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Abstract. Let A,B be two unital C∗−algebras. By using fixed pint methods, we prove that

every almost unital almost linear mapping h : A −→ B which satisfies h(2nuy) = h(2nu)h(y)

for all u∈U(A), all y∈ A, and all n = 0,1,2, · · · , is a homomorphism. Also, we establish the

generalized Hyers–Ulam–Rassias stability of ∗−homomorphisms on unital C∗−algebras.
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1 Introduction

A classical question in the theory of functional equations is that “when is it true that a

mapping which approximately satisfies a functional equation E must be somehow close to an

exact solution of E”. Such a problem was formulated by S.M. Ulam[27] in 1940 and solved in

the next year for the Cauchy functional equation by D.H. Hyers[4]. It gave rise to the stability
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theory for functional equations. In 1978, Th. M. Rassias[19] generalized the theorem of Hyers

by considering the stability problem with unbounded Cauchy differences. This phenomenon of

stability that was introduced by Th. M. Rassias [19] is called the Hyers–Ulam–Rassias stability.

Subsequently, various approaches to the problem have been introduced by several authors. For

the history and various aspects of this theory we refer the reader to monographs [3, 4, 6, 7, 8]

and [10]–[26].

Let A be a unital C∗−algebra with unit e, and B a unital C∗−algebra. Let U(A) be the set of

unitary elements in A, Asa := {x ∈ A|x = x∗}, and I1(Asa) = {v ∈ Asa|‖v‖ = 1,v ∈ Inv(A)}.

A unital C∗−algebra is of real rank zero, if the set of invertible self–adjoint elements is dense

in the set of self–adjoint elements (see [1]).

Recently, C. Park, D.-H. Boo and J.-S. An[17] investigated almost homomorphisms between

unital C∗−algebras.

In this paper, we will adopt the fixed point alternative of Cădariu and Radu to investigate the

∗−homomorphisms, and the generalized Hyers–Ulam–Rassias stability of ∗−homomorphisms

on unital C∗−algebras associated with the Jensen–type functional equation

f (
x+ y

2
)+ f (

x− y

2
) = f (x).

In section two, we prove that every almost unital almost linear mapping h : A −→ B is a ho-

momorphism when h(2nuy) = h(2nu)h(y) holds for all u ∈U(A), all y ∈ A, and all n = 0,1,2, ...,

and that for a unital C∗−algebra A of real rank zero (see [1]), every almost unital almost linear

continuous mapping h : A −→ B is a homomorphism when h(2nuy) = h(2nu)h(y) holds for all

u ∈ I1(Asa), all y ∈ A, and all n = 0,1,2, · · · .

In section three, we establish the generalized Hyers-Ulam-Rassias stability of ∗-homomorp-

hisms on unital C∗-algebras.

Throughout this paper assume that A,B are two C∗−algebras. For a given mapping f : A→B,

we define

∆µ f (x,y) = µ f (
x+ y

2
)+ µ f (

x− y

2
)− f (µx)

for all µ ∈ T := {z ∈ C, |z| ≤ 1} and all x,y ∈ A. We denote the algebric center of algebra A by

Z(A).

2 ∗-Homomorphisms

Before proceeding to the main results, we will state the following theorem (see [19, 27]).
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Theorem 2.1. (The alternative of fixed point [2]) Suppose that we are given a complete

generalized metric space (Ω,d) and a strictly contractive mapping T : Ω → Ω with Lipschitz

constant L. Then for each given x ∈ Ω, either

d(T mx,T m+1x) = ∞ for all m ≥ 0,

or other exists a natural number m0 such that

⋆ d(T mx,T m+1x) < ∞ for all m ≥ m0;

⋆ the sequence {T mx} is convergent to a fixed point y∗ of T ;

⋆ y∗is the unique fixed point of T in the set Λ = {y ∈ Ω : d(T m0x,y) < ∞};

⋆ d(y,y∗) ≤ 1
1−L

d(y,Ty) for all y ∈ Λ.

We start our work by providing a proof for the following theorem by using alternative fixed

point to investigate almost ∗−homomorphisms between unital C∗−algebras.

Theorem 2.2. Let f : A → B be an odd mapping and that

f (2nuy) = f (2nu) f (y) (2.1)

for all u ∈U(A), all y ∈ A, and all n = 0,1,2, .... If there exists a function φ : A2 → [0,∞) such

that

‖∆µ f (x,y)‖ ≤ φ(x,y), (2.2)

‖ f (u∗)− f (u)∗‖ ≤ φ(u,u) (2.3)

for all µ ∈ T all x,y ∈ A and all u ∈ (U(A)∪{0}). Suppose that there exists an L < 1 such that

φ(x,y) ≤ 2Lφ( x
2 ,

y
2) for all x,y ∈ A. If limn

f (2ne)
2n ∈U(B)∩Z(B), then the mapping f : A → B is

a ∗−homomorphism.

Proof. By assumption, it is easy to show that

lim
j

2− jφ(2 jx,2 jy) = 0 (2.4)

for all x,y ∈ A.

Putting µ = 1,y = 3x in (2.2), it follows by oddness of f that

‖ f (2x)−2 f (x)‖ ≤ φ(x,3x)

for all x ∈ X . Hence,

‖
1
2

f (2x)− f (x)‖ ≤
1
2

φ(x,3x) ≤ Lφ(x,3x) (2.5)

for all x ∈ A.

Consider the set X ′ := {g | g : A → B,g(0) = 0} and introduce the generalized metric on X ′:

d(h,g) := in f{C ∈ R+ : ‖g(x)−h(x)‖ ≤Cφ(x,3x),∀x ∈ X}.
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It is easy to show that (X ′,d) is complete. Now we define the linear mapping J : X ′ → X ′ by

J(h)(x) =
1
2

h(2x)

for all x ∈ X . By Theorem 3.1 of [2],

d(J(g),J(h)) ≤ Ld(g,h)

for all g,h ∈ X ′.

It follows from (2.5) that

d( f ,J( f )) ≤ L.

By Theorem 2.1, J has a unique fixed point in the set X1 := {h ∈ X : d( f ,h) < ∞}. Let H be the

fixed point of J. H is the unique mapping with

H(2x) = 2H(x)

for all x ∈ A satisfying there exists C ∈ (0,∞) such that

‖T (x)− f (x)‖ ≤Cφ(x,3x)

for all x ∈ X . On the other hand we have limn d(Jn( f ),T ) = 0. It follows that

lim
n

1
2n

f (2nx) = H(x)

for all x ∈ A.

By the same reasoning as the proof of Theorem 1 of [17], one can show that the mapping

H : A → B is C−linear. On the other hand by using (2.3), we have

‖H(u∗)− (H(u))∗‖ = lim
n
‖

1
2n

f (2nu∗)−
1
2n

( f (2nu))∗‖

≤ lim
n

1
2n

φ(2nu,2nu)

= 0 (2.6)

for all u ∈ U(A). Now, let x ∈ A. By Theorem 4.1.7 of [9], x is a finite linear combination of

unitary elements, i.e., x =
n

∑
j=1

c ju j (c j ∈ C,u j ∈ U(A)). Since H is C−linear, it follows from

(2.6) that

H(x∗)−H(x)∗ = H(
n

∑
j=1

c ju
∗
j)−H(

n

∑
j=1

c ju j)
∗ = 0.
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Hence, H is ∗−preserving. Now, let u ∈U(A),y ∈ A. Then by linearity of H and (2.1), we have

H(uy) = lim
n

f (2nuy)

2n
= lim

n
[

f (2nu)

2n
f (y)] = H(u) f (y) (2.7)

for all u ∈U(A), all y ∈ A. Since H is additive, then by (2.7), we have

2nH(uy) = H(u(2ny)) = H(u) f (2ny)

for all u ∈U(A) and all y ∈ A. Hence,

H(uy) = lim
n

[H(u)
f (2ny)

2n
] = H(u)H(y) (2.8)

for all u ∈U(A) and all y ∈ A.

On the other hand, we have

H(e) = lim
n

f (2ne)

2n
∈U(B)∩Z(B).

Hence, it follows from (2.7) and (2.8) that

H(e)H(y) = H(e) f (y)

for all y ∈ A. Since H(e) is invertible, then H(y) = f (y) for all y ∈ A.

Now, let x ∈ A. Then there are n ∈ N,c j ∈ C,u j ∈U(A),1 ≤ j ≤ n, such that

x =
n

∑
j=1

c ju j ,

it follows from (2.8) that

H(xy) = H(
n

∑
j=1

c ju jy) =
n

∑
j=1

c jH(u jy)

=
n

∑
j=1

c j(H(u jy)) =
n

∑
j=1

c j(H(u j)H(y))

= H(
n

∑
j=1

c ju j)H(y)

= H(x)H(y)

for all y ∈ A. This means that H is a homomorphism. This completes the proof of theorem.

Corollary 2.3. Let p ∈ (0,1),θ ∈ [1,∞) be real numbers. Let f : A → B be an odd mapping

such that

f (2nuy) = f (2nu) f (y)
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for all u ∈U(A), all y ∈ A, and all n = 0,1,2, ... . Suppose that

‖∆µ f (x,y)‖ ≤ θ(‖x‖p +‖y‖p)

for all µ ∈ T and all x,y ∈ A, and that

‖ f (u∗)− f (u)∗‖ ≤ 2θ‖u‖p

for all u∈U(A). If limn
f (2ne)

2n ∈U(B)∩Z(B), then the mapping f : A→B is a ∗−homomorphism.

Proof. It follows from Theorem 2.2, by putting φ(x,y) := θ(‖x‖p +‖y‖p) all x,y ∈ A and

L = 2p−1.

Theorem 2.4. Let A be a C∗−algebra of real rank zero. Let f : A → B be an odd mapping

such that

f (2nuy) = f (2nu) f (y) (2.9)

for all u ∈ I1(Asa), all y ∈ A, and all n = 0,1,2, ... . If there exists a function φ : A2 → [0,∞) such

that

‖∆µ f (x,y)‖ ≤ φ(x,y), (2.10)

for all µ ∈ T and all x,y ∈ A

‖ f (u∗)− f (u)∗‖ ≤ φ(u,u) (2.11)

for all u ∈ I1(Asa). Suppose that there exists an L < 1 such that φ(x,y) ≤ 2Lφ( x
2 ,

y
2) for all

x,y ∈ A. If limn
f (2ne)

2n ∈U(B)∩Z(B), then the mapping f : A → B is a ∗−homomorphism.

Proof. By the same reasoning as the proof of Theorem 2.2, the limit

H(x) := lim
n

1
2n

f (2nx)

exists for all x ∈ A, also H is C−linear. It follows from (2.9) that

H(uy) = lim
n

f (2nuy)

2n
= lim

n
[

f (2nu)

2n
f (y)] = H(u) f (y) (2.12)

for all u ∈ I1(Asa), and all y ∈ A. By additivity of H and (2.12), we obtain that

2nH(uy) = H(u(2ny)) = H(u) f (2ny)

for all u ∈ I1(Asa) and all y ∈ A. Hence,

H(uy) = lim
n

[H(u)
f (2ny)

2n
] = H(u)H(y) (2.13)
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for all u ∈ I1(Asa) and all y ∈ A. By the assumption, we have

H(e) = lim
n

f (2ne)

2n
∈U(B)∩Z(B).

Similar to the proof of Theorem 2.1, it follows from (2.12) and (2.13) that H = f on A. So H is

continuous.

It follows from (2.11) that

‖H(u∗)− (H(u))∗‖ = lim
n
‖

1
2n

f (2nu∗)−
1
2n

( f (2nu))∗‖

≤ lim
n

1
2n

φ(2nu,2nu) ≤ lim
n

1
2n

φ(2nu,2nu)

= 0 (2.14)

for all u ∈ I1(Asa). Since A is real rank zero, it is easy to show that I1(Asa) is dense in {x ∈ Asa :

‖x‖ = 1}. Let v ∈ {x ∈ Asa : ‖x‖ = 1}. Then there exists a sequence {zn} in I1(Asa) such that

limn zn = v. Since H is continuous, it follows from (2.14) that

H(v∗) = H(lim
n

(z∗n)) = lim
n

H(z∗n) = lim
n

H(zn)
∗ = H(lim

n
zn)

∗ = H(v)∗. (2.15)

Also, it follows from (2.13) that

H(vy) = H(lim
n

(zny)) = lim
n

H(zny)

= lim
n

H(zn)H(y)

= H(lim
n

zn)H(y)

= H(v)H(y) (2.16)

for all y ∈ A. Now, let x ∈ A. Then we have x = x1 + ix2, where x1 := x+x∗

2 and x2 := x−x∗

2i
are

self–adjoint.

First, consider the case that x1 6= 0,x2 6= 0. Since H is C−linear, then it follows from (2.15)

that

f (x∗) = H(x∗) = H((x1 + ix2)
∗) = H(‖x1‖

x∗1
‖x1‖

)+ H(i‖x2‖
x∗2

‖x2‖
)

= ‖x1‖H(
x∗1
‖x1‖

)− i‖x2‖H(
x∗2
‖x2‖

) = ‖x1‖H(
x1

‖x1‖
)∗− i‖x2‖H(

x2

‖x2‖
)∗

= H(‖x1‖
x1

‖x1‖
)∗ + H(i‖x2‖

x2

‖x2‖
)∗ = [H(x1)+ H(ix2)]

∗

= H(x)∗ = f (x)∗.



Anal. Theory Appl., Vol. 27, No.4 (2011) 327

So, it follows from (2.16) that

f (xy) = H(xy) = H(x1y+ ix2y)

= H(‖x1‖
x1

‖x1‖
y)+ H(i‖x2‖

x2

‖x2‖
y)

= ‖x1‖H(
x1

‖x1‖
y+ i‖x2‖H(

x2

‖x2‖
y

= ‖x1‖[H(
x1

‖x1‖
)H(y)]+ i‖x2‖[H(

x2

‖x2‖
)H(y)]

= [H(‖x1‖
x1

‖x1‖
)+ H(i‖x2‖

x2

‖x2‖
)]H(y)+ H(i‖x2‖

x2

‖x2‖
)]

= [H(x1)+ H(ix2)]H(y)

= H(x)H(y) = f (x) f (y)

for all y ∈ A.

Now, consider the case that x1 6= 0,x2 = 0. Then it follows from (2.15) that

f (x∗) = H(x∗) = H((x1)
∗) = H(‖x1‖

x∗1
‖x1‖

) = ‖x1‖H(
x∗1
‖x1‖

) = ‖x1‖H(
x1

‖x1‖
)∗

= H(‖x1‖
x1

‖x1‖
)∗ = H(x1)

∗ = H(x)∗ = f (x)∗.

Also, we have

f (xy) = H(xy) = H(x1y) = H(‖x1‖
x1

‖x1‖
y)

= ‖x1‖H(
x1

‖x1‖
y) = ‖x1‖[H(

x1

‖x1‖
)H(y)]

= H(‖x1‖
x1

‖x1‖
)H(y) = H(x1)H(y)

= H(x)H(y) = f (x) f (y)

for all y ∈ A.

Finally, consider the case that x1 = 0,x2 6= 0. Then it follows from (2.15) that

f (x∗) = H(x∗) = H((ix2)
∗) = H(i‖x2‖

x∗2
‖x2‖

) = −i‖x2‖H(
x∗2
‖x2‖

) = −i‖x2‖H(
x2

‖x2‖
)∗

= H(i‖x2‖
x2

‖x2‖
)∗ = H(ix2)

∗ = H(x)∗ = f (x)∗.

Similarly we can show that

f (xy) = H(xy) = H(x)H(y) = f (x) f (y)

for all y ∈ A. Hence, f is a ∗−homomorphism.
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Corollary 2.5. Let p ∈ (0,1),θ ∈ [1,∞) be real numbers. Let f : A → B be an odd mapping

such that

f (2nuy) = f (2nu) f (y)

for all u ∈ I1(Asa), all y ∈ A, and all n = 0,1,2, ... . Suppose that

‖∆µ f (x,y)‖ ≤ θ(‖x‖p +‖y‖p)

for all µ ∈ T and all x,y ∈ A, and that

‖ f (u∗)− f (u)∗‖ ≤ 2θ‖u‖p

for all u ∈ I1(Asa). If

lim
n

f (2ne)

2n
∈U(B)∩Z(B),

then the mapping f : A → B is a ∗−homomorphism.

Proof. It follows from Theorem 2.4, by putting φ(x,y) := θ(‖x‖p +‖y‖p) all x,y ∈ A and

L = 2p−1.

3 Stability

In this section, we investigate the generalized Hyers–Ulam–Rassias stability of ∗−homomorphisms

on unital C∗−algebras.

Theorem 3.1. Let f : A → B be a mapping for which there exists a function φ : A4 → [0,∞)

satisfying

‖µ f (
x+ y

2
)+ µ f (

x− y

2
)− f (µx)+ f (uz)− f (u) f (z)+ f (u∗)− f (u)∗‖ ≤ φ(x,y,u,z), (2.17)

for all µ ∈ T and all x,y,z ∈ A,u ∈ (U(A)∪{0}). If there exists an L < 1 such that

φ(x,y,u,z) ≤ 2Lφ(
x

2
,

y

2
,

u

2
,

z

2
)

for all x,y,u,z ∈ A, then there exists a unique ∗−homomorphism H : A → B such that

‖ f (x)−H(x)‖ ≤
L

1−L
φ(x,0,0,0) (2.18)

for all x ∈ A.
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Proof. By the same reasoning as the proof of Theorem 2.2, one can show that there exists

a unique homomorphism H : A → B satisfying (2.18). H is given by

H(x) = lim
n

1
2n

f (2nx)

for all x ∈ A. We have

‖H(w∗)− (H(w))∗‖ = lim
n
‖

1
2n

f (2nw∗)−
1
2n

( f (2nw))∗‖

≤ lim
n

1
2n

φ(0,0,2nw,0) ≤ lim
n

1
2n

φ(0,0,2nw,0)

= 0

for all w ∈ A. Thus H : A → B is ∗−preserving. Hence, H is an ∗−homomorphism satisfying

(2.17), as desired.

Theorem 3.2. Let f : A → B be a mapping for which there exists a function φ : A4 → [0,∞)

satisfying

‖µ f (
x+ y

2
)+ µ f (

x− y

2
)− f (µx)+ f (uz)− f (u) f (z)+ f (u∗)− f (u)∗‖ ≤ φ(x,y,u,z),

for all µ ∈ T and all x,y,z ∈ A,u ∈ (I1(Asa)∪{0}). If there exists an L < 1 such that

φ(x,y,u,z) ≤ 2Lφ(
x

2
,

y

2
,

u

2
,

z

2
)

for all x,y,u,z ∈ A, then there exists a unique ∗−homomorphism H : A → B such that

‖ f (x)−H(x)‖ ≤
L

1−L
φ(x,0,0,0)

for all x ∈ A.

Proof. The proof is similar to that of Theorems 2.4 and 3.1.
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