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Abstract. In the present paper, we study the polynomial approximation of analytic func-

tions of several complex variables. The characterizations of generalized type of analytic

functions of several complex variables have been obtained in terms of approximation and

interpolation errors.
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1 Introduction

The concept of generalized order for analytic functions was given by Seremeta[3] and Janik[2].

Hence, let L0 denote the class of functions h satisfying the following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and tends to ∞

as x → ∞;

(ii) lim
x→∞

h{(1+ 1/ψ(x))x}
h(x)

= 1;

for every function ψ(x) such that ψ(x) → ∞ as x → ∞.

Let Λ denote the class of functions h satisfying the condition (i) and

(iii) lim
x→∞

h(cx)

h(x)
= 1,

for every c > 0 , that is h(x) is slowly increasing.
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Let K be a compact set in CN such that the Siciak extremal function of K

ΦK(z) =sup[|(p(z)|1/n: p−polynomial, deg p ≤ n , ||p||K ≤ 1, n ≥ 1 ], z ∈CN ,

is continuous, ||.||K being the sup norm on K (see [1] and [2]).

Let g : CN →C , N ≥ 1 , be a function analytic in KR = {z ∈CN : ΦK(z) < R} ,R > 1. Now

for 1 < r < R , we put S(r,g) = sup{|g(z)| : ΦK(z) = r}. For α ∈ Λ and β ∈ L0 Seremeta [4]

introduced the concept of generalized order of entire functions. For α ,β ∈ Λ , Janik [2] defined

the generalized order of analytic function g(z) as

ρ(α ,β ,g) = lim
r→R

sup
α [log+ S(r,g)]

β [R/(R− r)]
.

He also obtained the characterization of ρ(α ,β ,g) in terms of approximation and interpolation

errors.

In this note we define the generalized type of analytic function g(z) and obtain the characteri-

zation of σ(α ,β ,ρ ,g) in terms of approximation and interpolation errors. Thus let the functions

α ,β and γ ∈ Λ. Then for 0 < ρ < ∞, we define the generalized type of analytic function g(z) as

σ(α ,β ,ρ ,g) = lim
r→R

sup
α [log+ S(r,g)]

β {[γ{R/(R− r)}]ρ} .

Given a function f defined and bounded on K, we put for n = 1,2, · · ·

E1
n ( f ,K) = || f − tn||K ;

E2
n ( f ,K) = || f − ln||K ;

E3
n+1( f ,K) = ||ln+1 − ln||K ;

where tn denotes the nth Chebyshev polynomial of the best approximation to f on K and ln

denotes the nth Lagrange interpolation polynomial for f with nodes at extremal points of K (see

[1] and [2]). Before proving the main result we state and prove a lemma.

Lemma 1.1. Let α(x), β−1(x), γ(x) ∈ Λ and K be a compact set in CN such that ΦK is

locally bounded in CN . Set F(x,µ ,ρ) = γ−1{[β−1 (µ α(x))]1/ρ}. Assume that for all positive

numbers µ and ρ

lim
x→∞

d[log(F(x,µ ,ρ))

d(log x)
< 1.

Let (pn)n∈N be a sequence of polynomials in CN such that

(i) deg pn ≤ n , n ∈ N;

(ii) there exists n0 ∈ N and R > 1, such that for all n ≥ n0

log+(||pn||Rn) ≤ n
ρ + 1

ρ

[

γ−1
{

[

β−1
{

µ−1α(n/ρ)
}]1/(ρ+1)

}]−1

.
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Then
∞

∑
n=0

pn is an analytic function and σ

(

α ,β ,ρ ,
∞

∑
n=0

pn

)

≤ µ .

Proof. By the assumption, for all n ≥ n0 and 1 < r < R , we have

log+(||pn||rn) ≤ n log(r/R) + n
ρ + 1

ρ

1

F(n/ρ ,1/µ ,ρ + 1)
.

Now let us consider the function

φ(x) = x log(r/R) + x
ρ + 1

ρ

1

F(x/ρ ,1/µ ,ρ + 1)
.

Now differentiating on both sides and putting φ
′
(x) equal to zero, we get

log(r/R) +
ρ + 1

ρ
F−1(x/ρ ,1/µ ,ρ + 1)

− ρ + 1

ρ
F−1(x/ρ ,1/µ ,ρ + 1)

d[logF(x/ρ ,1/µ ,ρ + 1)]

d(log x)
= 0

or

F(x/ρ ,1/µ ,ρ + 1) =
ρ + 1

ρ

(

1−d[logF(n/ρ ,1/µ ,ρ + 1)]/d(log x)

log(R/r)

)

.

Thus the maximum of φ(x) is attained for a value of x given by

x∗(r) = ρα−1

[

µ β

{

[

γ

{

ρ + 1

ρ

(

1−d[logF(n/ρ ,1/µ ,ρ + 1)]/d(log x)

log(R/r)

)}](ρ+1)
}]

.

When r → R, then by using the properties of α ,β ,γ and the assumption of Lemma, we get

x∗(r) = [1+ o(1)] ρα−1[µβ{[γ{R/(R− r)}]ρ}].

Thus for r sufficiently close to R, we get

log+(||pn||rn) ≤ C1 α−1[µβ{[γ{R/(R− r)}]ρ}], (1)

where C1 is a positive constant.

Let us write KR = {z ∈CN : ΦK(z) < R}, R > 1 , then for every polynomial p of degree ≤ n ,

we have (see [1] and [2])

|pn(z)| ≤ ||pn||KΦn
K(z) , z ∈CN .

Therefore for every r ∈ (1,R) the series
∞

∑
n=0

pn is convergent in every Kr , whence
∞

∑
n=0

pn is

analytic in KR . Put

M∗(r) = sup{||pn||Krn : n ∈ N} , 1 < r < R
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and

σ ∗ = lim
r→R

sup
α
[

log+ M∗(r)
]

β {[γ{R/(R− r)}]ρ} .

Now on account of (1), for r sufficiently close to R, we get

log+ M∗(r) ≤ C1 α−1[µβ{[γ{R/(R− r)}]ρ}]

or
α
[

C−1
1 log+ M∗(r)

]

β {[γ{R/(R− r)}]ρ} ≤ µ .

Now letting r → R and using properties of α ,β and γ , we get

σ ∗ ≤ µ . (2)

Put

M(r) = sup

{

∞

∑
n=0

pn(z) : n ∈ N and z ∈ KR

}

, 1 < r < R .

Now for every positive δ < 1, we have (see [1], Lemma 2.3)

log+ M(r) ≤ log+ M∗(rδ R1−δ )− log{1− (r/R)1−δ}

or
α [log+ M(r)]

β {[γ{R/(R− r)}]ρ} ≤ α [log+ M∗(rδ R1−δ )− log{1− (r/R)1−δ}]
β {[γ{R/(R− r)}]ρ}

or

α [log+ M(r)]

β{[γ{R/(R− r)}]ρ} ≤
α
(

log+ M∗(rδ R1−δ )
{

1− log{1−(r/R)1−δ}
log+ M∗(rδ R1−δ )

})

β
{

[

γ
{

R/(R− rδ R1−δ )
}]ρ
} ×

×
β
{[

γ
{

R

(R−rδ R1−δ )

}]ρ}

β {[γ{R/(R− r)}]ρ} .

Since δ < 1 is arbitrary, for r sufficiently close to R, we get

α [log+ M(r)]

β {[γ{R/(R− r)}]ρ} ≤ α [{1+ o(1)} log+ M∗(r)]
β {[γ{R/(R− r)}]ρ} .

Now letting r → R and using properties of α ,β and γ , we get

σ(α ,β ,ρ ,
∞

∑
n=0

pn) ≤ σ ∗. (3)

Finally from (2) and (3), we get

σ(α ,β ,ρ ,
∞

∑
n=0

pn) ≤ µ .

Hence the Lemma is proved.
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2 Main Result

Here we prove the following:

Theorem 2.1. Let α(x), β−1(x), γ(x) ∈ Λ and K be a compact set in CN such that ΦK is

locally bounded in CN . Set F(x,µ ,ρ) = γ−1{[β−1 (µ α(x))]1/ρ}. Assume that for all positive µ

and ρ

lim
x→∞

d[log(F(x,µ ,ρ))

d(logx)
< 1

and

lim
x→∞

α(x)−1α

[

x(ρ + 1)

ρ F(x/ρ ,1/µ ,ρ + 1)

]

= 1.

Then the function f defined and bounded on K is the restriction of a function g analytic in KR

and of generalized type σ(α ,β ,ρ ,g) (0 < σ(α ,β ,ρ ,g) < ∞) if and only if

σ(α ,β ,ρ ,g) = lim
n→∞

sup
α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(Es
nRn)1/n]−1

}](ρ+1)
} ; s = 1,2,3.

Proof. Let g be a function analytic in KR. Write σ = σ(α ,β ,ρ ,g) and

ηs = lim
n→∞

sup
α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(Es
nRn)1/n]−1

}](ρ+1)
} ; s = 1,2,3.

Here Es
n stands for Es

n (g|K ,K) , s = 1,2,3. We claim that σ = ηs , s = 1,2,3. It is known (see

e.g. [5]) that

E1
n ≤ E2

n ≤ (n∗ + 2)E1
n , n ≥ 0, (4)

E3
n ≤ 2(n∗ + 2)E1

n−1 , n ≥ 1, (5)

where n∗ =





n+ N

n



 . Using Stirling formula for the approximate value of

n! ≈ e−nnn+1/2
√

2π ,

we get n∗ ≈ nN

N!
for all large values of n. Hence for all large values of n, we have

E1
n ≤ E2

n ≤ nN

N!
[1+ o(1)]E1

n

and

E3
n ≤ 2

nN

N!
[1+ o(1)]E1

n .

Thus η3 ≤ η2 = η1 and it suffices to prove that η1 ≤ σ ≤ η3. First we prove that η1 ≤ σ .

Using the definition of the generalized type, for µ > σ and r sufficiently close to R, we have

log+ M(r) ≤ α−1[µβ{[γ{R/(R− r)}]ρ}]
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Now from Janik (see [1], Lemma 3.4), we have

E1
n ≤ M(r)

(r−1)rn
, 1 < r < R.

So for every r sufficiently close to R, we get

log+(E1
n Rn) ≤ − log(r−1)−n log(r/R)+ α−1[µβ{[γ{R/(R− r)}]ρ}].

Putting r = rn , where

rn = R

[

1−
{

F

(

n.(ρ + 1)

ρ .F(n/ρ ,1/µ ,ρ + 1)
,

1

µ
,ρ

)}−1
]

,

we get

log+(E1
n Rn) ≤ − log(rn −1) − n log

[

1−
{

F

(

n.(ρ + 1)

ρ .F(n/ρ ,1/µ ,ρ + 1)
,

1

µ
,ρ

)}−1
]

+n
ρ + 1

ρ

[

γ−1
{

[

β−1
{

µ−1 α(n/ρ)
}]1/(ρ+1)

}]−1

.

Now using the properties of logarithm and assumption of Theorem, we get for sufficiently

large value of n

log+(E1
n Rn) ≤ C2 n

ρ + 1

ρ

[

γ−1
{

[

β−1
{

µ−1 α(n/ρ)
}]1/(ρ+1)

}]−1

,

where C2 is a positive constant.

Hence by using the properties of α ,β and γ , we get

α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(Es
nRn)1/n]−1

}](ρ+1)
} ≤ µ .

Now proceeding to limits and taking sup on both sides, we get

η1 ≤ µ .

Since µ > σ is arbitrary, finally we get

η1 ≤ σ .

Now we will prove that σ ≤ η3. Suppose that η3 < σ . Then for every λ1 , η3 < λ1 < σ and n

sufficiently large, we have

α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(E3
n Rn)1/n]−1

}](ρ+1)
} ≤ λ1
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or

log+(E3
n Rn) ≤ n

ρ + 1

ρ

[

γ−1
{

[

β−1
{

(λ1)
−1α(n/ρ)

}]1/(ρ+1)
}]−1

.

So by the previous lemma we get η3 ≤ λ1. But λ1 has been chosen less than σ , we get a

contradiction. Hence σ ≤ η3.

Now let f be a function defined and bounded on K and such that for s = 1,2,3

ηs = lim
n→∞

sup
α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(Es
nRn)1/n]−1

}](ρ+1)
} .

So for every λ2 > ηs and sufficiently large n , we have

α(n/ρ)

β
{

[

γ
{

(ρ + 1) [ρ log(Es
nRn)1/n]−1

}](ρ+1)
} ≤ λ2

or

(Es
nRn)1/n ≤ exp

{

ρ + 1

ρ

[

γ−1
{

[

β−1
{

(λ2 )−1 α(n/ρ)
}]1/(ρ+1)

}]−1
}

.

Now for sufficiently large n, we get

(Es
nRn)1/n ≤ 1.

Proceeding to limits as n → ∞ and taking sup on both sides, we get

lim
n→∞

sup (Es
nRn)1/n ≤ 1.

Since ηs > 0, the sequence (E3
nRn)n∈N is unbounded, whence

lim
n→∞

sup (Es
nRn)1/n ≥ 1.

Hence we get

lim
n→∞

sup (Es
nRn)1/n = 1.

So following Janik[1] , Theorem 3.3, we claim that the function f can be continuously extended

to an analytic function. Let us put

g = l0 +
∞

∑
n=1

(ln − ln−1) ,

where {ln} is the sequence of Lagrange interpolation polynomials of f as defined earlier. Now

we claim that g is the required continuation of f and σ(α ,β ,ρ ,g) = ηs. For every λ2 > η3 and

for sufficiently large n , we have

log+(E3
n Rn) ≤ n

ρ + 1

ρ

[

γ−1
{

[

β−1
{

(λ2 )−1 α(n/ρ)
}]1/(ρ+1)

}]−1
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or

log+ (||ln − ln−1||Rn) ≤ n
ρ + 1

ρ

[

γ−1
{

[

β−1
{

(λ2 )−1 α(n/ρ)
}]1/(ρ+1)

}]−1

.

By using the previous lemma, we get σ(α ,β ,ρ ,g) ≤ λ2. Since λ2 > η3 is arbitrary, finally we

get

σ(α ,β ,ρ ,g) ≤ η3.

Now using the inequalities (4), (5) and the proof of first part given above, we have

σ(α ,β ,ρ ,g) = ηs,

as claimed. This completes the proof of the Theorem.
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