TRIGONOMETRIC APPROXIMATION IN REFLEXIVE ORLICZ SPACES

Ali Guven
(Balikesir University, Turkey)

Received Mar. 24, 2010
© Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

The Lipschitz classes $\operatorname{Lip}(\alpha, M), 0<\alpha \leq 1$ are defined for Orlicz space generated by the Young function M, and the degree of approximation by matrix transforms of $f \in \operatorname{Lip}(\alpha, M)$ is estimated by $n^{-\alpha}$.

Key words: Lipschitz class, matrix transform, modulus of continuity, Nölund transform, Orlicz space
AMS (2010) subject classification: 41A25, 42A10, 46E30

1 Introduction and the Main Results

A convex and continuous function $M:[0, \infty) \rightarrow[0, \infty)$, for which $M(0)=0, M(x)>0$ for $x>0$ and

$$
\lim _{x \rightarrow 0} \frac{M(x)}{x}=0, \quad \lim _{x \rightarrow \infty} \frac{M(x)}{x}=\infty
$$

is called a Young function. The complementary Young function N of M is defined by

$$
N(y):=\max \{x y-M(x): x \geq 0\}
$$

for $y \geq 0$.
Let M be a Young function. We denote by $\widetilde{L}_{M}=\widetilde{L}_{M}([0,2 \pi])$ the set of 2π-periodic measurable functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
\int_{0}^{2 \pi} M(|f(x)|) \mathrm{d} x<\infty
$$

The linear span of \widetilde{L}_{M} is denoted by $L_{M}=L_{M}([0,2 \pi])$. Equipped with the norm

$$
\|f\|_{M}:=\sup \left\{\int_{0}^{2 \pi}|f(x) g(x)| \mathrm{d} x: \int_{0}^{2 \pi} N(|g(x)|) \mathrm{d} x \leq 1\right\}
$$

where N is the complementary function of M, L_{M} becomes a Banach space, called the Orlicz space generated by M.

The Orlicz spaces are known as the generalization of the Lebesgue spaces; in special case, the Orlicz space generated by the Young function $M_{p}(x)=x^{p} / p, 1<p<\infty$, is isometrically isomorphic to the Lebesgue space L_{p}. More general information about Orlicz spaces can be found in [6], [11] and [12].

Let $M^{-1}:[0, \infty) \rightarrow[0, \infty)$ be the inverse of the Young function M and let

$$
h(t):=\limsup _{x \rightarrow \infty} \frac{M^{-1}(x)}{M^{-1}(t x)}, \quad t>0 .
$$

The numbers α_{M} and β_{M} defined by

$$
\alpha_{M}:=\lim _{t \rightarrow \infty}-\frac{\log h(t)}{\log t}, \quad \beta_{M}:=\lim _{t \rightarrow 0^{+}}-\frac{\log h(t)}{\log t}
$$

are called the lower and upper Boyd indices of the Orlicz space L_{M}, respectively. It is known that the Boyd indices satisfy

$$
0 \leq \alpha_{M} \leq \beta_{M} \leq 1
$$

and

$$
\alpha_{N}+\beta_{M}=1, \quad \alpha_{M}+\beta_{N}=1 .
$$

The Orlicz space L_{M} is reflexive if and only if its Boyd indices are nontrivial, that is $0<\alpha_{M} \leq$ $\beta_{M}<1$ (see, for example [5]).

If $1 \leq q<1 / \beta_{M} \leq 1 / \alpha_{M}<p \leq \infty$, then $L_{p} \subset L_{M} \subset L_{q}$, where the inclusions being continuous, and hence the relation $L_{\infty} \subset L_{M} \subset L_{1}$ holds. We refer to [1] and [2] for a complete discussion of Boyd indices properties.

The modulus of continuity of the function $f \in L_{M}$ is defined by

$$
\omega(f, \delta)_{M}=\sup _{0<h \leq \delta}\|f(\cdot+h)-f\|_{M}, \quad \delta>0
$$

Let $0<\alpha \leq 1$. The Lipschitz class $\operatorname{Lip}(\alpha, M)$ is defined as

$$
\operatorname{Lip}(\alpha, M)=\left\{f \in L_{M}: \omega(f, \delta)_{M}=O\left(\delta^{\alpha}\right), \delta>0\right\}
$$

Let $f \in L^{1}$ has the Fourier series

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1.7}
\end{equation*}
$$

Denote by $S_{n}(f)(x), n=0,1, \cdots$ the nth partial sums of the series (1.7) at the point x, that is,

$$
S_{n}(f)(x)=\sum_{k=0}^{n} u_{k}(f)(x),
$$

where

$$
u_{0}(f)(x)=\frac{a_{0}}{2}, \quad u_{k}(f)(x)=a_{k} \cos k x+b_{k} \sin k x, \quad k=1,2, \cdots
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers. The Nörlund means of the series (1.7) with respect to the sequence $\left(p_{n}\right)$ are defined by

$$
\begin{equation*}
N_{n}(f)(x)=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} S_{k}(f)(x) \tag{1.8}
\end{equation*}
$$

where $P_{n}=\sum_{k=0}^{n} p_{k}$, and $p_{-1}=P_{-1}:=0$.
If $p_{n}=1$ for $n=0,1, \cdots$, then $N_{n}(f)(x)$ coincides with the Cesàro means $\sigma_{n}(f)(x)$, that is

$$
N_{n}(f)(x)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(f)(x) .
$$

The sequence $\left(p_{n}\right)$ is called almost monotone decreasing (increasing) if there exists a constant K, depending only on $\left(p_{n}\right)$, such that $p_{n} \leq K p_{m}\left(p_{m} \leq K p_{n}\right)$ for $n \geq m$.

In the Lebesgue space L_{p}, the following results are obtained recently.
Theorem $\mathbf{A}^{[3]}$. Let $f \in \operatorname{Lip}(\alpha, p)$ and $\left(p_{n}\right)$ be a sequence of positive numbers such that $(n+1) p_{n}=O\left(P_{n}\right)$. If either
(i) $p>1,0<\alpha \leq 1$ and $\left(p_{n}\right)$ is monotonic or
(ii) $p=1,0<\alpha<1$ and $\left(p_{n}\right)$ is non-decreasing,
then

$$
\left\|f-N_{n}(f)\right\|_{p}=O\left(n^{-\alpha}\right)
$$

Theorem $\mathbf{B}^{[7]}$. Let $f \in \operatorname{Lip}(\alpha, p)$ and $\left(p_{n}\right)$ be a sequence of positive numbers. If one of the conditions
(i) $p>1,0<\alpha<1$ and $\left(p_{n}\right)$ is almost monotone decreasing,
(ii) $p>1,0<\alpha<1,\left(p_{n}\right)$ is almost monotone increasing and $(n+1) p_{n}=O\left(P_{n}\right)$,
(iii) $p>1, \alpha=1$ and $\sum_{k=1}^{n-1} k\left|p_{k}-p_{k+1}\right|=O\left(P_{n}\right)$,
(iv) $p>1, \alpha=1$ and $\sum_{k=0}^{n-1}\left|p_{k}-p_{k+1}\right|=O\left(P_{n} / n\right)$,
(v) $p=1,0<\alpha<1$ and $\sum_{k=-1}^{n-1}\left|p_{k}-p_{k+1}\right|=O\left(P_{n} / n\right)$
maintains, then

$$
\left\|f-N_{n}(f)\right\|_{p}=O\left(n^{-\alpha}\right)
$$

It is clear that Theorem B is more general than Theorem A .
In the paper [8], the authors extended Theorem A to more general classes of triangular matrix methods.

Let $A=\left(a_{n, k}\right)$ be an infinite lower triangular regular matrix with nonnegative entries and let $s_{n}^{(A)}(n=0,1, \cdots)$ denote the row sums of this matrix, that is $s_{n}^{(A)}=\sum_{k=0}^{n} a_{n, k}$.

The matrix $A=\left(a_{n, k}\right)$ is said to have monotone rows if, for each $n,\left(a_{n, k}\right)$ is either nonincreasing or non-decreasing with respect to $k, 0 \leq k \leq n$.

For a given infinite lower triangular regular matrix $A=\left(a_{n, k}\right)$ with nonnegative entries we consider the matrix transform

$$
\begin{equation*}
T_{n}^{(A)}(f)(x)=\sum_{k=0}^{n} a_{n, k} S_{k}(f)(x) \tag{1.9}
\end{equation*}
$$

Theorem $\mathbf{C}^{[8]}$. Let $f \in \operatorname{Lip}(\alpha, p)$, A has monotone rows and satisfy $\left|s_{n}^{(A)}-1\right|=O\left(n^{-\alpha}\right)$. If one of the conditions
(i) $p>1,0<\alpha<1$ and $(n+1) \max \left\{a_{n, 0}, a_{n, r}\right\}=O(1)$ where $r=[n / 2]$,
(ii) $p>1, \alpha=1$ and $(n+1) \max \left\{a_{n, 0}, a_{n, r}\right\}=O(1)$ where $r=[n / 2]$,
(iii) $p=1,0<\alpha<1$ and $(n+1) \max \left\{a_{n, 0}, a_{n, n}\right\}=O(1)$,
holds, then

$$
\left\|f-T_{n}^{(A)}(f)\right\|_{p}=O\left(n^{-\alpha}\right)
$$

For a given positive sequence $\left(p_{n}\right)$, if we consider the lower triangular matrix with entries $a_{n, k}=p_{n-k} / P_{n}$, then the Nörlund transform (1.8) can be regarded as a matrix transform of the form (1.9). Further, in this case the condition of Theorem A implies that of Theorem C and hence Theorem C is more general than Theorem A (see [8]).

In the present paper we give generalizations of Theorems B and C in reflexive Orlicz spaces.
We say the matrix $A=\left(a_{n, k}\right)$ has almost monotone increasing (decreasing) rows if there exists a constant K, depending only on A, such that $a_{n, k} \leq K a_{n, m}\left(a_{n, m} \leq K a_{n, k}\right)$ for each n and $0 \leq k \leq m \leq n$.

Our main results are the following.
Theorem 1. Let L_{M} be a reflexive Orlicz space, $0<\alpha<1, f \in \operatorname{Lip}(\alpha, M)$ and $A=\left(a_{n, k}\right)$ be a lower triangular regular matrix with $\left|s_{n}^{(A)}-1\right|=O\left(n^{-\alpha}\right)$. If one of the conditions
(i) A has almost monotone decreasing rows and $(n+1) a_{n, 0}=O(1)$,
(ii) A has almost monotone increasing rows and $(n+1) a_{n, r}=O(1)$ where $r:=[n / 2]$, holds, then

$$
\left\|f-T_{n}^{(A)}(f)\right\|_{M}=O\left(n^{-\alpha}\right)
$$

Theorem 2. Let L_{M} be a reflexive Orlicz space, $f \in \operatorname{Lip}(1, M)$ and $A=\left(a_{n, k}\right)$ be a lower triangular regular matrix with $\left|s_{n}^{(A)}-1\right|=O\left(n^{-1}\right)$. If one of the conditions
(i) $\sum_{k=1}^{n-1}\left|a_{n, k-1}-a_{n, k}\right|=O\left(n^{-1}\right)$,
(ii) $\sum_{k=1}^{n-1}(n-k)\left|a_{n, k-1}-a_{n, k}\right|=O(1)$,
holds, then

$$
\left\|f-T_{n}^{(A)}(f)\right\|_{M}=O\left(n^{-1}\right)
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers, $0<\alpha<1$ and $1<p<\infty$. Consider the lower triangular matrix $A=\left(a_{n, k}\right)$ with $a_{n, k}=p_{n-k} / P_{n}$. It is clear that in this case $s_{n}^{(A)}=1$.

If $\left(p_{n}\right)$ is almost monotone decreasing, then the Nörlund matrix A has almost monotone increasing rows and

$$
(n+1) a_{n, r} \leq(n+1) K a_{n, n}=K(n+1) \frac{p_{0}}{P_{n}} \leq 1,
$$

where $r=[n / 2]$. Thus, A satisfies the condition (ii) of Theorem 1 .
If $\left(p_{n}\right)$ is almost monotone increasing and $(n+1) p_{n}=O\left(P_{n}\right)$, then A has almost monotone decreasing rows and

$$
(n+1) a_{n, 0}=(n+1) \frac{p_{n}}{P_{n}}=\frac{1}{P_{n}} O\left(P_{n}\right)=O(1) .
$$

Thus, A satisfies the condition (i) of Theorem 1.
Hence the part (ii) of Theorem 1 is more general than the part (i) of Theorem B and the part (i) of Theorem 1 is more general than that part (ii) of Theorem B even in the case $M(x)=x^{p} / p$, $1<p<\infty$.

Also, it is clear that parts (i) and (ii) of Theorem 1 are more general than corresponding parts of Theorem C.

Now let $p>1, \alpha=1$ and $\sum_{k=1}^{n-1} k\left|p_{k}-p_{k+1}\right|=O\left(P_{n}\right)$. Then,

$$
\begin{aligned}
\sum_{k=1}^{n-1}(n-k)\left|a_{n, k-1}-a_{n, k}\right| & =\sum_{k=1}^{n-1}(n-k)\left|\frac{p_{n-k+1}}{P_{n}}-\frac{p_{n-k}}{P_{n}}\right| \\
& =\frac{1}{P_{n}} \sum_{k=1}^{n-1} k\left|p_{k}-p_{k+1}\right|=\frac{1}{P_{n}} O\left(P_{n}\right)=O(1) .
\end{aligned}
$$

Thus, the Nörlund matrix $A=\left(p_{n-k} / P_{n}\right)$ satisfies the condition (ii) of Theorem 2. Hence, the part (iii) of Theorem B is a special case of the part (ii) of Theorem 2. Similarly, one can easily show that the part (i) of Theorem 2 is more general than the part (iv) of Theorem B even if $M(x)=x^{p} / p, 1<p<\infty$.

2 Auxiliary Results

Lemma 1. Let L_{M} be a reflexive Orlicz space and $0<\alpha \leq 1$. Then for every $f \in$ $\operatorname{Lip}(\alpha, M)$ the estimate

$$
\begin{equation*}
\left\|f-S_{n}(f)\right\|_{M}=O\left(n^{-\alpha}\right), \quad n=1,2, \cdots \tag{2.3}
\end{equation*}
$$

holds.
Proof. Let $t_{n}^{*}(n=0,1, \cdots)$ be the trigonometric polynomial of best approximation to $f \in$ $\operatorname{Lip}(\alpha, M)$, i. e.

$$
\left\|f-t_{n}^{*}\right\|_{M}=\inf \|f-t\|_{M}
$$

where the infimum is taken over all trigonometric polynomials t of degree at most n.
From Theorem 1' of [10] it can be deduced that

$$
\left\|f-t_{n}^{*}\right\|_{M}=O\left(\omega(f, 1 / n)_{M}\right)
$$

and hence

$$
\left\|f-t_{n}^{*}\right\|_{M}=O\left(n^{-\alpha}\right) .
$$

By the uniform boundedness of the partial sums $S_{n}(f)$ in the reflexive Orlicz spaces ${ }^{[13]}$, we get

$$
\begin{aligned}
\left\|f-S_{n}(f)\right\|_{M} & \leq\left\|f-t_{n}^{*}\right\|_{M}+\left\|t_{n}^{*}-S_{n}(f)\right\|_{M}=\left\|f-t_{n}^{*}\right\|_{M}+\left\|S_{n}\left(t_{n}^{*}-f\right)\right\|_{M} \\
& =O\left(\left\|f-t_{n}^{*}\right\|_{M}\right)=O\left(n^{-\alpha}\right) .
\end{aligned}
$$

Lemma 2. Let L_{M} be a reflexive Orlicz space. If $f \in \operatorname{Lip}(1, M)$, then f is absolutely continuous and $f^{\prime} \in L_{M}$.

Proof. Since L_{M} is reflexive, the Boyd indices satisfy $0<\alpha_{M} \leq \beta_{M}<1$. If we choose a number q such that $1<q<1 / \beta_{M}$, then L_{M} is continuously embedded in the Lebesgue space L_{q}. Hence we have

$$
\|f(\cdot+h)-f\|_{q} \leq c\|f(\cdot+h)-f\|_{M}
$$

for every h with $0<h \leq \delta, \delta>0$. This inequality yields

$$
\omega(f, \delta)_{q} \leq c \omega(f, \delta)_{M} .
$$

Hence, $f \in \operatorname{Lip}(1, M)$ implies $\omega(f, \boldsymbol{\delta})_{q}=O(\boldsymbol{\delta})$, and this implies that f is absolutely continuous and $f^{\prime} \in L^{q[4, \text { pp. } 51-54]}$.

Since f is absolutely continuous, the relation

$$
\frac{f(x+\delta)-f(x)}{\delta} \rightarrow f^{\prime}(x), \quad \delta \rightarrow 0^{+}
$$

holds almost everywhere. Hence, by Fatou Lemma, for every g with $\int_{0}^{2 \pi} N(|g(x)|) \mathrm{d} x \leq 1$,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|f^{\prime}(x)\right||g(x)| \mathrm{d} x & =\int_{0}^{2 \pi}\left(\lim _{\delta \rightarrow 0^{+}} \frac{|f(x+\delta)-f(x)|}{\delta}\right)|g(x)| \mathrm{d} x \\
& \leq \operatorname{liminin}_{\delta \rightarrow 0^{+}} \frac{1}{\delta} \int_{0}^{2 \pi}|f(x+\delta)-f(x)||g(x)| \mathrm{d} x \\
& \leq \liminf _{\delta \rightarrow 0^{+}} \frac{1}{\delta}\|f(\cdot+\delta)-f\|_{M} \\
& \leq \liminf _{\delta \rightarrow 0^{+}} \frac{1}{\delta} \omega(f, \delta)_{M}=\liminf _{\delta \rightarrow 0^{+}} \frac{4}{\delta} O(\delta)=O(1),
\end{aligned}
$$

and this means that $f^{\prime} \in L_{M}$.

Lemma 3. Let L_{M} be a reflexive Orlicz space and $f \in \operatorname{Lip}(1, M)$. Then for $n=1,2, \cdots$ the estimate

$$
\begin{equation*}
\left\|S_{n}(f)-\sigma_{n}(f)\right\|_{M}=O\left(n^{-1}\right) \tag{2.4}
\end{equation*}
$$

holds.
Proof. By Lemma 2, f is absolutely continuous and $f^{\prime} \in L_{M}$. If f has the Fourier series

$$
f(x) \sim \sum_{k=0}^{\infty} u_{k}(f)(x)
$$

then the Fourier series of the conjugate function \tilde{f}^{\prime} is

$$
\widetilde{f}^{\prime}(x) \sim \sum_{k=1}^{\infty} k u_{k}(f)(x) .
$$

On the other hand,

$$
S_{n}(f)(x)-\sigma_{n}(f)(x)=\sum_{k=1}^{n} \frac{k}{n+1} A_{k}(f)(x)=\frac{1}{n+1} S_{n}\left(\widetilde{f}^{\prime}\right)(x) .
$$

Considering the boundedness of the partial sums and the conjugation operator in reflexive Orlicz spaces ${ }^{[13]}$ yield (2.4).

In the classical Lebesgue spaces $L^{p}, 1<p<\infty$, the analogue of Lemma 3 was proved in [9].
Lemma 4. Let $A=\left(a_{n, k}\right)$ be an infinite lower triangular matrix and $0<\alpha<1$. If one of the conditions
(i) A has almost monotone decreasing rows and $(n+1) a_{n, 0}=O(1)$,
(ii) A has almost monotone increasing rows, $(n+1) a_{n, r}=O(1)$ where $r:=[n / 2]$, and $\left|s_{n}^{(A)}-1\right|=O\left(n^{-\alpha}\right)$,
holds, then

$$
\begin{equation*}
\sum_{k=1}^{n} k^{-\alpha} a_{n, k}=O\left(n^{-\alpha}\right) \tag{2.5}
\end{equation*}
$$

Proof. (i) Since $\sum_{k=1}^{n} k^{-\alpha}=O\left(n^{1-\alpha}\right)$ and $a_{n, k} \leq K a_{n, 0}$ for $k=1, \cdots, n$, we get

$$
\sum_{k=1}^{n} k^{-\alpha} a_{n, k} \leq K a_{n, 0} \sum_{k=1}^{n} k^{-\alpha}=O\left(\frac{1}{n+1}\right) O\left(n^{1-\alpha}\right)=O\left(n^{-\alpha}\right)
$$

(ii) Since $a_{n, k} \leq K a_{n, r}$ for $k=1, \ldots, r$ and $\left|s_{n}^{(A)}-1\right|=O\left(n^{-\alpha}\right)$,

$$
\begin{aligned}
\sum_{k=1}^{n} k^{-\alpha} a_{n, k} & =\sum_{k=1}^{r} k^{-\alpha} a_{n, k}+\sum_{k=r+1}^{n} k^{-\alpha} a_{n, k} \\
& \leq K a_{n, r} \sum_{k=1}^{r} k^{-\alpha}+(r+1)^{-\alpha} \sum_{k=r+1}^{n} a_{n, k} \leq K a_{n, r} \sum_{k=1}^{n} k^{-\alpha}+(r+1)^{-\alpha} \sum_{k=0}^{n} a_{n, k} \\
& =O\left(\frac{1}{n+1}\right) O\left(n^{1-\alpha}\right)+O\left(n^{-\alpha}\right) s_{n}^{(A)}=O\left(n^{-\alpha}\right)
\end{aligned}
$$

3 Proofs of the Main Results

Proof of Theorem 1. By the definition of $T_{n}^{(A)}(f)$, we have

$$
\begin{aligned}
T_{n}^{(A)}(f)(x)-f(x) & =\sum_{k=0}^{n} a_{n, k} S_{k}(f)(x)-f(x) \\
& =\sum_{k=0}^{n} a_{n, k} S_{k}(f)(x)-f(x)+s_{n}^{(A)} f(x)-s_{n}^{(A)} f(x) \\
& =\sum_{k=0}^{n} a_{n, k}\left(S_{k}(f)(x)-f(x)\right)+\left(s_{n}^{(A)}-1\right) f(x) .
\end{aligned}
$$

Hence, by (2.3) and (2.5) we obtain

$$
\begin{aligned}
\left\|f-T_{n}^{(A)}(f)\right\|_{M} & \leq \sum_{k=1}^{n} a_{n, k}\left\|S_{k}(f)-f\right\|_{M}+a_{n, 0}\left\|S_{0}(f)-f\right\|_{M}+\left|s_{n}^{(A)}-1\right|\|f\|_{M} \\
& =\sum_{k=1}^{n} a_{n, k} k^{-\alpha}+O\left(\frac{1}{n+1}\right)+O\left(n^{-\alpha}\right) \\
& =O\left(n^{-\alpha}\right),
\end{aligned}
$$

since $\left|s_{n}^{(A)}-1\right|=O\left(n^{-\alpha}\right)$.
Proof of Theorem 2. By (2.3),

$$
\begin{aligned}
\left\|f-T_{n}^{(A)}(f)\right\|_{M} & \leq\left\|S_{n}(f)-T_{n}^{(A)}(f)\right\|_{M}+\left\|f-S_{n}(f)\right\|_{M} \\
& =\left\|S_{n}(f)-T_{n}^{(A)}(f)\right\|_{M}+O\left(n^{-1}\right) .
\end{aligned}
$$

Thus, we have to show that

$$
\begin{equation*}
\left\|S_{n}(f)-T_{n}^{(A)}(f)\right\|_{M}=O\left(n^{-1}\right) . \tag{3.1}
\end{equation*}
$$

Set $A_{n, k}:=\sum_{m=k}^{n} a_{n, m}$. Hence,

$$
\begin{aligned}
T_{n}^{(A)}(f)(x) & =\sum_{k=0}^{n} a_{n, k} S_{k}(f)(x)=\sum_{k=0}^{n} a_{n, k}\left(\sum_{m=0}^{k} u_{m}(f)(x)\right) \\
& =\sum_{k=0}^{n}\left(\sum_{m=k}^{n} a_{n, m}\right) u_{k}(f)(x)=\sum_{k=0}^{n} A_{n, k} u_{k}(f)(x) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
S_{n}(f)(x) & =\sum_{k=0}^{n} u_{k}(f)(x)=A_{n, 0} \sum_{k=0}^{n} u_{k}(f)(x)+\left(1-A_{n, 0}\right) \sum_{k=0}^{n} u_{k}(f)(x) \\
& =\sum_{k=0}^{n} A_{n, 0} u_{k}(f)(x)+\left(1-s_{n}^{(A)}\right) S_{n}(f)(x) .
\end{aligned}
$$

Thus,

$$
T_{n}^{(A)}(f)(x)-S_{n}(f)(x)=\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)(x)+\left(s_{n}^{(A)}-1\right) S_{n}(f)(x) .
$$

By the boundedness of partial sums we get

$$
\begin{align*}
\left\|S_{n}(f)-T_{n}^{(A)}(f)\right\|_{M} & \leq\left\|\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)\right\|_{M}+\left|s_{n}^{(A)}-1\right|\|f\|_{M} \tag{3.2}\\
& =\left\|\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)\right\|_{M}+O\left(n^{-1}\right) .
\end{align*}
$$

Thus, the problem is reduced to proving that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)\right\|_{M}=O\left(n^{-1}\right) . \tag{3.3}
\end{equation*}
$$

If we set

$$
b_{n, k}:=\frac{A_{n, k}-A_{n, 0}}{k}, \quad k=1, \cdots, n,
$$

Abel transform yields

$$
\begin{aligned}
\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f) & =\sum_{k=1}^{n} b_{n, k} k u_{k}(f) \\
& =b_{n, n} \sum_{m=1}^{n} m u_{m}(f)+\sum_{k=1}^{n-1}\left(b_{n, k}-b_{n, k+1}\right)\left(\sum_{m=1}^{k} m u_{m}(f)\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)\right\|_{M} \leq & \left|b_{n, n}\right|\left\|\sum_{m=1}^{n} m u_{m}(f)\right\|_{M} \\
& +\sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right|\left(\left\|\sum_{m=1}^{k} m u_{m}(f)\right\|_{M}\right) .
\end{aligned}
$$

Considering (2.4), we have

$$
\begin{aligned}
\left\|\sum_{m=1}^{n} m u_{m}(f)\right\|_{M} & =(n+1)\left\|S_{n}(f)-\sigma_{n}(f)\right\|_{M} \\
& =(n+1) O\left(n^{-1}\right)=O(1) .
\end{aligned}
$$

This and the previous inequality yield

$$
\begin{equation*}
\left\|\sum_{k=1}^{n}\left(A_{n, k}-A_{n, 0}\right) u_{k}(f)\right\|_{M}=O(1)\left|b_{n, n}\right|+O(1) \sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right| . \tag{3.4}
\end{equation*}
$$

Since $\left|s_{n}^{(A)}-1\right|=O\left(n^{-1}\right)$,

$$
\begin{align*}
\left|b_{n, n}\right| & =\frac{\left|A_{n, n}-A_{n, 0}\right|}{n}=\frac{\left|a_{n, n}-s_{n}^{(A)}\right|}{n} \\
& =\frac{1}{n}\left(s_{n}^{(A)}-a_{n, n}\right) \leq \frac{1}{n} s_{n}^{(A)} \tag{3.5}\\
& =\frac{1}{n} O(1)=O\left(n^{-1}\right) .
\end{align*}
$$

Therefore, it remains to prove that

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right|=O\left(n^{-1}\right) \tag{3.6}
\end{equation*}
$$

A simple calculation yields

$$
b_{n, k}-b_{n, k+1}=\frac{1}{k(k+1)}\left\{(k+1) a_{n, k}-\sum_{m=0}^{k} a_{n, m}\right\} .
$$

(i) Let $\sum_{k=1}^{n-1}\left|a_{n, k-1}-a_{n, k}\right|=O\left(n^{-1}\right)$.

Let's verify by induction that

$$
\begin{equation*}
\left|\sum_{m=0}^{k} a_{n, m}-(k+1) a_{n, k}\right| \leq \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \tag{3.7}
\end{equation*}
$$

for $k=1, \cdots, n$.
If $k=1$, then

$$
\left|\sum_{m=0}^{1} a_{n, m}-2 a_{n, 1}\right|=\left|a_{n, 0}-a_{n, 1}\right|,
$$

thus (3.7) holds. Now let us assume that (3.7) is true for $k=v$. For $k=v+1$,

$$
\begin{aligned}
\left|\sum_{m=0}^{v+1} a_{n, m}-(v+2) a_{n, v+1}\right| & =\left|\sum_{m=0}^{v} a_{n, m}-(v+1) a_{n, v+1}\right| \\
& \leq\left|\sum_{m=0}^{v} a_{n, m}-(v+1) a_{n, v}\right|+\left|(v+1) a_{n, v}-(v+1) a_{n, v+1}\right| \\
& \leq \sum_{m=1}^{v} m\left|a_{n, m-1}-a_{n, m}\right|+(v+1)\left|a_{n, v}-a_{n, v+1}\right| \\
& =\sum_{m=1}^{v+1} m\left|a_{n, m-1}-a_{n, m}\right|
\end{aligned}
$$

and hence (3.7) holds for $k=1, \cdots, n$. Therefore,

$$
\begin{aligned}
\sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right| & =\sum_{k=1}^{n-1}\left|\frac{1}{k(k+1)}\left\{(k+1) a_{n, k}-\sum_{m=0}^{k} a_{n, m}\right\}\right| \\
& =\sum_{k=1}^{n-1} \frac{1}{k(k+1)}\left|\sum_{m=0}^{k} a_{n, m}-(k+1) a_{n, k}\right| \\
& \leq \sum_{k=1}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \\
& =\sum_{m=1}^{n-1} m\left|a_{n, m-1}-a_{n, m}\right| \sum_{k=m}^{n-1} \frac{1}{k(k+1)} \\
& \leq \sum_{m=1}^{n-1} m\left|a_{n, m-1}-a_{n, m}\right| \sum_{k=m}^{\infty} \frac{1}{k(k+1)} \\
& =\sum_{m=1}^{n-1}\left|a_{n, m-1}-a_{n, m}\right| \\
& =O\left(n^{-1}\right)
\end{aligned}
$$

(ii) Let

$$
\sum_{k=1}^{n-1}(n-k)\left|a_{n, k-1}-a_{n, k}\right|=O(1)
$$

By (3.7),

$$
\begin{aligned}
\sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right| & \leq \sum_{k=1}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \\
& \leq \sum_{k=1}^{r} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right|+\sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right|
\end{aligned}
$$

where $r:=[n / 2]$. By Abel transform,

$$
\begin{aligned}
\sum_{k=1}^{r} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right| & \leq \sum_{k=1}^{r}\left|a_{n, k-1}-a_{n, k}\right| \\
& =\sum_{k=1}^{r} \frac{1}{n-k}(n-k)\left|a_{n, k-1}-a_{n, k}\right| \\
& \leq \frac{1}{n-r} \sum_{k=1}^{r}(n-k)\left|a_{n, k-1}-a_{n, k}\right| \\
& =\frac{1}{n-r} O(1)=O\left(n^{-1}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \\
\leq & \sum_{k=r}^{n-1} \frac{1}{k(k+1)}\left\{\sum_{m=1}^{r} m\left|a_{n, m-1}-a_{n, m}\right|+\sum_{m=r}^{k} m\left|a_{n, m-1}-a_{n, m}\right|\right\} \\
= & \sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{r} m\left|a_{n, m-1}-a_{n, m}\right|+\sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=r}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \\
= & : I_{n 1}+I_{n 2} .
\end{aligned}
$$

Since $\sum_{k=1}^{r}\left|a_{n, k-1}-a_{n, k}\right|=O\left(n^{-1}\right)$,

$$
\begin{aligned}
I_{n 1} & \leq \sum_{k=r}^{n-1} \frac{1}{k+1} \sum_{m=1}^{r}\left|a_{n, m-1}-a_{n, m}\right| \\
& =O\left(n^{-1}\right) \sum_{k=r}^{n-1} \frac{1}{k+1} \\
& =O\left(n^{-1}\right)(n-r) \frac{1}{r+1} \\
& =O\left(n^{-1}\right) .
\end{aligned}
$$

Let's also estimate $I_{n 2}$.

$$
\begin{aligned}
I_{n 2} & =\sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=r}^{k} m\left|a_{n, m-1}-a_{n, m}\right| \\
& \leq \sum_{k=r}^{n-1} \frac{1}{k+1} \sum_{m=r}^{k}\left|a_{n, m-1}-a_{n, m}\right| \\
& \leq \frac{1}{r+1} \sum_{k=r}^{n-1}\left(\sum_{m=r}^{k}\left|a_{n, m-1}-a_{n, m}\right|\right) \\
& \leq \frac{2}{n} \sum_{k=r}^{n-1}\left(\sum_{m=r}^{k}\left|a_{n, m-1}-a_{n, m}\right|\right) \\
& =\frac{2}{n} \sum_{k=n-r}^{n-1}(n-k)\left|a_{n, k-1}-a_{n, k}\right| \\
& \leq \frac{2}{n} \sum_{k=1}^{n-1}(n-k)\left|a_{n, k-1}-a_{n, k}\right| \\
& =\frac{2}{n} O(1)=O\left(n^{-1}\right) .
\end{aligned}
$$

Thus

$$
\sum_{k=r}^{n-1} \frac{1}{k(k+1)} \sum_{m=1}^{k} m\left|a_{n, m-1}-a_{n, m}\right|=O\left(n^{-1}\right)
$$

and hence

$$
\sum_{k=1}^{n-1}\left|b_{n, k}-b_{n, k+1}\right|=O\left(n^{-1}\right)
$$

Therefore, (3.6) is verified both in cases (i) and (ii). Finally, combining (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) finishes the proof.

References

[1] Bennett, C. and Sharpley, R., Interpolation of Operators, Academic Press, 1988.
[2] Boyd, D. W., Indices for the Orlicz Spaces, Pacific J. Math., 38(1971), 315-323
[3] Chandra, P., Trigonometric Approximation of Functions in L_{p}-norm, J. Math. Anal. Appl., 275(2002), 13-26.
[4] Devore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag (1993).
[5] Yu, A., Karlovich, Algebras of Singular Integral Operators with Piecewise Continuous Coefficients on Reflexive Orlicz Spaces, Math. Nachr., 179(1996), 187-222.
[6] Krasnoselskii, M. A. and Ya, B., Rutickii, Convex Functions and Orlicz Spaces, Noordhoff Ltd. (1961).
[7] Leindler, L., Trigonometric Approximation in L_{p} —norm, J. Math. Anal. Appl., 302(2005), 129-136.
[8] Mittal, M. L., Rhoades, B. E., Mishra, V. N. and Singh, J., Using Infinite Matrices to Approximate Functions of Class Lip (α, p) Using Trigonometric Polynomials, J. Math. Anal. Appl., 326(2007), 667-676.
[9] Quade, E. S., Trigonometric Approximation in the Mean, Duke Math. J., 3(1937), 529-542.
[10] Ramazanov, A. R. K., On Approximation by Polynomials and Rational Functions in Orlicz Spaces, Anal. Math., 10(1984), 117-132.
[11] Rao, M. M. and Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker Inc. (1991).
[12] Rao, M. M. and Ren, Z. D., Applications of Orlicz Spaces, Marcel Dekker Inc. (2002).
[13] Ryan, R., Conjugate Functions in Orlicz Spaces, Pacific J. Math., 13(1963), 1371-1377.
[14] Zygmund, A., Trigonometric Series, Vol I, Cambridge Univ. Press, 2nd edition, (1959).

Department of Mathematics
Faculty of Arts and Sciences
Balikesir University, 10145
Balikesir, Turkey

E-mail: ag_guven@yahoo.com

