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Abstract. We consider complex-valued functions f € L' (R%), where R := [0,00), and
prove sufficient conditions under which the double sine Fourier transform fy; and the dou-
ble cosine Fourier transform f,. belong to one of the two-dimensional Lipschitz classes
Lip(a, ) for some 0 < o, B < 1; or to one of the Zygmund classes Zyg(a, ) for some
0 < a, B < 2. These sufficient conditions are best possible in the sense that they are also

necessary for nonnegative-valued functions f € L! (Ri)
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1 Known Results: Single Sine and Cosine Transforms

We consider complex-valued functions f : Ry — C that are integrable in Lebesgue sense

over R, :=[0,0), in symbol: f € L'(R,). We recall that the sine (Fourier) transform of f is

defined by
R 7 feo
fs(u) := \/;/o f(x) sin uxdx,

while the cosine (Fourier) transform of f is defined by
N 2 [
fe(u) =1/ E/ f(x) cos uxdx, ucR.
0
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Both f; and f, are uniformly continuous on R and vanish at infinity. For details, we refer to [6,
Ch. 1].

In the cases when we do not distinguish between f; and f., we simply use the notation f.
We recall that f is said to satisfy the Lipschitz condition of order & > 0, in symbol: f € Lip(a),
if

|f(u+h) — f(u)] <Ch* forall ucR and h>0,

where the constant C does not depend on u and h. Furthermore, f is said to satisfy the Zygmund

condition of order & > 0, in symbol: f € Zyg(a), if
\f(u+h)—2f(u)+ f(u—h)| <Ch* forall ueR and h>0,

where the constant C does not depend on u and 4.

It is well known (see, e.g., [1, Ch. 2] or [7, Ch. 2, §3] that if f € Lip(a) for some o > 1, or
if f € Zyg(ct) for some & > 2, then f = 0.

The following four theorems were proved in [4] by the second named author of the present
paper.

Theorem A. (i) Let f : R — C be such that f € L (R..). If for some 0 < a < 1,

/Osx]f(x)\:O(sl_a) forall s>0, (1.1)

then f € L'(Ry) and f; € Lip(a).
(i) Let f : R — R be such that f € L'(R,). If f; € Lip(&) for some 0 < a0 < 1, then (1.1)
holds.
Theorem B. In case 0 < o < 1, Theorem A remains valid when fy is replaced by f,.
Theorem C. (i) Let f : R — C be such that f € L (R..). If for some 0 < a@ < 2,

/Sx2|f(x)|:0(sz_a) forall s>0, (1.2)
0

then f € L'(Ry) and f. € Zyg().

(ii) Let f : Ry — Ry be such that f € L'(Ry). If f. € Zyg(a) for some 0 < o < 2, then
(1.2) holds.

Theorem D. In case 0 < a < 2, Theorem C remains valid when f. is replaced by f;.

Our goal in this paper is to extend these results from single to double sine and cosine trans-

form.
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2 New Results: Double Sine and Cosine Transforms

We consider complex-valued functions f : Ri — C that are integrable in Lebesgue’s sense
over R%, in symbol: f € L'(R%). We recall that , the double sine ( Fourier)transform of f is
defined by

R 2 o0 oo
Sss(uyv) := E/ / f(x,y) sin uxsin vydxdy, (2.1)
0o Jo

while the doublecosine(Fourier)trans form is defined by
) 2 e )
Jee(u,v) := E/ / f(x,y)cosuxcosvydxdy, (u,v) €R". (2.2)
0o Jo

Both fi(u,v) and f,.(u,v) are uniformly continuous on R? and vanish as max{u,v} — oo (see,
e.g., [5, Ch. 1]). Clearly, fss(u, v) is odd in each variable, while fcc(u, v) is even in each variable.

In the cases when we do not distinguish between fy, and f.., we simply write f (u,v). We
recall that f(u,v) is said to satisfy the Lipschitz condition of order & > 0 in u, and of order 8 >0
in v, in symbol: f € Lip(a, B), if

\Ar1f(u, vy k)| o= | f(u+hyv+k) — Fu,v+k) (2.3)

—f(u+h,v)+ f(u,v)| <Ch%P  forall (u,v) eR®> and h,k>0;

where the constant C does not depend on u, v, h, and k (see, e.g., [3], where the term “multiplica-
tive Lipschitz class" is used).
Furthermore, we recall that f (u,v) is said to satisfy the Zygmund condition of order o > 0

in u, and of order B > 0 in v, in symbols: f € Zyg(a, B), if

|A2,2f(u7 V’huk)|
= |fluthyv+k)+ Fu—hy+k)+ Futhyv—k) + flu—hyv—k) ",
—2f(u+h,v)=2f(u—h,v)—2f(u,v+k)—2f(u,v—k)
+4f(u,v)| <Ch*kB forall (u,v) €R?> and h,k>0;
where the constant C does not depend on u, v, h, and k (see, e.g., [2], where the class Zyg(1,1)
is introduced and denoted by A, (2)).
Remark 1.  'We note that

Lip(a,B) C Zyg(a,B) forall o, >0,
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due to the following identity: for all (#,v) € R? and &,k > 0, we have
Ao f(u,vi k) = (Fu+hv+k) — fu,v+k) — Flu+hv) + flu,v))
+f(u,v))
+(flu+hyv—k)— flu,v—k) — fu+h,v) + f(u,v))
+

+(f(u_h7v_k)_f(uav_k)_f(u_h7v) f(’/t?‘}))
= Ar1 f(u,vih,k) — Ay f(u— h,vihk)

+(f(u_h7v+k)_f(uvv+k)_f(u_h7v)

—Anflu,v—Ikyh,k) + Ay f(u—h,v —k; by k).

Now, we extend Theorems A-D for double sine and cosine transforms as follows. In The-
orems 1-4 below we give the best possible sufficient condition in terms of f under which the
double sine transform fy; and the double cosine transform f,. belong to one of the Lipschitz
classes Lip(a, B) for some 0 < o, < 1; or to one of the Zygmund classes Zyg(ct, ) for some
0 < a, B <2. We will prove in Theorems 1-4 that these sufficient conditions are also necessary
for nonnegative - valued functions f € L' (R2).

Theorem 1. (i) Let f : R% — C be such that f € L}, (R2). If for some 0 < &, < 1,

loc

S t
/ / Xy f(x,y)|dxdy = O(s'=*'"P)  forall s,:>0, (2.5)
0 JO

then f € L'(R%) and f,s € Lip(ct, B).

(i) Let f : R2Z — Ry be such that f € L'(R%). If fs € Lip(a, B) for some 0 < a, B < 1,
then (2.5) holds.

We note that for double sine series with nonnegative coefficients, an analogous theorem was
proved in [3, Theorems 1-3] by the first named author.

Theorem 2. In case 0 < o, < 1, Theorem 1 remains valid when f is replaced by fr.

Remark 2. Tt follows from Lemma 1 in Section 3 below that for 0 < &, 8 < 1, the condition

(2.5) is equivalent to the following one:
/m /tm |f(x,y)|dxdy = O(s~%P) forall s,t>0. (2.6)
s
Theorem 3. (i) Let f : R%2 — C be such that f € L}, (R2). If for some 0 < a, B <2,
/OS /Otxzyz|f(xay)|dXdy =0(s> %> B) forall s,t>0, (2.7)

then f € L'(R%) and f,. € Zyg(a, B).
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(ii) Let f : RZ — Ry be such that f € L'(R2). If f.. € Zyg(a,B) for some 0 < o, <2,
then (2.7) holds.

Theorem 4. In case 0 < a, B < 2, Theorem 3 remains valid when f,. is replaced by fis.

We note that for double cosine series with nonnegative coeffients and the Zygmund class
Zyg (1,1), an analogous theorem was proved in [2, Theorem 1, where the class Zyg (1,1) is
denoted by A, (2)] by the first named author.

Remark 3. Tt is obvious that if (2.5) is satisfied for some 0 < a, < 1, then (2.7) is
also satisfied. Furthermore, it follows from Lemma 1 in Section 3 that for 0 < a, f < 2, the
condition (2.7) is equivalent to the condition (2.6). Consequently, the conditions (2.5) and (2.7)
are equivalent for 0 < a, f < 1.

In connection with Theorems 2 and 4, we raise the following two problems.

Problem 1. How to find the best possible sufficient condition in terms of f under which its
double cosine transform £, € Lip(a, B), where «, B > 0 and max{a, B} = 1.

Problem 2. How to find the best possible sufficient condition in terms of f under which its

double sine transform fi; € Zyg(a, B), where o, B > 0 and max{a, B} = 2.

3 Auxiliary Results

In this Section we consider functions g : Ri — R which are measurable in Lebesgue sense.
The following two lemmas play key roles in the proof of Theorems 1-4. But they are also of
interest in themselves.

Lemmal. (i)Lety>u>0andd>v>0.If

S t
/ / y2g(x,y)dxdy = O(s*tY)  forall s,t>0, (3.1)
0 JO
then g € L'((s,) x (t,%0)) and
/ / g(x,y)dxdy = O(s*"Y=%)  forall s,t>0. (3.2)
s t

(ii) Conversely, let y > > 0and 6 > v > 0. If (3.2) holds, then (3.1) also holds.
Proof. Part (i). By (3.1), there exists a constant C such that

/ /xy g(x,y)dxdy < Cs*t¥  forall s,t>0. (3.3)

Let s, > 0 be arbitrary. In particular, we have

2m')/+n5s7t /

2m+1 on+ lt ont lt

/ g(x,y)dxdy < / / x7y% g(x,y)dxdy
21t 0 0

< C2(m+1)u+(n+1)vsutv’ m,n €Z,

2m+l s

A
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whence it follows that

2m+1 on+ 1 t

/ / g(x,y) dxdy<C2“+V2m(# V)+n(v=58) u—yv—5
ITI 2

Since ¥ > u and 6 > v, we conclude that
211+1

//g(x,y)dxdy = Z / / g(x,y)dxdy
S t m=0n=0 2nt

CoHFY H=VpV— 1) Z szu Y)+n(v=3) _ O(Sufytvfé)’
m=0n=0

om + I

IN

which is (3.2) to be proved.
Part (ii). By (3.2), there exists a constant C such that

/ / g(x,y)dxdy < Cs* V=% forall s,¢> 0.
s t
Let s, > 0 be arbitrary. In particular, we have

2’7’ 2’1 2’1
/ / yog(x,y)dxdy < 2mrHnOgYd / / g(x,y)dxdy
m— 1 s Jon— 1 t om— 1 s Jon—

< 2m7+n6syt5C2(m 1)(u— y) (n—1)(v— S)Su Ypv— 1)

CYHOgupvom=Nu+(n=1)v =y 7.

Since > 0 and v > 0, we conclude that
st s "'t
/0 /O xy0g(x,y)dxdy = Z Z / N /2 g(x,y)dxdy

m= n=—o0

C27+5Sutv Z Z 2(m71)ﬂ+(n71)V:0(SutV)’

m=—oop—=—o0

IN

which is (3.1) to be proved.
The proof of Lemma 1 is complete.

Lemma 2. Lety> u >0, and let 6 and v be arbitrary. If (3.1) holds, then

o t
/ / Yog(x,y)dxdy = O(s*~ 1Y)  forall s,t>0. (3.4)
s JO

Proof. Lets,t > 0 be arbitrary. By (3.3), we have

m+ I

ZmYsY/ /ygxydxdy</

whence it follows that

Jo

2m+1

/ X"y g(x,y)dxdy < C2Um IR HLY

2m+1

/ ¥ g(x,y)dxdy < C2H2"H=Nh=YV e Z.
0
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Since p > v, we conclude that

2m+l

oo t
/ / Yog(x,y)dxdy = / / 0 g(x, ydxdy
K O m= O 111

CoHgh=rgv Z om(H=y) — o(s* "),
m=0

IN

which is (3.4) to be proved.

4 Proof of Theorem 1

Part (i). Assume the condition (2.5) is satisfied for some 0 < o, B < 1. We will prove
fss € Lip(ax, B), where fi is defined in (2.1). To this effect, let u,v > 0 and &,k > 0 be arbitrarily

given. Keeping (2.1) and (2.3) in mind, we estimate as follows:
§|A171fss(u,v);h,k)| = ‘/ / f(x,y)(sin(u+h)x—sinux)(sin(v+k)y—sinvy)dxdy‘
0o Jo
e hy . hx ky . ky
= 4‘/ / f(x,y)cos (u—l—?xsm;cos (v—l— E)ysm?dxdy‘
4/ / | f(x,y) s1n—s1n—‘dxdy

IN

(4.1)

We decompose the last double integral in (4.1) as follows:

|A11fmuvhk)|

1/h 1]k 1/k 1/h ky
/ / / / / / / / ‘fxy sm—sm— dxdy  (4.2)
1/nJo vk JiynJik

=h+h+BL+1,

say. First, we use the obvious inequality
t
‘2Sin§‘ < min{2, [t|},
and by (2.5) we obtain
V/h 1)k
no<ank [ [l
0
1 1-B
— wo((; ) = ok
() (D)) = o eh).
Second, we apply Part (i) in Lemma 1 in the case of (2.5) to obtain

L < 16 / / ¥)|dxdy
1/hJ1/k (4.4)

= o(() <z>*ﬁ) O(HKP).

(4.3)
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Third, we apply Part (i) in Lemma 2 in the case of (2.5) to obtain

o rl/k
L < 8k /l/h / ¥1£(6,) dxdy

(4.5)
= 10(()()'P) = 0P,
Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.5) to obtain
1/h oo
L < Sh/ / x| f (x,y)|dxdy
0 1/k (4.6)

_ ho((%)““(%)‘ﬁ) — O(h*kP).

Combining (4.2) - (4.6) yields
A1 fys(u,vi 1, k)| = O(RYKP).

Since u,v > 0 and h,k > 0 are arbitrary, this proves fi, € Lip(ct, B).
Part (ii). Assume f > 0 and f, € Lip(a, B) for some 0 < «, B < 1. In particular, we have

%’Al,lﬁ‘s(ovo;uv‘))‘

= ‘ / / f(x,y)sinuxsinvydxdy| < Cu®vP  forall u,v >0,
o Jo

where the constant C does not depend on u and v. We will integrate the double integral in (4.7)
between the absolute value bars with respect to u over the interval (0, %), where i > 0 is arbitrary.
Due to the fact that the convergence

élim /05 /Om f(x,y) sinuxsinvydxdy = /0oo /Om f(x,y) sinuxsinvydxdy
is uniform in u,v > 0, we may change the order of integration with respect to x and u, and from

(4.7) we conclude that

0s hx (x+1
‘ / / smvydxdy(<c P forall v >0, (4.8)

Next, we will integrate the double integral in (4.8) between the absolute value bars with
respect to v over the interval (0,k), where k > 0 is arbitrary. By the same token as above, we

may change the order of integration with respect to y and v, and from (4.8) we conclude that

1— hx 1 —cosk
‘/ / coshv—cosky .
y
=41 f” sin® & sin® & dxdy (4.9)
potl kﬁ-‘rl

<C K forall hk>0
SO Figrr ora meeh
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where we have taken into account that f > 0.

Using the familiar inequality
. 2 T
(4.10) sint > —r for 0<r<—,
T 2
it follows from (4.9) that

AR2k2 U p1/k hotl B+l
dxd forall h,k>0
/ / xyf(x,y) y_C T 1B+1 ora k>0,

or equivalently,

1/h r1/k cr* o—1.8-1 _ IN1—a, 1 1-B
/O /0 ny(xay)ddeSWh WP 1—0<(z) () )

This proves (2.5) with s = 1/h and t = 1 /k, h,k > 0.

The proof of Theorem 1 is complete.

5 Proof of Theorem 2

Part (i). Given u,v > 0 and h,k > 0, by (2.2) we have (cf. (4.1))

g\Al_rlfw(u,v;h,k)] = ‘/ / f(x,y)(cos(u—i—h)x—cosux)(cos(v+k)y—cosvy)dxdy‘
o Jo
e ) hy, . hx . k. . ky
= 4‘/0 /0 f(x,y)sm(u+E)xsm?sm(v—ki)ysm?dxdy‘
< 4/ / |f(x,y)sin@sink—y(dxdy.
0o Jo 2 2
(5.1)

We observe that the right-most side of (5.1) is identical to that of (4.1). Thus, the proof of Part
(i) in Theorem 1 in Section 4 can be repeated word by word, and it yields f.. € Lip(a, ) even
in the case when 0 < o, 3 < 1.

Part (ii). Assume f > 0 and f,. € Lip(a, B) for some 0 < &, 8 < 1. In particular, we have

T (0,000 = | [ [ pxn) ot 1) eosky— 1)y

—4 / / £(x,y)sin? g sin2 %dxdy <ChkP forall hk >0,
0 0

where the constant C does not depend on 4 and k. Making use of inequality (4.10) gives

AR2K2 FU/h Lk
hk/ / x2y2 f(x,y)dxdy < Ch¥kP
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or equivalently,
/ / 2y f(x,y)dady < = —h* P72
0 0

=o((H>“(H)*P) forall hk>0.

(5.2)

First, applying Part (i) in Lemma 1 with y=0 =2 and u =2 — o and v =2 — 3, it follows

from (5.2) that

1/h 17k Cal
L7 [ ey =o() (7). 5:3)

Second, applying Part (ii) in Lemma 1 withy=86 =1and u =1—a and v =1— 3 (we must
have u,nu > 0, but this is the case since by assumption 0 < a, 8 < 1), it follows from (5.3) that
1/h rl/k 1o 1o1_
/ of)ddy =0((3) () F) forall mk>o,
o Jo

This proves (2.1) with s = 1/h and t = 1 /k, h,k > 0.

The proof of Theorem 2 is complete.

6 Proof of Theorem 3

Part (i). Assume the condition (2.7) is satisfied for some 0 < a, B < 2. We will prove that
fee €Zyg(a, B), where f.. is defined in (2.2). To this effect, let u,v > 0 and &, k > 0 be arbitrarily
given. Keeping (2.2) and (2.4) in mind, we estimate as follows (cf. (4.1)):

%‘AZ,ZfACC(WV;huk)‘
| /O ) /0 " () (s (1 + h)x — cos ux -+ cos(u— h)x) - (cos(v -+ K)y
—2cos vy + cos(v — k)y)dxdy (6.1)
:4‘/Om/owf(x,y)cosux(coshx— 1) cos vy(cosky — l)dxdy‘
<4 [ [ 1l - cosha)(1 - cosky)dvdy.

We decompose the last double integral in (6.1) as follows:
T A Vh plfk peo plfk 1/h oo
_]Az,zfcc(u,v;h,k) < 4{/ / _|_/ / +/ /
2 o Jo 1/nJo 0o Jijk 62)

+// // }|f(xa)’)|(1—Coshx)(l—cosky)dxdy:J1_|_]2_|_JS_|_J4’
1/hJ1/k

say. First, we use the inequality

t
2(1 — cost) = 4sin? 3 < min{4,r*},
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< h*K? R dxd
J < o, x“y7| f(x,y)|dxdy

9.2 1\2- /1\2-B B (6.3)
- Z Z - o
- weo((1) (1)) o
Second, we apply Part (i) in Lemma 1 in the case of (2.7) to obtain
Jio < 16ff7hff7k|f(xa)’)|dXdy (6.4)
= o((h"())") = otws?).
Third, we apply Part (i) in Lemma 2 in the case of (2.7) to obtain
o [ VR,
no< s [ [Tyl
1/h (6.5)

= ©o((}) (1)) = otP).

Fourth, we apply the symmetric counterpart of Lemma 2 in the case of (2.7) to obtain

5 < Shz/ / 2| f(x,y)|dxdy 66)

= wo((1) () 7F) = onkP).

Combining (6.2) - (6.6) yields

Ao frc (u,v3h k)| = O(h®KP).

Since u,v > 0 and &,k > 0 are arbitrary, this proves f.. € Zyg(a, ).

Part (ii). Assume f > 0 and f,. € Zyg(a, ) for some 0 < o, B < 2. In particular, we have

(cf. (6.1))

2|22 e (0,0: 1K) |

4‘ /Om/owf(x,y)(coshx— 1)(cosky — 1)dxdy

= oo h

— 16 / / f(x,y)sinzgsinzgdxdyg CheP  forall h k>0,
0 0

6.7)

where the constant C does not depend on 4 and k.

Making use of the inequality (4.10), from (6.7) we conclude that

AR2K2 FU/h Lk
hk/ / x2y2 f(x,y)dxdy < Ch¥kP
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or equivalently
1/h p1/k crt
/ / 22 f(x,y)dxdy < T”h“—zkﬁ—z forall h k> 0.
0 0

This proves (2.7) with s = 1/h and t = 1 /k, h,k > 0.

The proof of Theorem 3 is complete.

7 Proof of Theorem 4
Part (i). Given u,v > 0 and &,k > 0, by (2.1) we have (cf. (6.1))

Tsafuwvinb)l = | [ [ fCey)(sinut myr—2sin +sin(u— hy)-
0 0

-(sin(v+k)y —2sinvy +sin(v — k)y)dxdy
(7.1)

= 4‘/ / f(x,y) sinux(cos hx — 1) sinvy(cos ky — 1)dxdy
0o Jo

< 4/°°/°°|f(x,y)|(1—coshx)(1—cosky)dxdy.
0 0

We observe that the right-most side of (7.1) is identical to that of (6.1). Thus, the proof of Part
(i) of Theorem 3 in Section 6 can be repeated word by word, and it yields f;, € Lip(a, ) even
in the case when 0 < ¢, B < 2.

Part (ii). Assume f > 0 and f, € Zyg(a,B) for some 0 < o, B < 2. Let u,v >0 and h,k >0
be arbitrary. By (7.1), we have

g|A272fm(u,v;h,k)| = ‘/0 /0 f(x,y) sinux(cos hx — 1) sinvy(cos ky — 1)dxdy| < Ch%kP ,
(7.2)
where the constant C does not depend on u, v, &, and k.

We will integrate the double integral in (7.2) between the absolute value bars with respect to

u over the interval (0,4). Due to the fact that the convergence

é {eo)
lim / / f(x,y)sinux(cos hx — 1) sinvy(cos ky — 1)dxdy
0 Jo

gﬂoc

= / / f(x,y)sinux(cos hx — 1) sinvy(cos ky — 1)dxdy
0o Jo
is uniform in u,v > 0, we may change the order of integration with respect to x and u, and from

(7.2) we conclude that

(e} (e} 2
‘ / / f(x,y)M sinvy(cosky — 1)dxdy
0o Jo X

< Ch**+'kP, forall v>0 and hk>0.
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Next, we will integrate the double integral in (7.3) between the absolute value bars with
respect to v over the interval (0,k). By the same token as above, we may change the order of
integration with respect to y and v, and from (7.3) we conclude that

o0 oo (1 —cos hx)? (1 —cosky)?
‘/0 /o fxy) y o o

X

< Ch*HPHY forall hyk >0,

whence it follows that
Y e h ky C
/ / @ (sin ?x) (sin 7) dxdy < 6h°‘+lkﬁ”rl forall h,k> 0,
where we have taken into account that f > 0. Making use of inequality (4.10), we even have
Wt i/ pi/k
/ / x3y3f(x y)dXdy < 6h06+1kﬁ+1

or equivalently,

Vh 1)k 8
/ / B3 f(x,y)dxdy < Cfg R*—3kB-3, (7.4)

First, applying Part (i) in Lemma 1 with y=0 =3 and u =3 — o, v =3 — f3, it follows

from (7.4) that
1

x,y)dxd :0(— “ ) 7.5
[ ], faasy=o((5) () (15)
Second, applying Part (ii) in Lemma 1 with y=86 =2and u =2 — &, v =2 — 3 (we must have
u >0, v >0, but this is the case since 0 < &, B < 2), it follows from (7.5) that

/l/h/l/kx 2 foy)dudy = 0<() (%)2713).

This proves (2.7) with s = 1/h and t = 1 /k, h,k > 0.

The proof of Theorem 4 is complete.
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