ALMOST HOMOMORPHISMS BETWEEN UNITAL C^{*}-ALGEBRAS: A FIXED POINT APPROACH

M. Eshaghi Gordji
(Semnan University, Iran)
S. Kaboli Gharetapeh
(Payame Noor University, Iran)
M. Bidkham
(Semnan University, Iran)
T. Karimi
(Payame Noor University, Iran)
and
M. Aghaei
(Payame Noor University, Iran)

Received July 5, 2010
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

Let A, B be two unital C^{*}-algebras. By using fixed pint methods, we prove that every almost unital almost linear mapping $h: A \longrightarrow B$ which satisfies $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n=0,1,2, \cdots$, is a homomorphism. Also, we establish the generalized Hyers-Ulam-Rassias stability of $*$-homomorphisms on unital C^{*}-algebras.

Key words: alternative fixed point, Jordan *-homomorphism
AMS (2010) subject classification: 39B82, 46HXX

1 Introduction

A classical question in the theory of functional equations is that "when is it true that a mapping which approximately satisfies a functional equation \mathcal{E} must be somehow close to an exact solution of $\mathcal{E} "$. Such a problem was formulated by S.M. Ulam ${ }^{[27]}$ in 1940 and solved in the next year for the Cauchy functional equation by D.H. Hyers ${ }^{[4]}$. It gave rise to the stability
theory for functional equations. In 1978, Th. M. Rassias ${ }^{[19]}$ generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias ${ }^{[19]}$ is called the Hyers-Ulam-Rassias stability. Subsequently, various approaches to the problem have been introduced by several authors. For the history and various aspects of this theory we refer the reader to monographs $[3,4,6,7,8]$ and [10]-[26].

Let A be a unital C^{*}-algebra with unit e, and B a unital C^{*}-algebra. Let $U(A)$ be the set of unitary elements in $A, A_{s a}:=\left\{x \in A \mid x=x^{*}\right\}$, and $I_{1}\left(A_{s a}\right)=\left\{v \in A_{s a} \mid\|v\|=1, v \in \operatorname{Inv}(A)\right\}$.

A unital C^{*}-algebra is of real rank zero, if the set of invertible self-adjoint elements is dense in the set of self-adjoint elements (see [1]).

Recently, C. Park, D.-H. Boo and J.-S. An ${ }^{[17]}$ investigated almost homomorphisms between unital C^{*}-algebras.

In this paper, we will adopt the fixed point alternative of Cădariu and Radu to investigate the *-homomorphisms, and the generalized Hyers-Ulam-Rassias stability of $*$-homomorphisms on unital C^{*}-algebras associated with the Jensen-type functional equation

$$
f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)=f(x) .
$$

In section two, we prove that every almost unital almost linear mapping $h: A \longrightarrow B$ is a homomorphism when $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ holds for all $u \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$, and that for a unital C^{*}-algebra A of real rank zero (see [1]), every almost unital almost linear continuous mapping $h: A \longrightarrow B$ is a homomorphism when $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ holds for all $u \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n=0,1,2, \cdots$.

In section three, we establish the generalized Hyers-Ulam-Rassias stability of $*$-homomorphisms on unital C^{*}-algebras.

Throughout this paper assume that A, B are two C^{*}-algebras. For a given mapping $f: A \rightarrow B$, we define

$$
\Delta_{\mu} f(x, y)=\mu f\left(\frac{x+y}{2}\right)+\mu f\left(\frac{x-y}{2}\right)-f(\mu x)
$$

for all $\mu \in \mathbf{T}:=\{z \in \mathbf{C},|z| \leq 1\}$ and all $x, y \in A$. We denote the algebric center of algebra A by $Z(A)$.

2 *-Homomorphisms

Before proceeding to the main results, we will state the following theorem (see [19, 27]).

Theorem 2.1. (The alternative of fixed point ${ }^{[2]}$) Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either

$$
d\left(T^{m} x, T^{m+1} x\right)=\infty \text { for all } m \geq 0
$$

or other exists a natural number m_{0} such that
$\star d\left(T^{m} x, T^{m+1} x\right)<\infty$ for all $m \geq m_{0}$;
\star the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
$\star y^{*}$ is the unique fixed point of T in the set $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
$\star d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.
We start our work by providing a proof for the following theorem by using alternative fixed point to investigate almost $*$-homomorphisms between unital C^{*}-algebras.

Theorem 2.2. Let $f: A \rightarrow B$ be an odd mapping and that

$$
\begin{equation*}
f\left(2^{n} u y\right)=f\left(2^{n} u\right) f(y) \tag{2.1}
\end{equation*}
$$

for all $u \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$. If there exists a function $\phi: A^{2} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\left\|\Delta_{\mu} f(x, y)\right\| \leq \phi(x, y), \tag{2.2}\\
\left\|f\left(u^{*}\right)-f(u)^{*}\right\| \leq \phi(u, u) \tag{2.3}
\end{gather*}
$$

for all $\mu \in \mathbb{T}$ all $x, y \in A$ and all $u \in(U(A) \cup\{0\})$. Suppose that there exists an $L<1$ such that $\phi(x, y) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}\right)$ for all $x, y \in A$. If $\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B)$, then the mapping $f: A \rightarrow B$ is $a *-h o m o m o r p h i s m$.

Proof. By assumption, it is easy to show that

$$
\begin{equation*}
\lim _{j} 2^{-j} \phi\left(2^{j} x, 2^{j} y\right)=0 \tag{2.4}
\end{equation*}
$$

for all $x, y \in A$.
Putting $\mu=1, y=3 x$ in (2.2), it follows by oddness of f that

$$
\|f(2 x)-2 f(x)\| \leq \phi(x, 3 x)
$$

for all $x \in X$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \phi(x, 3 x) \leq L \phi(x, 3 x) \tag{2.5}
\end{equation*}
$$

for all $x \in A$.
Consider the set $X^{\prime}:=\{g \mid g: A \rightarrow B, g(0)=0\}$ and introduce the generalized metric on $X^{\prime}:$

$$
d(h, g):=\inf \left\{C \in \mathbf{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 3 x), \forall x \in X\right\} .
$$

It is easy to show that $\left(X^{\prime}, d\right)$ is complete. Now we define the linear mapping $J: X^{\prime} \rightarrow X^{\prime}$ by

$$
J(h)(x)=\frac{1}{2} h(2 x)
$$

for all $x \in X$. By Theorem 3.1 of [2],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X^{\prime}$.
It follows from (2.5) that

$$
d(f, J(f)) \leq L
$$

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in X: d(f, h)<\infty\}$. Let H be the fixed point of $J . H$ is the unique mapping with

$$
H(2 x)=2 H(x)
$$

for all $x \in A$ satisfying there exists $C \in(0, \infty)$ such that

$$
\|T(x)-f(x)\| \leq C \phi(x, 3 x)
$$

for all $x \in X$. On the other hand we have $\lim _{n} d\left(J^{n}(f), T\right)=0$. It follows that

$$
\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)=H(x)
$$

for all $x \in A$.
By the same reasoning as the proof of Theorem 1 of [17], one can show that the mapping $H: A \rightarrow B$ is \mathbb{C}-linear. On the other hand by using (2.3), we have

$$
\begin{align*}
\left\|H\left(u^{*}\right)-(H(u))^{*}\right\| & =\lim _{n}\left\|\frac{1}{2^{n}} f\left(2^{n} u^{*}\right)-\frac{1}{2^{n}}\left(f\left(2^{n} u\right)\right)^{*}\right\| \\
& \leq \lim _{n} \frac{1}{2^{n}} \phi\left(2^{n} u, 2^{n} u\right) \\
& =0 \tag{2.6}
\end{align*}
$$

for all $u \in U(A)$. Now, let $x \in A$. By Theorem 4.1.7 of [9], x is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{n} c_{j} u_{j}\left(c_{j} \in \mathbf{C}, u_{j} \in U(A)\right)$. Since H is \mathbb{C}-linear, it follows from (2.6) that

$$
H\left(x^{*}\right)-H(x)^{*}=H\left(\sum_{j=1}^{n} c_{j} u_{j}^{*}\right)-H\left(\sum_{j=1}^{n} c_{j} u_{j}\right)^{*}=0 .
$$

324 M. E. Gordji et al : Almost Homomorphisms Between C^{*}-algebras: Fixed Point Approach

Hence, H is $*$-preserving. Now, let $u \in U(A), y \in A$. Then by linearity of H and (2.1), we have

$$
\begin{equation*}
H(u y)=\lim _{n} \frac{f\left(2^{n} u y\right)}{2^{n}}=\lim _{n}\left[\frac{f\left(2^{n} u\right)}{2^{n}} f(y)\right]=H(u) f(y) \tag{2.7}
\end{equation*}
$$

for all $u \in U(A)$, all $y \in A$. Since H is additive, then by (2.7), we have

$$
2^{n} H(u y)=H\left(u\left(2^{n} y\right)\right)=H(u) f\left(2^{n} y\right)
$$

for all $u \in U(A)$ and all $y \in A$. Hence,

$$
\begin{equation*}
H(u y)=\lim _{n}\left[H(u) \frac{f\left(2^{n} y\right)}{2^{n}}\right]=H(u) H(y) \tag{2.8}
\end{equation*}
$$

for all $u \in U(A)$ and all $y \in A$.
On the other hand, we have

$$
H(e)=\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B) .
$$

Hence, it follows from (2.7) and (2.8) that

$$
H(e) H(y)=H(e) f(y)
$$

for all $y \in A$. Since $H(e)$ is invertible, then $H(y)=f(y)$ for all $y \in A$.
Now, let $x \in A$. Then there are $n \in \mathbf{N}, c_{j} \in \mathbf{C}, u_{j} \in U(A), 1 \leq j \leq n$, such that

$$
x=\sum_{j=1}^{n} c_{j} u_{j},
$$

it follows from (2.8) that

$$
\begin{aligned}
H(x y) & =H\left(\sum_{j=1}^{n} c_{j} u_{j} y\right)=\sum_{j=1}^{n} c_{j} H\left(u_{j} y\right) \\
& =\sum_{j=1}^{n} c_{j}\left(H\left(u_{j} y\right)\right)=\sum_{j=1}^{n} c_{j}\left(H\left(u_{j}\right) H(y)\right) \\
& =H\left(\sum_{j=1}^{n} c_{j} u_{j}\right) H(y) \\
& =H(x) H(y)
\end{aligned}
$$

for all $y \in A$. This means that H is a homomorphism. This completes the proof of theorem.
Corollary 2.3. Let $p \in(0,1), \theta \in[1, \infty)$ be real numbers. Let $f: A \rightarrow B$ be an odd mapping such that

$$
f\left(2^{n} u y\right)=f\left(2^{n} u\right) f(y)
$$

for all $u \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$. Suppose that

$$
\left\|\Delta_{\mu} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x, y \in A$, and that

$$
\left\|f\left(u^{*}\right)-f(u)^{*}\right\| \leq 2 \theta\|u\|^{p}
$$

for all $u \in U(A)$. If $\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B)$, then the mapping $f: A \rightarrow B$ is $a *$-homomorphism.
Proof. It follows from Theorem 2.2, by putting $\phi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ all $x, y \in A$ and $L=2^{p-1}$.

Theorem 2.4. Let A be a C^{*}-algebra of real rank zero. Let $f: A \rightarrow B$ be an odd mapping such that

$$
\begin{equation*}
f\left(2^{n} u y\right)=f\left(2^{n} u\right) f(y) \tag{2.9}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n=0,1,2, \ldots$. If there exists a function $\phi: A^{2} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|\Delta_{\mu} f(x, y)\right\| \leq \phi(x, y) \tag{2.10}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y \in A$

$$
\begin{equation*}
\left\|f\left(u^{*}\right)-f(u)^{*}\right\| \leq \phi(u, u) \tag{2.11}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$. Suppose that there exists an $L<1$ such that $\phi(x, y) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}\right)$ for all $x, y \in A$. If $\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B)$, then the mapping $f: A \rightarrow B$ is $a *$-homomorphism.

Proof. By the same reasoning as the proof of Theorem 2.2, the limit

$$
H(x):=\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

exists for all $x \in A$, also H is \mathbb{C}-linear. It follows from (2.9) that

$$
\begin{equation*}
H(u y)=\lim _{n} \frac{f\left(2^{n} u y\right)}{2^{n}}=\lim _{n}\left[\frac{f\left(2^{n} u\right)}{2^{n}} f(y)\right]=H(u) f(y) \tag{2.12}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$, and all $y \in A$. By additivity of H and (2.12), we obtain that

$$
2^{n} H(u y)=H\left(u\left(2^{n} y\right)\right)=H(u) f\left(2^{n} y\right)
$$

for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$. Hence,

$$
\begin{equation*}
H(u y)=\lim _{n}\left[H(u) \frac{f\left(2^{n} y\right)}{2^{n}}\right]=H(u) H(y) \tag{2.13}
\end{equation*}
$$

326 M. E. Gordji et al : Almost Homomorphisms Between C^{*}-algebras: Fixed Point Approach
for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$. By the assumption, we have

$$
H(e)=\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B) .
$$

Similar to the proof of Theorem 2.1, it follows from (2.12) and (2.13) that $H=f$ on A. So H is continuous.

It follows from (2.11) that

$$
\begin{align*}
\left\|H\left(u^{*}\right)-(H(u))^{*}\right\| & =\lim _{n}\left\|\frac{1}{2^{n}} f\left(2^{n} u^{*}\right)-\frac{1}{2^{n}}\left(f\left(2^{n} u\right)\right)^{*}\right\| \\
& \leq \lim _{n} \frac{1}{2^{n}} \phi\left(2^{n} u, 2^{n} u\right) \leq \lim _{n} \frac{1}{2^{n}} \phi\left(2^{n} u, 2^{n} u\right) \\
& =0 \tag{2.14}
\end{align*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$. Since A is real rank zero, it is easy to show that $I_{1}\left(A_{s a}\right)$ is dense in $\left\{x \in A_{s a}\right.$: $\|x\|=1\}$. Let $v \in\left\{x \in A_{s a}:\|x\|=1\right\}$. Then there exists a sequence $\left\{z_{n}\right\}$ in $I_{1}\left(A_{s a}\right)$ such that $\lim _{n} z_{n}=v$. Since H is continuous, it follows from (2.14) that

$$
\begin{equation*}
H\left(v^{*}\right)=H\left(\lim _{n}\left(z_{n}^{*}\right)\right)=\lim _{n} H\left(z_{n}^{*}\right)=\lim _{n} H\left(z_{n}\right)^{*}=H\left(\lim _{n} z_{n}\right)^{*}=H(v)^{*} . \tag{2.15}
\end{equation*}
$$

Also, it follows from (2.13) that

$$
\begin{align*}
H(v y) & =H\left(\lim _{n}\left(z_{n} y\right)\right)=\lim _{n} H\left(z_{n} y\right) \\
& =\lim _{n} H\left(z_{n}\right) H(y) \\
& =H\left(\lim _{n} z_{n}\right) H(y) \\
& =H(v) H(y) \tag{2.16}
\end{align*}
$$

for all $y \in A$. Now, let $x \in A$. Then we have $x=x_{1}+i x_{2}$, where $x_{1}:=\frac{x+x^{*}}{2}$ and $x_{2}:=\frac{x-x^{*}}{2 i}$ are self-adjoint.

First, consider the case that $x_{1} \neq 0, x_{2} \neq 0$. Since H is \mathbb{C}-linear, then it follows from (2.15) that

$$
\begin{aligned}
f\left(x^{*}\right)=H\left(x^{*}\right) & =H\left(\left(x_{1}+i x_{2}\right)^{*}\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}^{*}}{\left\|x_{1}\right\|}\right)+H\left(i\left\|x_{2}\right\| \frac{x_{2}^{*}}{\left\|x_{2}\right\|}\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}^{*}}{\left\|x_{1}\right\|}\right)-i\left\|x_{2}\right\| H\left(\frac{x_{2}^{*}}{\left\|x_{2}\right\|}\right)=\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right)^{*}-i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right)^{*} \\
& =H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right)^{*}+H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)^{*}=\left[H\left(x_{1}\right)+H\left(i x_{2}\right)\right]^{*} \\
& =H(x)^{*}=f(x)^{*} .
\end{aligned}
$$

So, it follows from (2.16) that

$$
\begin{aligned}
f(x y) & =H(x y)=H\left(x_{1} y+i x_{2} y\right) \\
& =H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y\right)+H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} y+i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|} y\right.\right. \\
& =\left\|x_{1}\right\|\left[H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)\right]+i\left\|x_{2}\right\|\left[H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) H(y)\right] \\
& \left.=\left[H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right)+H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)\right] H(y)+H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)\right] \\
& =\left[H\left(x_{1}\right)+H\left(i x_{2}\right)\right] H(y) \\
& =H(x) H(y)=f(x) f(y)
\end{aligned}
$$

for all $y \in A$.
Now, consider the case that $x_{1} \neq 0, x_{2}=0$. Then it follows from (2.15) that

$$
\begin{aligned}
f\left(x^{*}\right)=H\left(x^{*}\right)= & H\left(\left(x_{1}\right)^{*}\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}^{*}}{\left\|x_{1}\right\|}\right)=\left\|x_{1}\right\| H\left(\frac{x_{1}^{*}}{\left\|x_{1}\right\|}\right)=\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right)^{*} \\
& =H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right)^{*}=H\left(x_{1}\right)^{*}=H(x)^{*}=f(x)^{*} .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
f(x y) & =H(x y)=H\left(x_{1} y\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} y\right)=\left\|x_{1}\right\|\left[H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)\right] \\
& =H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)=H\left(x_{1}\right) H(y) \\
& =H(x) H(y)=f(x) f(y)
\end{aligned}
$$

for all $y \in A$.
Finally, consider the case that $x_{1}=0, x_{2} \neq 0$. Then it follows from (2.15) that

$$
\begin{aligned}
f\left(x^{*}\right) & =H\left(x^{*}\right)=H\left(\left(i x_{2}\right)^{*}\right)=H\left(i\left\|x_{2}\right\| \frac{x_{2}^{*}}{\left\|x_{2}\right\|}\right)=-i\left\|x_{2}\right\| H\left(\frac{x_{2}^{*}}{\left\|x_{2}\right\|}\right)=-i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right)^{*} \\
& =H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)^{*}=H\left(i x_{2}\right)^{*}=H(x)^{*}=f(x)^{*}
\end{aligned}
$$

Similarly we can show that

$$
f(x y)=H(x y)=H(x) H(y)=f(x) f(y)
$$

for all $y \in A$. Hence, f is a $*$-homomorphism.

328 M. E. Gordji et al : Almost Homomorphisms Between C^{*}-algebras: Fixed Point Approach

Corollary 2.5. Let $p \in(0,1), \theta \in[1, \infty)$ be real numbers. Let $f: A \rightarrow B$ be an odd mapping such that

$$
f\left(2^{n} u y\right)=f\left(2^{n} u\right) f(y)
$$

for all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $y \in A$, and all $n=0,1,2, \ldots$. Suppose that

$$
\left\|\Delta_{\mu} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x, y \in A$, and that

$$
\left\|f\left(u^{*}\right)-f(u)^{*}\right\| \leq 2 \theta\|u\|^{p}
$$

for all $u \in I_{1}\left(A_{s a}\right)$. If

$$
\lim _{n} \frac{f\left(2^{n} e\right)}{2^{n}} \in U(B) \cap Z(B),
$$

then the mapping $f: A \rightarrow B$ is $a *$-homomorphism.
Proof. It follows from Theorem 2.4, by putting $\phi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ all $x, y \in A$ and $L=2^{p-1}$.

3 Stability

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of $*$-homomorphisms on unital C^{*}-algebras.

Theorem 3.1. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\phi: A^{4} \rightarrow[0, \infty)$ satisfying

$$
\begin{equation*}
\left\|\mu f\left(\frac{x+y}{2}\right)+\mu f\left(\frac{x-y}{2}\right)-f(\mu x)+f(u z)-f(u) f(z)+f\left(u^{*}\right)-f(u)^{*}\right\| \leq \phi(x, y, u, z), \tag{2.17}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z \in A, u \in(U(A) \cup\{0\})$. If there exists an $L<1$ such that

$$
\phi(x, y, u, z) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{u}{2}, \frac{z}{2}\right)
$$

for all $x, y, u, z \in A$, then there exists a unique *-homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{L}{1-L} \phi(x, 0,0,0) \tag{2.18}
\end{equation*}
$$

for all $x \in A$.

Proof. By the same reasoning as the proof of Theorem 2.2, one can show that there exists a unique homomorphism $H: A \rightarrow B$ satisfying (2.18). H is given by

$$
H(x)=\lim _{n} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. We have

$$
\begin{aligned}
\left\|H\left(w^{*}\right)-(H(w))^{*}\right\| & =\lim _{n}\left\|\frac{1}{2^{n}} f\left(2^{n} w^{*}\right)-\frac{1}{2^{n}}\left(f\left(2^{n} w\right)\right)^{*}\right\| \\
& \leq \lim _{n} \frac{1}{2^{n}} \phi\left(0,0,2^{n} w, 0\right) \leq \lim _{n} \frac{1}{2^{n}} \phi\left(0,0,2^{n} w, 0\right) \\
& =0
\end{aligned}
$$

for all $w \in A$. Thus $H: A \rightarrow B$ is *-preserving. Hence, H is an *-homomorphism satisfying (2.17), as desired.

Theorem 3.2. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\phi: A^{4} \rightarrow[0, \infty)$ satisfying

$$
\left\|\mu f\left(\frac{x+y}{2}\right)+\mu f\left(\frac{x-y}{2}\right)-f(\mu x)+f(u z)-f(u) f(z)+f\left(u^{*}\right)-f(u)^{*}\right\| \leq \phi(x, y, u, z)
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z \in A, u \in\left(I_{1}\left(A_{s a}\right) \cup\{0\}\right)$. If there exists an $L<1$ such that

$$
\phi(x, y, u, z) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{u}{2}, \frac{z}{2}\right)
$$

for all $x, y, u, z \in A$, then there exists a unique *-homomorphism $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\| \leq \frac{L}{1-L} \phi(x, 0,0,0)
$$

for all $x \in A$.
Proof. The proof is similar to that of Theorems 2.4 and 3.1.

References

[1] Brown, L. and Pedersen, G., C^{*}-algebras of Real Rank Zero, J. Funct. Anal., 99(1991), 131-149.
[2] Cădariu, L. and Radu, V., On the Stability of the Cauchy Functional Equation: a Fixed Point Approach, Grazer Mathematische Berichte, 346(2004), 43-52.
[3] Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[4] Eshaghi Gordji, M., Jordan $*$-homomorphisms Between Unital C^{*}-algebras: A Fixed Point Approach, Fixed Point Theory, 12(2011), 341-348.
[5] Hyers, D. H., On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
[6] Hyers, D. H. and Rassias, Th. M., Approximate Homomorphisms, Aequationes Math., 44:2-3(1992), 125-153.
[7] Hyers, T. H., Isac, G. and Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[8] Jung, S. M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[9] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
[10] Park, C., Lie $*$-homomorphisms between Lie C^{*}-algebras and Lie $*$-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl., 293(2004), 419-434.
[11] Park, C., Homomorphisms between Poisson $J C^{*}$-algebras, Bull. Braz. Math. Soc., 36(2005), 79-97.
[12] Park, C., Homomorphisms between Lie $J C^{*}$-algebras and Cauchy-Rassias Stability of Lie $J C^{*}$-algebra Derivations, J. Lie Theory, 15(2005), 393-414.
[13] Park, C., Hyers-Ulam-Rassias Stability of Homomorphisms in Quasi-Banach Algebras, Bull. Sci. Math., 132:2(2008), 87-96.
[14] Park, C., Isomorphisms Between Unital C^{*}-algebras, J. Math. Anal. Appl., 307(2005), 753-762.
[15] Park, C., Approximate Homomorphisms on $J B^{*}$-triples, J. Math. Anal. Appl., 306(2005), 375-381.
[16] Park, C., Isomorphisms Between C^{*}-ternary Algebras, J. Math. Phys., 47:10, 103512 (2006).
[17] Park, C., Boo, D. H. and An, J. S., Homomorphisms Between C^{*}-algebras and Linear Derivations on C^{*}-algebras, J. Math. Anal. Appl., 337:2(2008), 1415-1424.
[18] Park, C., Cho, Y. and Han, M., Functional Inequalities Associated with Jordan-von Neumann type Additive Functional Equations, J. Inequal. Appl., 2007, 41820 (2007).
[19] Radu, V., The Fixed Point Alternative and the Stability of Functional Equations, Fixed Point Theory, 4(2003), 91-96.
[20] Rassias, Th. M., On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[21] Rassias, Th. M., Problem 16; 2, Report of the $27^{\text {th }}$ International Symp. on Functional Equations, Aequationes Math., 39(1990), 292-293; 309.
[22] Rassias, Th. M., The Problem of S.M. Ulam for Approximately Multiplicative Mappings, J. Math. Anal. Appl., 246(2000), 352-378.
[23] Rassias, Th. M., On the Stability of Functional Equations in Banach Spaces, J. Math. Anal. Appl., 251(2000), 264-284.
[24] Rassias, Th. M., On the Stability of Functional Equations and a Problem of Ulam, Acta Appl. Math., 62(2000), 23-130.
[25] Rassias, Th. M., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[26] Rassias, Th. M. and Šemrl, P., On the Hyers-Ulam Stability of Linear Mappings, J. Math. Anal. Appl., 173(1993), 325-338.
[27] Rus, I. A., Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
[28] Ulam, S. M., Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.

M. Eshaghi Gordji
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan
Iran
E-mail: madjid.eshaghi@gmail.com
S. Kaboli Gharetapeh
Department of Mathematics
Payame Noor University
Mashhad Branch, Mashhad
Iran
E-mail: simin.kaboli@gmail.com
M. Bidkham
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan
Iran
E-mail: mbidkham@gmail.com
T. Karimi
Department of Mathematics
Payame Noor University
Fariman Branch, Fariman
Iran
E-mail: karimi_math@yahoo.com
M. Aghaei
Eepartment of Mathematics
Payame Noor University
Mashhad Branch, Mashhad
Iran
E-mail: m.aghaei@gmail.com

