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Abstract. The Lipschitz classes Lip(α,M) ,0 < α ≤ 1 are defined for Orlicz space gen-

erated by the Young function M, and the degree of approximation by matrix transforms of

f ∈ Lip(α,M) is estimated by n−α .
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1 Introduction and the Main Results

A convex and continuous function M : [0,∞) → [0,∞), for which M (0) = 0, M (x) > 0 for

x > 0 and

lim
x→0

M (x)

x
= 0, lim

x→∞

M (x)

x
= ∞

is called a Young function. The complementary Young function N of M is defined by

N (y) := max{xy−M (x) : x ≥ 0}

for y ≥ 0.

Let M be a Young function. We denote by L̃M = L̃M ([0,2π]) the set of 2π−periodic mea-

surable functions f : R → R such that

2π∫

0

M (| f (x)|)dx < ∞.

The linear span of L̃M is denoted by LM = LM ([0,2π]) . Equipped with the norm

‖ f‖M := sup





2π∫

0

| f (x)g(x)|dx :

2π∫

0

N (|g(x)|)dx ≤ 1



 ,
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where N is the complementary function of M, LM becomes a Banach space, called the Orlicz

space generated by M.

The Orlicz spaces are known as the generalization of the Lebesgue spaces; in special case,

the Orlicz space generated by the Young function Mp (x) = xp/p,1 < p < ∞, is isometrically

isomorphic to the Lebesgue space Lp. More general information about Orlicz spaces can be

found in [6], [11] and [12].

Let M−1 : [0,∞) → [0,∞) be the inverse of the Young function M and let

h(t) := limsup
x→∞

M−1 (x)

M−1 (tx)
, t > 0.

The numbers αM and βM defined by

αM := lim
t→∞

−
logh(t)

log t
, βM := lim

t→0+
−

logh(t)

log t

are called the lower and upper Boyd indices of the Orlicz space LM, respectively. It is known

that the Boyd indices satisfy

0 ≤ αM ≤ βM ≤ 1

and

αN + βM = 1, αM + βN = 1.

The Orlicz space LM is reflexive if and only if its Boyd indices are nontrivial, that is 0 < αM ≤

βM < 1 (see, for example [5]).

If 1 ≤ q < 1/βM ≤ 1/αM < p ≤ ∞, then Lp ⊂ LM ⊂ Lq, where the inclusions being con-

tinuous, and hence the relation L∞ ⊂ LM ⊂ L1 holds. We refer to [1] and [2] for a complete

discussion of Boyd indices properties.

The modulus of continuity of the function f ∈ LM is defined by

ω ( f ,δ )M = sup
0<h≤δ

‖ f (·+ h)− f‖M , δ > 0.

Let 0 < α ≤ 1. The Lipschitz class Lip(α ,M) is defined as

Lip(α ,M) = { f ∈ LM : ω ( f ,δ )M = O(δ α) ,δ > 0} .

Let f ∈ L1 has the Fourier series

f (x) ∼
a0

2
+

∞

∑
k=1

(ak coskx+ bk sinkx) . (1.7)

Denote by Sn ( f ) (x) , n = 0,1, · · · the nth partial sums of the series (1.7) at the point x, that is,

Sn ( f )(x) =
n

∑
k=0

uk ( f )(x) ,
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where

u0 ( f )(x) =
a0

2
, uk ( f ) (x) = ak cos kx+ bk sinkx, k = 1,2, · · · .

Let (pn) be a sequence of positive numbers. The Nörlund means of the series (1.7) with

respect to the sequence (pn) are defined by

Nn ( f )(x) =
1

Pn

n

∑
k=0

pn−kSk ( f )(x) , (1.8)

where Pn =
n

∑
k=0

pk, and p−1 = P−1 := 0.

If pn = 1 for n = 0,1, · · · , then Nn ( f )(x) coincides with the Cesàro means σn ( f )(x) , that is

Nn ( f ) (x) =
1

n+ 1

n

∑
k=0

Sk ( f )(x) .

The sequence (pn) is called almost monotone decreasing (increasing) if there exists a con-

stant K, depending only on (pn) , such that pn ≤ K pm (pm ≤ K pn) for n ≥ m.

In the Lebesgue space Lp, the following results are obtained recently.

Theorem A[3]. Let f ∈ Lip(α , p) and (pn) be a sequence of positive numbers such that

(n+ 1) pn = O(Pn) . If either

(i) p > 1, 0 < α ≤ 1 and (pn) is monotonic

or

(ii) p = 1, 0 < α < 1 and (pn) is non-decreasing,

then

‖ f −Nn ( f )‖p = O
(
n−α

)
.

Theorem B[7]. Let f ∈ Lip(α , p) and (pn) be a sequence of positive numbers. If one of

the conditions

(i) p > 1, 0 < α < 1 and (pn) is almost monotone decreasing,

(ii) p > 1, 0 < α < 1, (pn) is almost monotone increasing and (n+ 1) pn = O(Pn) ,

(iii) p > 1, α = 1 and
n−1

∑
k=1

k |pk − pk+1| = O(Pn) ,

(iv) p > 1, α = 1 and
n−1

∑
k=0

|pk − pk+1| = O(Pn/n) ,

(v) p = 1, 0 < α < 1 and
n−1

∑
k=−1

|pk − pk+1| = O(Pn/n)

maintains, then

‖ f −Nn ( f )‖p = O
(
n−α

)
.

It is clear that Theorem B is more general than Theorem A.

In the paper [8], the authors extended Theorem A to more general classes of triangular matrix

methods.
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Let A = (an,k) be an infinite lower triangular regular matrix with nonnegative entries and let

s
(A)
n (n = 0,1, · · · ) denote the row sums of this matrix, that is s

(A)
n =

n

∑
k=0

an,k.

The matrix A = (an,k) is said to have monotone rows if, for each n, (an,k) is either non-

increasing or non-decreasing with respect to k, 0 ≤ k ≤ n.

For a given infinite lower triangular regular matrix A = (an,k) with nonnegative entries we

consider the matrix transform

T
(A)

n ( f )(x) =
n

∑
k=0

an,kSk ( f ) (x) . (1.9)

Theorem C[8]. Let f ∈ Lip(α , p) , A has monotone rows and satisfy

∣∣∣s(A)
n −1

∣∣∣= O(n−α) .

If one of the conditions

(i) p > 1, 0 < α < 1 and (n+ 1)max{an,0,an,r} = O(1) where r = [n/2] ,

(ii) p > 1, α = 1 and (n+ 1)max{an,0,an,r} = O(1) where r = [n/2] ,

(iii) p = 1, 0 < α < 1 and (n+ 1)max{an,0,an,n} = O(1),

holds, then ∥∥∥ f −T
(A)

n ( f )
∥∥∥

p
= O

(
n−α

)
.

For a given positive sequence (pn) , if we consider the lower triangular matrix with entries

an,k = pn−k/Pn, then the Nörlund transform (1.8) can be regarded as a matrix transform of the

form (1.9). Further, in this case the condition of Theorem A implies that of Theorem C and

hence Theorem C is more general than Theorem A (see [8]).

In the present paper we give generalizations of Theorems B and C in reflexive Orlicz spaces.

We say the matrix A = (an,k) has almost monotone increasing (decreasing) rows if there

exists a constant K, depending only on A, such that an,k ≤ Kan,m (an,m ≤ Kan,k) for each n and

0 ≤ k ≤ m ≤ n.

Our main results are the following.

Theorem 1. Let LM be a reflexive Orlicz space, 0 < α < 1, f ∈ Lip(α ,M) and A = (an,k)

be a lower triangular regular matrix with

∣∣∣s(A)
n −1

∣∣∣= O(n−α) . If one of the conditions

(i) A has almost monotone decreasing rows and (n+ 1)an,0 = O(1),

(ii) A has almost monotone increasing rows and (n+ 1)an,r = O(1) where r := [n/2] ,

holds, then ∥∥∥ f −T
(A)

n ( f )
∥∥∥

M
= O

(
n−α

)
.

Theorem 2. Let LM be a reflexive Orlicz space, f ∈ Lip(1,M) and A = (an,k) be a lower

triangular regular matrix with

∣∣∣s(A)
n −1

∣∣∣= O
(
n−1
)
. If one of the conditions

(i)
n−1

∑
k=1

|an,k−1 −an,k| = O
(
n−1
)
,

(ii)
n−1

∑
k=1

(n− k) |an,k−1 −an,k| = O(1) ,

holds, then ∥∥∥ f −T
(A)

n ( f )
∥∥∥

M
= O

(
n−1
)
.
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Let (pn) be a sequence of positive numbers, 0 < α < 1 and 1 < p < ∞. Consider the lower

triangular matrix A = (an,k) with an,k = pn−k/Pn. It is clear that in this case s
(A)
n = 1.

If (pn) is almost monotone decreasing, then the Nörlund matrix A has almost monotone

increasing rows and

(n+ 1)an,r ≤ (n+ 1)Kan,n = K (n+ 1)
p0

Pn

≤ 1,

where r = [n/2] . Thus, A satisfies the condition (ii) of Theorem 1.

If (pn) is almost monotone increasing and (n+ 1) pn = O(Pn) , then A has almost monotone

decreasing rows and

(n+ 1)an,0 = (n+ 1)
pn

Pn

=
1

Pn

O(Pn) = O(1) .

Thus, A satisfies the condition (i) of Theorem 1.

Hence the part (ii) of Theorem 1 is more general than the part (i) of Theorem B and the part

(i) of Theorem 1 is more general than that part (ii) of Theorem B even in the case M (x) = xp/p,

1 < p < ∞.

Also, it is clear that parts (i) and (ii) of Theorem 1 are more general than corresponding parts

of Theorem C.

Now let p > 1, α = 1 and
n−1

∑
k=1

k |pk − pk+1| = O(Pn) . Then,

n−1

∑
k=1

(n− k) |an,k−1 −an,k| =
n−1

∑
k=1

(n− k)

∣∣∣∣
pn−k+1

Pn

−
pn−k

Pn

∣∣∣∣

=
1

Pn

n−1

∑
k=1

k |pk − pk+1| =
1

Pn

O(Pn) = O(1) .

Thus, the Nörlund matrix A = (pn−k/Pn) satisfies the condition (ii) of Theorem 2. Hence, the

part (iii) of Theorem B is a special case of the part (ii) of Theorem 2. Similarly, one can easily

show that the part (i) of Theorem 2 is more general than the part (iv) of Theorem B even if

M (x) = xp/p, 1 < p < ∞.

2 Auxiliary Results

Lemma 1. Let LM be a reflexive Orlicz space and 0 < α ≤ 1. Then for every f ∈

Lip(α ,M) the estimate

‖ f −Sn ( f )‖M = O
(
n−α

)
, n = 1,2, · · · (2.3)

holds.

Proof. Let t∗n (n = 0,1, · · · ) be the trigonometric polynomial of best approximation to f ∈

Lip(α ,M) , i. e.

‖ f − t∗n‖M = inf‖ f − t‖M ,
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where the infimum is taken over all trigonometric polynomials t of degree at most n.

From Theorem 1
′
of [10] it can be deduced that

‖ f − t∗n‖M = O(ω ( f ,1/n)M) ,

and hence

‖ f − t∗n‖M = O
(
n−α

)
.

By the uniform boundedness of the partial sums Sn ( f ) in the reflexive Orlicz spaces[13] , we get

‖ f −Sn ( f )‖M ≤ ‖ f − t∗n‖M +‖t∗n −Sn ( f )‖M = ‖ f − t∗n‖M +‖Sn (t∗n − f )‖M

= O(‖ f − t∗n‖M) = O
(
n−α

)
.

Lemma 2. Let LM be a reflexive Orlicz space . If f ∈ Lip(1,M) , then f is absolutely

continuous and f ′ ∈ LM.

Proof. Since LM is reflexive, the Boyd indices satisfy 0 < αM ≤ βM < 1. If we choose a

number q such that 1 < q < 1/βM , then LM is continuously embedded in the Lebesgue space Lq.

Hence we have

‖ f (·+ h)− f‖q ≤ c‖ f (·+ h)− f‖M

for every h with 0 < h ≤ δ , δ > 0. This inequality yields

ω ( f ,δ )q ≤ c ω ( f ,δ )M .

Hence, f ∈Lip(1,M) implies ω ( f ,δ )q = O(δ ) , and this implies that f is absolutely continuous

and f ′ ∈ Lq[4,pp. 51−54].

Since f is absolutely continuous,the relation

f (x+ δ )− f (x)

δ
→ f ′ (x) , δ → 0+

holds almost everywhere. Hence, by Fatou Lemma, for every g with
2π∫

0

N (|g(x)|)dx ≤ 1,

2π∫

0

∣∣ f ′ (x)
∣∣ |g(x)|dx =

2π∫

0

(
lim

δ→0+

| f (x+ δ )− f (x)|

δ

)
|g(x)|dx

≤ lim inf
δ→0+

1

δ

2π∫

0

| f (x+ δ )− f (x)| |g(x)|dx

≤ lim inf
δ→0+

1

δ
‖ f (·+ δ )− f‖M

≤ lim inf
δ→0+

1

δ
ω ( f ,δ )M = liminf

δ→0+

4

δ
O(δ ) = O(1) ,

and this means that f ′ ∈ LM.
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Lemma 3. Let LM be a reflexive Orlicz space and f ∈ Lip(1,M) . Then for n = 1,2, · · · the

estimate

‖Sn ( f )−σn ( f )‖M = O
(
n−1
)

(2.4)

holds.

Proof. By Lemma 2, f is absolutely continuous and f ′ ∈ LM. If f has the Fourier series

f (x) ∼
∞

∑
k=0

uk ( f ) (x) ,

then the Fourier series of the conjugate function f̃ ′ is

f̃ ′ (x) ∼
∞

∑
k=1

kuk ( f ) (x) .

On the other hand,

Sn ( f )(x)−σn ( f ) (x) =
n

∑
k=1

k

n+ 1
Ak ( f )(x) =

1

n+ 1
Sn

(
f̃ ′
)

(x) .

Considering the boundedness of the partial sums and the conjugation operator in reflexive Orlicz

spaces[13] yield (2.4).

In the classical Lebesgue spaces Lp, 1 < p < ∞, the analogue of Lemma 3 was proved in [9].

Lemma 4. Let A = (an,k) be an infinite lower triangular matrix and 0 < α < 1. If one of

the conditions

(i) A has almost monotone decreasing rows and (n+ 1)an,0 = O(1),

(ii) A has almost monotone increasing rows, (n+ 1)an,r = O(1) where r := [n/2] , and∣∣∣s(A)
n −1

∣∣∣= O(n−α) ,

holds, then
n

∑
k=1

k−α an,k = O
(
n−α

)
. (2.5)

Proof. (i) Since
n

∑
k=1

k−α = O
(
n1−α

)
and an,k ≤ Kan,0 for k = 1, · · · ,n, we get

n

∑
k=1

k−αan,k ≤ Kan,0

n

∑
k=1

k−α = O

(
1

n+ 1

)
O
(
n1−α

)
= O

(
n−α

)
.

(ii) Since an,k ≤ Kan,r for k = 1, ...,r and

∣∣∣s(A)
n −1

∣∣∣= O(n−α) ,

n

∑
k=1

k−αan,k =
r

∑
k=1

k−αan,k +
n

∑
k=r+1

k−αan,k

≤ Kan,r

r

∑
k=1

k−α +(r + 1)−α
n

∑
k=r+1

an,k ≤ Kan,r

n

∑
k=1

k−α +(r + 1)−α
n

∑
k=0

an,k

= O

(
1

n+ 1

)
O
(
n1−α

)
+ O

(
n−α

)
s
(A)
n = O

(
n−α

)
.
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3 Proofs of the Main Results

Proof of Theorem 1. By the definition of T
(A)

n ( f ) , we have

T
(A)

n ( f ) (x)− f (x) =
n

∑
k=0

an,kSk ( f )(x)− f (x)

=
n

∑
k=0

an,kSk ( f )(x)− f (x)+ s
(A)
n f (x)− s

(A)
n f (x)

=
n

∑
k=0

an,k (Sk ( f ) (x)− f (x))+
(

s
(A)
n −1

)
f (x) .

Hence, by (2.3) and (2.5) we obtain

∥∥∥ f −T
(A)

n ( f )
∥∥∥

M
≤

n

∑
k=1

an,k ‖Sk ( f )− f‖M + an,0 ‖S0 ( f )− f‖M +
∣∣∣s(A)

n −1

∣∣∣‖ f‖M

=
n

∑
k=1

an,kk−α + O

(
1

n+ 1

)
+ O

(
n−α

)

= O
(
n−α

)
,

since

∣∣∣s(A)
n −1

∣∣∣= O(n−α) .

Proof of Theorem 2. By (2.3),

∥∥∥ f −T
(A)

n ( f )
∥∥∥

M
≤

∥∥∥Sn ( f )−T
(A)

n ( f )
∥∥∥

M
+‖ f −Sn ( f )‖M

=
∥∥∥Sn ( f )−T

(A)
n ( f )

∥∥∥
M

+ O
(
n−1
)
.

Thus, we have to show that
∥∥∥Sn ( f )−T

(A)
n ( f )

∥∥∥
M

= O
(
n−1
)
. (3.1)

Set An,k :=
n

∑
m=k

an,m. Hence,

T
(A)

n ( f )(x) =
n

∑
k=0

an,kSk ( f ) (x) =
n

∑
k=0

an,k

(
k

∑
m=0

um ( f )(x)

)

=
n

∑
k=0

(
n

∑
m=k

an,m

)
uk ( f )(x) =

n

∑
k=0

An,kuk ( f ) (x) .

On the other hand,

Sn ( f ) (x) =
n

∑
k=0

uk ( f ) (x) = An,0

n

∑
k=0

uk ( f )(x)+ (1−An,0)
n

∑
k=0

uk ( f )(x)

=
n

∑
k=0

An,0uk ( f )(x)+
(

1− s
(A)
n

)
Sn ( f ) (x) .
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Thus,

T
(A)

n ( f )(x)−Sn ( f ) (x) =
n

∑
k=1

(An,k −An,0)uk ( f ) (x)+
(

s
(A)
n −1

)
Sn ( f )(x) .

By the boundedness of partial sums we get

∥∥∥Sn ( f )−T
(A)

n ( f )
∥∥∥

M
≤

∥∥∥∥∥
n

∑
k=1

(An,k −An,0)uk ( f )

∥∥∥∥∥
M

+
∣∣∣s(A)

n −1

∣∣∣‖ f‖M

=

∥∥∥∥∥
n

∑
k=1

(An,k −An,0)uk ( f )

∥∥∥∥∥
M

+ O
(
n−1
)
.

(3.2)

Thus, the problem is reduced to proving that

∥∥∥∥∥
n

∑
k=1

(An,k −An,0)uk ( f )

∥∥∥∥∥
M

= O
(
n−1
)
. (3.3)

If we set

bn,k :=
An,k −An,0

k
, k = 1, · · · ,n,

Abel transform yields

n

∑
k=1

(An,k −An,0)uk ( f ) =
n

∑
k=1

bn,kkuk ( f )

= bn,n

n

∑
m=1

mum ( f )+
n−1

∑
k=1

(bn,k −bn,k+1)

(
k

∑
m=1

mum ( f )

)
.

Hence,

∥∥∥∥∥
n

∑
k=1

(An,k −An,0)uk ( f )

∥∥∥∥∥
M

≤ |bn,n|

∥∥∥∥∥
n

∑
m=1

mum ( f )

∥∥∥∥∥
M

+
n−1

∑
k=1

|bn,k −bn,k+1|

(∥∥∥∥∥
k

∑
m=1

mum ( f )

∥∥∥∥∥
M

)
.

Considering (2.4), we have

∥∥∥∥∥
n

∑
m=1

mum ( f )

∥∥∥∥∥
M

= (n+ 1)‖Sn ( f )−σn ( f )‖M

= (n+ 1)O
(
n−1
)

= O(1) .

This and the previous inequality yield

∥∥∥∥∥
n

∑
k=1

(An,k −An,0)uk ( f )

∥∥∥∥∥
M

= O(1) |bn,n|+ O(1)
n−1

∑
k=1

|bn,k −bn,k+1| . (3.4)
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Since

∣∣∣s(A)
n −1

∣∣∣= O
(
n−1
)
,

|bn,n| =
|An,n−An,0|

n
=

∣∣∣an,n−s
(A)
n

∣∣∣
n

= 1
n

(
s
(A)
n −an,n

)
≤ 1

n
s
(A)
n

= 1
n
O(1) = O

(
n−1
)
.

(3.5)

Therefore, it remains to prove that

n−1

∑
k=1

|bn,k −bn,k+1| = O
(
n−1
)
. (3.6)

A simple calculation yields

bn,k −bn,k+1 =
1

k (k + 1)

{
(k + 1)an,k −

k

∑
m=0

an,m

}
.

(i) Let
n−1

∑
k=1

|an,k−1 −an,k| = O
(
n−1
)
.

Let’s verify by induction that

∣∣∣∣∣
k

∑
m=0

an,m − (k + 1)an,k

∣∣∣∣∣≤
k

∑
m=1

m |an,m−1 −an,m| (3.7)

for k = 1, · · · ,n.

If k = 1, then ∣∣∣∣∣
1

∑
m=0

an,m −2an,1

∣∣∣∣∣= |an,0 −an,1| ,

thus (3.7) holds. Now let us assume that (3.7) is true for k = ν . For k = ν + 1,

∣∣∣∣∣
ν+1

∑
m=0

an,m − (ν + 2)an,ν+1

∣∣∣∣∣ =

∣∣∣∣∣
ν

∑
m=0

an,m − (ν + 1)an,ν+1

∣∣∣∣∣

≤

∣∣∣∣∣
ν

∑
m=0

an,m − (ν + 1)an,ν

∣∣∣∣∣+ |(ν + 1)an,ν − (ν + 1)an,ν+1|

≤
ν

∑
m=1

m |an,m−1 −an,m|+(ν + 1) |an,ν −an,ν+1|

=
ν+1

∑
m=1

m |an,m−1 −an,m| ,
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and hence (3.7) holds for k = 1, · · · ,n. Therefore,

n−1

∑
k=1

|bn,k −bn,k+1| =
n−1

∑
k=1

∣∣∣∣∣
1

k (k + 1)

{
(k + 1)an,k −

k

∑
m=0

an,m

}∣∣∣∣∣

=
n−1

∑
k=1

1

k (k + 1)

∣∣∣∣∣
k

∑
m=0

an,m − (k + 1)an,k

∣∣∣∣∣

≤
n−1

∑
k=1

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m|

=
n−1

∑
m=1

m |an,m−1 −an,m|
n−1

∑
k=m

1

k (k + 1)

≤
n−1

∑
m=1

m |an,m−1 −an,m|
∞

∑
k=m

1

k (k + 1)

=
n−1

∑
m=1

|an,m−1 −an,m|

= O
(
n−1
)
.

(ii) Let

n−1

∑
k=1

(n− k) |an,k−1 −an,k| = O(1) .

By (3.7),

n−1

∑
k=1

|bn,k −bn,k+1| ≤
n−1

∑
k=1

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m|

≤
r

∑
k=1

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m|+
n−1

∑
k=r

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m| ,

where r := [n/2] . By Abel transform,

r

∑
k=1

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m| ≤
r

∑
k=1

|an,k−1 −an,k|

=
r

∑
k=1

1

n− k
(n− k) |an,k−1 −an,k|

≤
1

n− r

r

∑
k=1

(n− k) |an,k−1 −an,k|

=
1

n− r
O(1) = O

(
n−1
)
.
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On the other hand

n−1

∑
k=r

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m|

≤
n−1

∑
k=r

1

k (k + 1)

{
r

∑
m=1

m |an,m−1 −an,m|+
k

∑
m=r

m |an,m−1 −an,m|

}

=
n−1

∑
k=r

1

k (k + 1)

r

∑
m=1

m |an,m−1 −an,m|+
n−1

∑
k=r

1

k (k + 1)

k

∑
m=r

m |an,m−1 −an,m|

= : In1 + In2.

Since
r

∑
k=1

|an,k−1 −an,k| = O
(
n−1
)
,

In1 ≤
n−1

∑
k=r

1

k + 1

r

∑
m=1

|an,m−1 −an,m|

= O
(
n−1
) n−1

∑
k=r

1

k + 1

= O
(
n−1
)
(n− r)

1

r + 1

= O
(
n−1
)
.

Let’s also estimate In2.

In2 =
n−1

∑
k=r

1

k (k + 1)

k

∑
m=r

m |an,m−1 −an,m|

≤
n−1

∑
k=r

1

k + 1

k

∑
m=r

|an,m−1 −an,m|

≤
1

r + 1

n−1

∑
k=r

(
k

∑
m=r

|an,m−1 −an,m|

)

≤
2

n

n−1

∑
k=r

(
k

∑
m=r

|an,m−1 −an,m|

)

=
2

n

n−1

∑
k=n−r

(n− k) |an,k−1 −an,k|

≤
2

n

n−1

∑
k=1

(n− k) |an,k−1 −an,k|

=
2

n
O(1) = O

(
n−1
)
.

Thus
n−1

∑
k=r

1

k (k + 1)

k

∑
m=1

m |an,m−1 −an,m| = O
(
n−1
)
,
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and hence
n−1

∑
k=1

|bn,k −bn,k+1| = O
(
n−1
)
.

Therefore, (3.6) is verified both in cases (i) and (ii). Finally, combining (3.1), (3.2), (3.3), (3.4),

(3.5) and (3.6) finishes the proof.

References

[1] Bennett, C. and Sharpley, R., Interpolation of Operators, Academic Press, 1988.

[2] Boyd, D. W., Indices for the Orlicz Spaces, Pacific J. Math., 38(1971), 315-323

[3] Chandra, P., Trigonometric Approximation of Functions in Lp−norm, J. Math. Anal. Appl., 275(2002), 13-26.

[4] Devore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag (1993).

[5] Yu, A., Karlovich, Algebras of Singular Integral Operators with Piecewise Continuous Coefficients on Reflex-

ive Orlicz Spaces, Math. Nachr., 179(1996), 187-222.

[6] Krasnoselskii, M. A. and Ya, B., Rutickii, Convex Functions and Orlicz Spaces, Noordhoff Ltd. (1961).

[7] Leindler, L., Trigonometric Approximation in Lp−norm, J. Math. Anal. Appl., 302(2005), 129-136.

[8] Mittal, M. L., Rhoades, B. E., Mishra, V. N. and Singh, J., Using Infinite Matrices to Approximate Functions

of Class Lip(α, p) Using Trigonometric Polynomials, J. Math. Anal. Appl., 326(2007), 667-676.

[9] Quade, E. S., Trigonometric Approximation in the Mean, Duke Math. J., 3(1937), 529-542.

[10] Ramazanov, A. R. K., On Approximation by Polynomials and Rational Functions in Orlicz Spaces, Anal.

Math., 10(1984), 117-132.

[11] Rao, M. M. and Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker Inc. (1991).

[12] Rao, M. M. and Ren, Z. D., Applications of Orlicz Spaces, Marcel Dekker Inc. (2002).

[13] Ryan, R., Conjugate Functions in Orlicz Spaces, Pacific J. Math., 13(1963), 1371-1377.

[14] Zygmund, A., Trigonometric Series, Vol I, Cambridge Univ. Press, 2nd edition, (1959).

Department of Mathematics

Faculty of Arts and Sciences

Balikesir University, 10145

Balikesir, Turkey

E-mail: ag_guven@yahoo.com


