − (1− t)p1‖ = 0.

Finally, from

gn+m(t) = ‖txn+m +(1− t)p1 − p2‖

≤ ‖Rn,mtn − p2‖+‖Rn,mtn − tRn,mxn − (1− t)p1‖

≤ Kn,m (‖tn − p2‖+ ηn,m)+‖Rn,mtn − tRn,mxn − (1− t)p1‖

≤ Kn (‖tn − p2‖+ ηn)+‖Rn,mtn − tRn,mxn − (1− t)p1‖

we get

limsup
m→∞

gn+m(t) ≤ liminf
n→∞

Kn (‖tn − p2‖+ ηn)+ limsup
m→∞

‖Rn,mtn − tRn,mxn − (1− t)p1‖

= liminf
n→∞

gn(t).

Thus

limsup
n→∞

gn(t) ≤ liminf
n→∞

gn(t)

so that lim
n→∞

‖txn +(1− t)p1 − p2‖ exists for all t ∈ [0,1].

Lemma 6. Assume that the condition of Theorem 1 is satisfied. Then, for any p1, p2 ∈

F, lim
n→∞

〈xn,J(p1 − p2)〉 exists; in particular, 〈p−q,J(p1 − p2)〉 = 0 for all p,q ∈ ωw(xn).

Proof. Take x = p1 − p2 with p1 6= p2 and h = t(xn − p1) in the inequality (1.7) to get:

1

2
‖p1 − p2‖

2 + t 〈xn − p1,J(p1 − p2)〉 ≤
1

2
‖txn +(1− t)p1 − p2‖

2

≤
1

2
‖p1 − p2‖

2 + t 〈xn − p1,J(p1 − p2)〉+ b(t ‖xn − p1‖).

As sup
n≥1

‖xn − p1‖ ≤ M′ for some M′ > 0, it follows that

1

2
‖p1 − p2‖

2 + t limsup
n→∞

〈xn − p1,J(p1 − p2)〉 ≤
1

2
lim
n→∞

‖txn +(1− t)p1 − p2‖
2

≤
1

2
‖p1 − p2‖

2 + b(tM′)+ t liminf
n→∞

〈xn − p1,J(p1 − p2)〉 .
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That is,

limsup
n→∞

〈xn − p1,J(p1 − p2)〉 ≤ liminf
n→∞

〈xn − p1,J(p1 − p2)〉+
b(tM′)

tM′
M′.

If t → 0, then lim
n→∞

〈xn − p1,J(p1 − p2)〉 exists for all p1, p2 ∈ F; in particular, we have

〈p−q,J(p1 − p2)〉 = 0 for all p,q ∈ ωw(xn).

We now give our weak convergence theorem.

Theorem 2. Let E be a uniformly convex Banach space and let C,T,S and {xn} be taken as

in Theorem 1. Assume that (a) E satisfies Opial’s condition or (b)E has a Fréchet differentiable

norm or (c)dual E∗ of E satisfies Kadec-Klee property. If F 6= φ then {xn} converges weakly to

a point of F.

Proof. Let p∈F. Then lim
n→∞

‖xn− p‖ exists as proved in Theorem 1. We prove that {xn} has

a unique weak subsequential limit in F. For, let u and v be weak limits of the subsequences {xni
}

and {xn j
} of {xn}, respectively. By Theorem 1, lim

n→∞
‖xn − T xn‖ = 0 and I − T is demiclosed

with respect to zero by Lemma 3, therefore we obtain Tu = u. Similarly, Su = u. Again in the

same fashion, we can prove that v ∈ F. Next, we prove the uniqueness. To this end, first assume

(a) is true. If u and v are distinct then by Opial’s condition,

lim
n→∞

‖xn −u‖ = lim
ni→∞

‖xni
−u‖ < lim

ni→∞
‖xni

− v‖

= lim
n→∞

‖xn − v‖ = lim
n j→∞

‖xn j
− v‖ < lim

n j→∞
‖xn j

−u‖ = lim
n→∞

‖xn −u‖.

This is a contradiction so u = v. Next assume (b). By Lemma 6, 〈p−q,J(p1 − p2)〉 = 0 for all

p,q ∈ ωw(xn). Therefore

‖u− v‖2 = 〈u− v,J(u− v)〉 = 0

implies u = v. Finally, say (c) is true. Since lim
n→∞

‖txn +(1− t)u− v‖ exists for all t ∈ [0,1] by

Lemma 5, therefore u = v by Lemma 4. Consequently, {xn} converges weakly to a point of F

and this completes the proof.

Two mappings S,T : C → C, where C is a subset of a normed space E, are said to satisfy

the condition (A′) [4] if there exists a nondecreasing function f : [0,∞) → [0,∞) with f (0) =

0, f (r) > 0 for all r ∈ (0,∞) such that either ‖x−Sx‖ ≥ f (d(x,F)) or ‖x−Tx‖ ≥ f (d(x,F))

for all x ∈C, where

d(x,F) = inf{‖x− p‖ : p ∈ F = F(S)∩F(T )}.

Theorem 3. Let E be a real Banach space and let C,S,T,F,{xn} be taken as in Theorem

1. Then {xn} converges to a point of F if and only if lim
n→∞

infn→∞ d(xn,F) = 0 where

d(x,F) = inf{‖x− p‖ : p ∈ F}.
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Proof. Necessity is obvious. Suppose that

lim
n→∞

inf
n→∞

d(xn,F) = 0.

As proved in Theorem 1, lim
n→∞

‖xn −w‖ exists for all w ∈ F, therefore lim
n→∞

d(xn,F) exists. But by

hypothesis, liminf
n→∞

d(xn,F) = 0, therefore we have lim
n→∞

d(xn,F) = 0. On the lines similar to [4],

it can be proved that lim
n→∞

d(xn,F) = 0. This gives that d(q,F) = 0 and q ∈ F.

Applying Theorem 3, we obtain a strong convergence of the scheme (1.5) under the condi-

tion (A′) as follows.

Theorem 4. Let E be a real Banach space and let C,S,T,F,{xn} be taken as in Theorem

1. Let S,T satisfy the condition (A′) and F 6= ∅, then {xn} converges strongly to a common

fixed point of S and T .

Proof. As is proved in Theorem 1 that

lim
n→∞

‖xn −Sxn‖ = 0 = lim
n→∞

‖xn −T xn‖. (2.10)

From the condition (A′) and (2.10), we get

lim
n→∞

f (d(xn,F)) ≤ lim
n→∞

‖xn −Txn‖ = 0

or

lim
n→∞

f (d(xn,F)) ≤ lim
n→∞

‖xn −Sxn‖ = 0.

In both cases,

lim
n→∞

f (d(xn,F)) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) = 0, f (r) > 0 for all r ∈

(0,∞), therefore we have

lim
n→∞

d(xn,F) = 0.

Now all the conditions of Theorem 2 are satisfied, therefore by its conclusion {xn} converges

strongly to a point of F.

Remark 1. (1) Theorem 3 generalizes Theorems 3.9,3.10 and 3.11 of [1] to the case of

common fixed points of two mappings. In fact, choose S = T to get the said results. More-

over, this theorem generalizes the corresponding results in the literature proved by using Mann

iteration scheme by choosing T = I.

(2) Theorem 2 improves Theorem 3.1 of Yao and Chen [9] in two ways: (i) our result is true

for a larger class of mappings (ii) the rate of convergence is better.

(3) Theorems of this paper can also be proved with error terms. Thus we have also general-

ized Theorem 3.2 of Yao and Chen[9] in the aforementioned two ways.
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