On the Relation of Shadowing and Expansivity in Nonautonomous Discrete Systems

Hossein Rasuli¹ and Reza Memarbashi^{2,*}

¹ Department of Mathematics, Islamic Azad University, Malayer Branch, Malayer, Iran

² Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran

Received 2 December 2014; Accepted (in revised version) 23 September 2016

Abstract. In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e., nonautonomous discrete dynamical systems. We investigate the relations of various expansivity properties with shadowing and *h*-shadowing property.

Key Words: Shadowing, *h*-shadowing, locally expanding, uniformly weak expanding, locally weak expanding.

AMS Subject Classifications: 54H20, 37B55, 39A05

1 Introduction

Let (X,d) be a compact metric space, and f be a continuous map on X. We consider the associated autonomous difference equation of the following form:

$$x_{i+1} = f(x_i). (1.1)$$

A finite or infinite sequence $\{x_0, x_1, \dots\}$ of points in *X* is called a δ -pseudo-orbit ($\delta > 0$) of (1.1) if $d(f(x_{i-1}), x_i) < \delta$ for all $i \ge 1$. We say that Eq. (1.1), (or *f*) has usual shadowing property if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every δ -pseudo-orbit $\{x_0, x_1, \dots\}$, there exists $y \in X$ with $d(f^i(y), x_i) < \varepsilon$ for all $i \ge 0$. The notion of pseudo-orbits appeared in several branches of dynamical systems theory, and various types of the shadowing property were presented and investigated extensively, see [5, 6, 11, 12].

In this paper we study shadowing property of nonautonomous discrete systems. We consider the compact metric space *X* and a sequence $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ in which each f_i :

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* hoseinrasuli@yahoo.com (H. Rasuli), r_memarbashi@semnan.ac. ir (R. Memarbashi)

 $X \to X$ is continuous. We call the pair $(X, f_{1,\infty})$ a nonautonomous discrete system (on *X*). For further simplicity we use only $f_{1,\infty}$ in the sequel. The associated nonautonomous difference equation has the following form:

$$x_{i+1} = f_i(x_i). (1.2)$$

For every $n \ge i \ge 1$, we write $f_i^n = f_n \circ f_{n-1} \circ \cdots \circ f_i$.

Orbit of a nonautonomous system $f_{1,\infty}$ in a point *x* is the following sequence:

 $O(x) = \{x, f_1(x), f_2 \circ f_1(x), \cdots, f_n \circ \cdots \circ f_1(x), \cdots \}.$

On the other hand a pseudo-orbit of the system is as follows:

Definition 1.1. A finite or infinite sequence $\{x_0, x_1, \dots\}$ of points in *X* is called a δ -pseudo-orbit (δ > 0) of (1.2), if $d(f_i(x_{i-1}), x_i) < \delta$ for all $i \ge 1$.

In the nonautonomous case the standard definition of shadowing has the following form, see [12]:

Definition 1.2. We say that $f_{1,\infty}$ has shadowing property if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every δ -pseudo-orbit $\{x_0, x_1, \cdots\}$, there exists $y \in X$ with $d(y, x_0) < \varepsilon$ and $d(f_1^i(y), x_i) < \varepsilon$, for all $i \ge 1$.

In this paper we investigate the relation of various expansivity such as positively expansive, locally expanding, weakly locally expanding, \cdots , with shadowing and *h*-shadowing property.

2 Shadowing and expansivity

First we prove the following simple lemma.

Lemma 2.1. The sequence $f_{1,\infty}$ has shadowing property if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every finite δ -pseudo-orbit is ε -shadowed.

Proof. Let $\varepsilon > 0$ and $\delta > 0$ be such that every finite δ -pseudo-orbit, $\frac{\varepsilon}{2}$ -shadowed. Let $\{x_i\}_{i=1}^{\infty}$ be a δ -pseudo-orbit. For every $n \ge 1$, $\{x_0, x_1, \dots, x_n\}$, $\frac{\varepsilon}{2}$ -shadowed by $y_n \varepsilon X$ and there is a subsequence $\{y_{n_k}\}_{k\ge 0}$ and a point $y \varepsilon X$ such that $y_{n_k} \to y$ as $k \to \infty$. Now for each $i \ge 1$, there is a $n_k > i$ such that $d(f_1^i(y_{n_k}), f_1^i(y)) < \frac{\varepsilon}{2}$. Therefore

$$d(f_1^i(y), x_i) \le d(f_1^i(y), f_1^i(y_{n_k})) + d(f_1^i(y_{n_k}), x_i) < \varepsilon$$

and hence $f_{1,\infty}$ has the shadowing property.

There are several variants of shadowing property, we define a stronger form which is called *h*-shadowing, see [2,9].

Definition 2.1. The sequence $f_{1,\infty}$ has *h*-shadowing property if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every δ -pseudo-orbit $\{x_0, x_1, \dots, x_n\} \subseteq X$ there is $y \in X$ with $d(y, x_0) < \varepsilon$ and,

$$d(f_1^i(y), x_i) < \varepsilon$$
 for all $1 \le i < n$ and $f_1^n(y) = x_n$.

In the case of an autonomous difference equation various notions of expansivity such as positively expansive, locally expanding, \cdots , have been introduced and their properties studied extensively, see [1,8,14]. We consider a nonautonomous form of expansivity and a modified form of equicontinuouity.

Definition 2.2. We say that the sequence $f_{1,\infty}$ is positively expansive, with expansive constant e > 0, if $x \neq y$, then for every $N \in \mathbb{N}$ there is $n \ge N$ such that $d(f_N^n(x), f_N^n(y)) > e$.

Theorem 2.1. Suppose that the sequence $f_{1,\infty}$ is positively expansive and has shadowing property then it has h-shadowing property.

Proof. Let e > 0 be the expansive constant, $\varepsilon < e$ and $\delta > 0$ is provided by the shadowing of $f_{1,\infty}$. Suppose that $\{x_0, x_1, \dots, x_m\}$ is a δ -pseudo-orbit. The following sequence:

$$\{x_0, x_1, \cdots, x_m, f_{m+1}(x_m), f_{m+1}^{m+2}(x_m), f_{m+1}^{m+3}(x_m), \cdots\}$$

is an infinite δ -pseudo-orbit. Now since $f_{1,\infty}$ has the shadowing property, there is $y \in X$ such that for each $j \ge 1$, $d(f_1^{m+j}(y), f_{m+1}^{m+j}(x_m) < \varepsilon$, which yields $f_1^m(y) = x_m$. Hence the sequence $f_{1,\infty}$ has *h*-shadowing property.

Definition 2.3. The sequence $f_{1,\infty}$ called inverse equicontinuous if for every $x \in X$ and for every $\varepsilon > 0$ there exists $\delta(x) > 0$ such that:

$$B_{\delta(x)}(f_i(x)) \subseteq f_i(B_{\varepsilon}(x))$$
 for all *i*,

in which $B_{\varepsilon}(x)$ is the open ball with radius ε and center x.

Proposition 2.1. Suppose that $f_i: X \to X$ is one to one and surjective, for all *i*. Then the sequence $f_{1,\infty}$ is inverse equicontinuous if and only if the sequence $\{f_i^{-1}\}_{i=1}^{\infty}$ is equicontinuous.

Proof. The proof is trivial.

Definition 2.4. We say that $f_{1,\infty}$ is weakly expanding small distances if there exists $\gamma > 0$ such that for every $x, y \in X$ and every i,

$$d(x,y) < \gamma \Longrightarrow d(f_i(x), f_i(y)) > d(x,y).$$

Definition 2.5. We say that $f_{1,\infty}$ is locally expanding if there exists $\lambda > 1$ such that for every $x \in X$, $i \ge 1$ and $\varepsilon > 0$, $B_{\lambda\varepsilon}(f_i(x)) \subseteq f_i(B_{\varepsilon}(x))$.

Definition 2.6. We say that $f_{1,\infty}$ is weakly locally expanding if there exists $\gamma > 0$ such that for every $x \in X$, $i \ge 1$ and $\varepsilon < \gamma$, $B_{\varepsilon}(f_i(x)) \subseteq f_i(B_{\varepsilon}(x))$.

Lemma 2.2. Suppose that the sequence $f_{1,\infty}$ is inverse equicontinuous and weakly expanding small distance then it has weakly locally expanding property.

Proof. Let $\gamma > 0$ be a constant as in the definition of weakly expanding small distances. Since $f_{1,\infty}$ is inverse equicontinuous, for each $x \in X$ there exists $\lambda(x) > 0$ such that:

$$B_{\lambda(x)}(f_i(x)) \subseteq f_i(B_{\frac{\gamma}{2}}(x)) \quad \text{for all } i \ge 1.$$
(2.1)

We denote $B_{\frac{\gamma}{2}}(x) \cap f_i^{-1}(B_{\frac{\lambda(x)}{2}}(f_i(x)))$ by U_i , then for $x \in U_i$ there exists $\eta = \eta(x) < \frac{\lambda(x)}{2}$ such that $B_{\eta}(x) \subseteq U_i$. Now we have $f_i(U_i) = B_{\frac{\lambda(x)}{2}}(f_i(x))$, in fact if $y \in B_{\frac{\lambda(x)}{2}}(f_i(x))$ then using (2.1) we have $y = f_i(t)$ with $t \in B_{\frac{\gamma}{2}}(x)$ and $f_i(t) = y \in B_{\frac{\lambda(x)}{2}}(f_i(x))$ implies $t \in f_i^{-1}(B_{\frac{\lambda(x)}{2}}(f_i(x)))$, hence $B_{\frac{\lambda(x)}{2}}(f_i(x)) \subseteq f_i(U_i)$. The other side is trivial.

Let $z \in B_{\eta}(x)$, $\rho < \eta$ such that $B_{\rho}(z) \subseteq B_{\eta}(x)$ then $f_i(z) \in f_i(U_i) = B_{\underline{\lambda}(x)}(f_i(x))$, thus

$$B_{\rho}(f_i(z)) \subseteq B_{\lambda(x)}(f_i(x)) \subseteq f_i(B_{\frac{\gamma}{2}}(x)).$$
(2.2)

We denote $B_{\frac{\gamma}{2}}(x) \cap f_i^{-1}(B_{\rho}(f_i(z)))$ by V_i , as in the proof of the similar result for U_i , we see that $f_i(V_i) = B_{\rho}(f_i(z))$. We claim $V_i \subseteq B_{\rho}(z)$. Suppose that $V_i \not\subseteq B_{\rho}(z)$, then there is $y \in V_i - B_{\rho}(z)$. $z \in B_{\eta}(x) \subseteq U_i \subseteq B_{\frac{\gamma}{2}}(x)$ so $\rho < d(y,z) \le d(y,x) + d(x,z) < \gamma$. Now from this relation and the fact that $f_{1,\infty}$ is weakly expanding small distance we have $d(f_i(y), f_i(z)) \ge d(y,z) > \rho$ which is in contradiction with $y \in V_i$. Therefore we have $V_i \subseteq B_{\rho}(z)$ which yields $B_{\rho}(f_i(z)) = f_i(V_i) \subseteq f_i(B_{\rho}(z))$. Now X is compact, and there is x_1, x_2, \cdots, x_n in X such that $X \subseteq \bigcup_{i=1}^n B_{\frac{\eta(x_i)}{2}}(x_i)$. Define $r = \min \frac{\eta(x_i)}{2}$ and consider $x \in X$ and $\rho < r$, so there is $1 \le i \le n$ such that $x \in B_{\frac{\eta(x_i)}{2}}(x_i)$ which implies $B_{\rho}(x) \subseteq B_{\eta(x_i)}(x_i)$ and therefore $B_{\rho}(f_i(x)) \subseteq f_i(B_{\rho}(x))$. \Box

Definition 2.7. We say that $f_{1,\infty}$ is uniformly expanding if there exist $\lambda > 1$ and $\gamma > 0$ such that for every $x, y \in X$ and $i \ge 1$:

$$d(f_i(x), f_i(y)) < \gamma \Rightarrow d(f_i(x), f_i(y)) > \lambda d(x, y).$$

Definition 2.8. We say that $f_{1,\infty}$ is weakly uniformly expanding if there exists $\gamma > 0$ such that for every $x, y \in X$ and $i \ge 1$:

$$d(f_i(x),f_i(y)) < \gamma \Rightarrow d(f_i(x),f_i(y)) > d(x,y).$$

Proposition 2.2. If $f_{1,\infty}$ is weakly uniformly expanding and for all $i \ge 1$, f_i is surjective, then $f_{1,\infty}$ is weakly locally expanding.

Proof. Let $\gamma > 0$ be as in the weakly uniformly expanding definition. It is enough to prove that for each $\epsilon < \gamma$, $B_{\epsilon}(f_i(x)) \subseteq f_i(B_{\epsilon}(x))$. If $z \in B_{\epsilon}(f_i(x))$ then there is $y \in X$ such that $f_i(y) = z$. Since $d(f_i(x), f_i(y)) < \epsilon$, we obtain $d(x, y) < d(f_i(x), f_i(y)) < \epsilon$. So $z \in f_i(B_{\epsilon}(x))$.

H. Rasuli and R. Memarbashi / Anal. Theory Appl., 33 (2017), pp. 11-19

Now we investigate the relation of *h*-shadowing and the expansivity notions mentioned above.

Theorem 2.2. Suppose that there is a continuous map f such that $f_i \rightarrow f$ pointwise. If the sequence $f_{1,\infty}$ is inverse equicontinuous and weakly expanding small distances, and f is weakly expanding small distances then it has h-shadowing property.

Proof. There exists $\gamma > 0$ such that $d(x,y) < \gamma$ implies that

$$d(x,y) < d(f(x), f(y))$$
 and $d(x,y) < d(f_i(x), f_i(y))$ for all $i \ge 1$.

By the above lemma there is r > 0 such that for every $\rho < r$, and for every $i \ge 1$, we have $B_{\rho}(f_i(x)) \subseteq f_i(B_{\rho}(x))$. Let $\varepsilon > 0$, we set $0 < \varepsilon' < \min\{\gamma, r, \varepsilon\}$ and define:

$$\eta(\varepsilon') := \sup\{d(x,y): d(f_i(x), f_i(y)) < \varepsilon', i \ge 1\}.$$

Hence $\eta(\varepsilon') \leq \varepsilon'$. We claim that $\eta(\varepsilon') < \varepsilon'$. Indeed, if $\eta(\varepsilon') = \varepsilon'$, there exist sequences $\{d(x_i, y_i)\}_{i=1}^{\infty}$ and $\{k(i)\}_{i=1}^{\infty} \subseteq \mathbb{N}$ such that $d(f_{k(i)}(x_i), f_{k(i)}(y_i)) < \varepsilon'$ and

$$\lim_{i \to \infty} d(x_i, y_i) = \eta(\varepsilon') = \varepsilon'.$$

Since *X* is compact, there is a subsequence $\{n_i\}_{i=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{n_i} \to x_0$ and $y_{n_i} \to y_0$. Thus

$$\varepsilon' = \eta(\varepsilon') = \lim_{i \to \infty} d(x_{n_i}, y_{n_i}) = d(x_0, y_0) < d(f(x_0), f(y_0))$$
$$= \lim_{i \to \infty} d(f_{k(n_i)}(x_{n_i}), f_{k(n_i)}(y_{n_i})) \le \varepsilon',$$

which is impossible. Now we consider $0 < \delta < \min\{r, \gamma, \varepsilon' - \eta(\varepsilon')\}$. Let $\{x_0, x_1, \dots, x_n\}$ be a δ -pseudo-orbit for $f_{1,\infty}$ then $d(f_n(x_{n-1}), x_n) < \delta$, which implies that there is $y_{n-1} \in B_{\delta}(x_{n-1})$ such that $f_n(y_{n-1}) = x_n$. Since $d(f_n(x_{n-1}), x_n) < \delta \le \varepsilon'$, we have:

$$d(x_{n-1},y_{n-1}) < \eta(\varepsilon') \leq \varepsilon$$

And $d(f_{n-1}(x_{n-2}), y_{n-1}) \le d(f_{n-1}(x_{n-2}), x_{n-1}) + d(x_{n-1}, y_{n-1}) < \delta + \eta(\varepsilon') < \varepsilon' < r$. Therefore there is $y_{n-2} \in B_{\varepsilon'}(x_{n-2}) \subseteq B_{\gamma}(x_{n-2})$ such that $f_{n-1}(y_{n-2}) = y_{n-1}$. Hence

$$d(x_{n-2},y_{n-2}) < d(f_{n-1}(x_{n-2}),y_{n-1}) < \delta + \eta(\varepsilon') < \varepsilon' \le \varepsilon.$$

Repeating this argument, we can find points $y_{n-1}, y_{n-2}, \dots, y_0$ in X such that for all $0 \le i \le n-1$, $f_{i+1}(y_i) = y_{i+1}$ and $d(y_i, x_i) < \varepsilon$. Further more $f_1^n(y_0) = x_n$, hence $f_{1,\infty}$ has h-shadowing property.

As a consequence, in the case of a single map we have the following result.

Proposition 2.3. Suppose that $f: X \to X$ is a continuous and an open map. If f is weakly expanding small distances then f has h-shadowing property.

Theorem 2.3. *The following conditions hold:*

(1) If the sequence $f_{1,\infty}$ is locally expanding, then it has h-shadowing property.

(2) If the sequence $f_{1,\infty}$ is uniformly expanding, and for all $i \ge 1$, f_i is surjective, then $f_{1,\infty}$ has *h*-shadowing property.

Proof. Suppose that $f_{1,\infty}$ is locally expanding, there exist $\lambda > 1$ and $\gamma > 0$ such that for every $i \ge 1$ and $\varepsilon < \gamma$, we have $B_{\lambda\varepsilon}(f_i(x)) \subseteq f_i(B_{\varepsilon}(x))$. For a fixed $0 < \varepsilon < \gamma$, we set $\delta = (\lambda - 1)\varepsilon$, therefore for every $x \in X$ and $i \ge 1$

$$B_{\varepsilon+\delta}(f_i(x)) \subseteq B_{\varepsilon\lambda}(f_i(x)) \subseteq f_i(B_{\varepsilon}(x)).$$
(2.3)

Let $\{x_0, x_1, \dots, x_m\} \subseteq X$ be a δ -pseudo-orbit for $f_{1,\infty}$. Then $d(f_m(x_{m-1}), x_m) < \delta$ implies $x_m \in B_{\varepsilon+\delta}(f_m(x_{m-1}))$, hence there is a point $y_{m-1} \in B_{\varepsilon}(x_{m-1})$ such that $f_m(y_{m-1}) = x_m$ and so we have:

$$d(f_{m-1}(x_{m-2}), y_{m-1}) \leq d(f_{m-1}(x_{m-2}), x_{m-1}) + d(x_{m-1}, y_{m-1}) < \delta + \varepsilon.$$

In other word, $y_{m-1} \in B_{\varepsilon+\delta}(f_{m-1}(x_{m-2}))$ so there exists $y_{m-2} \in B_{\varepsilon}(x_{m-2})$ such that

$$f_{m-1}(y_{m-2}) = y_{m-1}.$$

Repeating this argument, we can find $y_{m-2}, y_{m-3}, \dots, y_0$ in X such that for all $0 \le i \le m-1$,

$$f_{i+1}(y_i) = y_{i+1}$$
 and $d(y_i, x_i) < \varepsilon$,

which proves the *h*-shadowing property of $f_{1,\infty}$.

For the proof of (2), it is easy to prove that if for all $i \ge 1$, f_i are surjective maps and $f_{1,\infty}$ is uniformly expanding then $f_{1,\infty}$ is locally expanding, which proves the *h*-shadowing property.

Theorem 2.4. Suppose there is a continuous map f such that $f_i \rightarrow f$ pointwise. If both $f_{1,\infty}$ and f are weakly uniformly expanding, and for all $i \ge 1$, f_i is surjective then $f_{1,\infty}$ has h-shadowing property.

Proof. There is $\gamma > 0$ such that

$$d(f_i(x), f_i(y)) < \gamma \Rightarrow d(x, y) < d(f_i(x), f_i(y))$$
 for all $i \ge 1$

and

$$d(f(x), f(y)) < \gamma \Rightarrow d(x, y) < d(f(x), f(y)).$$

For $\varepsilon > 0$, let $0 < \varepsilon' < \min{\{\gamma, \varepsilon\}}$, we define:

$$\eta(\varepsilon') := \sup\{d(x,y) : d(f_n(x), f_n(y)) < \varepsilon', n \ge 1\}.$$

17

Hence $\eta(\varepsilon') \leq \varepsilon'$. We claim that $\eta(\varepsilon') < \varepsilon'$, indeed if $\eta(\varepsilon') = \varepsilon'$ then there exist sequences $\{d(x_i, y_i)\}_{i=1}^{\infty}$, and $\{k(i)\}_{i=1}^{\infty} \subseteq \mathbb{N}$ such that $d(f_{k(i)}(x_i), f_{k(i)}(y_i)) < \varepsilon'$ and

$$\lim_{i \to \infty} d(x_i, y_i) = \eta(\varepsilon') = \varepsilon'.$$

Since *X* is compact there is a subsequence $\{n_i\}_{i=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{n_i} \to x_0$ and $y_{n_i} \to y_0$. If $\{k(i)\}_{i=1}^{\infty}$ is infinite, then

$$\varepsilon' = \eta(\varepsilon) = \lim_{i \to \infty} d(x_{n_i}, y_{n_i}) = d(x_0, y_0) < d(f(x_0), f(y_0))$$
$$= \lim_{i \to \infty} d(f_{k(n_i)}(x_{n_i}), f_{k(n_i)}(y_{n_i})) \le \varepsilon',$$

which is impossible. If $\{k(i)\}_{i=1}^{\infty}$ is finite, then there is a subsequence $\{s_i\}_{i=1}^{\infty} \subseteq \{n_i\}_{i=1}^{\infty}$ such that

$$d(f_n(x_0), f_n(y_0)) = \lim_{i \to \infty} d(f_{k(s_i)}(x_{s_i}), f_{k(s_i)}(y_{s_i})) \le \varepsilon' < \gamma \quad \text{for some} \ n \ge 1,$$

which yields $d(x_0, y_0) < d(f_n(x_0), f_n(y_0)) \le \varepsilon'$. But we have

$$\varepsilon' = \eta(\varepsilon') = \lim_{i \to \infty} d(x_{n_i}, y_{n_i}) = d(x_0, y_0),$$

which is impossible.

Now let $0 < \delta \le \varepsilon' - \eta(\varepsilon')$ and $\{x_0, x_1, \dots, x_n\}$ be a δ -pseudo-orbit for $f_{1,\infty}$. Since f_n is surjective, there is $y_{n-1} \in X$ such that $f_n(y_{n-1}) = x_n$, therefore we have $d(f_n(x_{n-1}), x_n) < \delta \le \varepsilon'$, and

$$d(x_{n-1},y_{n-1}) \leq \eta(\varepsilon') < \varepsilon' \leq \varepsilon,$$

so it implies

$$d(f_{n-1}(x_{n-2}),y_{n-1}) \leq d(f_{n-1}(x_{n-2}),x_{n-1}) + d(x_{n-1},y_{n-1}) < \delta + \eta(\varepsilon') \leq \varepsilon'.$$

Now since f_{n-1} is surjective, there is $y_{n-2} \in X$ such that $f_{n-1}(y_{n-2}) = y_{n-1}$ and

$$d(x_{n-2}, y_{n-2}) \leq \eta(\varepsilon') < \varepsilon' \leq \varepsilon.$$

Repeating this argument, we can find $y_{n-1}, y_{n-2}, \dots, y_0$ in X such that for $0 \le i \le n-1$, we have $f_{i+1}(y_i) = y_{i+1}$ and $d(y_i, x_i) < \varepsilon' < \varepsilon$.

Example 2.1. Consider the finite set *A* of symbols and define $X = A^{\mathbb{N}}$, the set of all infinite sequences (a_1, a_2, \cdots) with $a_i \in A$. We consider metric *d* on *X* as follows, for $x = (x_1, x_2, \cdots), y = (y_1, y_2, \cdots) \in X$, let $d(x, y) = \frac{1}{2^k}$ where *k* is the smallest positive integer for which $x_k \neq y_k$. The metric space (X, d) is compact. We consider the sequence of shift maps defined on *X* as follows:

$$\sigma_i((x_1,x_2,\cdots)) = (x_{i+1},x_{i+2},\cdots)$$

this mappings are continuous and

$$d(x,y) = \frac{1}{2^i} d(\sigma_i(x), \sigma_i(y)),$$

therefore the sequence $\{\sigma_i\}$ is uniformly expanding. We prove directly that the sequence $\{\sigma_i\}$ has shadowing property. For $\varepsilon > 0$, let $\delta \le \epsilon$ and $\frac{1}{2^n} < \delta \le \frac{1}{2^{n-1}}$. Suppose that $\{x_i\}_{i=0}^{\infty}$ is a δ -pseudo orbit. If $x_0 = (a_1, a_2, \cdots)$, the relation $d(\sigma_1(x_0), x_1) < \delta$ implies that there exists $n_1 \ge n+1$ such that $b_{n_1} \ne a_{n_1}$ and $x_1 = (a_2, \cdots, a_{n_1-1}, b_{n_1}, a_{n_1+1}^1, a_{n_1+2}^1, \cdots)$. Since $d(\sigma_2(x_1), x_2) < \delta$ there exists $n_2 \ge n_1 + 1$ such that, $b_{n_2} \ne a_{n_1}$ and

$$x_2 = (a_4, \cdots, a_{n_1-1}, b_{n_1}, a_{n_1+1}^1, \cdots, a_{n_2-1}^1, b_{n_2}, a_{n_2+1}^2, \cdots).$$

By continuing this procedure, we obtain $n_i \ge n_{i-1} + i$ and $b_{n_i} \ne a_{n_i}^{i-1}$ and an appropriate representation for x_i as above. Now we consider

$$Z = (a_1, \cdots, a_{n_1-1}, b_{n_1}, a_{n_1+1}^1, \cdots, a_{n_2-1}^1, b_{n_2}, a_{n_2+1}^2, \cdots, a_{n_i-1}^{i-1}, b_{n_i}, a_{n_i+1}^i, \cdots).$$

We have $d(\sigma_1(Z), x_1) < \epsilon$, $d(\sigma_3(Z), x_2) < \epsilon$, \cdots , $d(\sigma_{\frac{i(i+1)}{2}}(Z), x_i) < \epsilon$, \cdots , which is the same as $d(\sigma_1^k(Z), x_k) < \epsilon$, $k = 1, 2, \cdots, i, \cdots$, therefore the sequence $\{\sigma_i\}$ has shadowing property.

Example 2.2. Consider the sequence

$$f_n: S^1 \to S^1, \quad f_n(e^{i\theta}) = e^{i\frac{2n+1}{n}\theta}.$$

For $\lambda = 2$ and for every n, $B_{\lambda\epsilon}(f_n(e^{i\theta})) \subseteq f_n(B_{\epsilon}(e^{i\theta}))$, and hence $\{f_n\}$ has locally expanding property. Therefore $\{f_n\}$ has h-shadowing property.

Acknowledgments

The authors would like to thank the reviewers for their useful comments.

References

- [1] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland: Elsevier Science, 1994.
- [2] A. D. Barwell, C. Good and P. Oprocha, Shadowing and expansivity in sub-spaces, Fund. Math., 219 (2012), 223–243.
- [3] I. Bhaumik and B. S. Choudhuri, Uniform convergence and a sequence of maps on a compact metric space with some chaotic property, Anal. Theory Appl., 26(1) (2010), 53–58.
- [4] A. Bielecki, Approximation of attractors by pseudotrajectories of iterated function systems, Univ. Iagl Acta. Math., 36 (1999), 173–179.
- [5] S. N. Chow, X. B. Lin and K. J. Palmer, shadowing lemma with applications to semilinear parabolic equations, Siam. J. Math. Anal., 20 (1989), 547–557.

- [6] P. Diamond, P. E. Kloeden and V. S. Kozyakin, Semi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings, J. Diff. Equations Appl., 14 (2008), 1165–1173.
- [7] J. Guckenheimer, J. Moser and S. Newhouse, Dynamical Systems, Boston, USA: Birkhauser, 1980.
- [8] K. Lee and K. Sakai, Various shadowing properties and their equivalence, Discrete Cont. Dyn. Sys., 13 (2005), 533–539.
- [9] R. Memarbashi and H. Rasuli, Notes on the relation of expansivity and shadowing, J. Adv. Res. Dyn. Control Syst., 6(4) (2014), 25–32.
- [10] R. Memarbashi and H. Rasuli, Notes on the dynamics of nonautonomous discrete dynamical systems, J. Adv. Res. Dyn. Control Syst., 6(2) (2014), 8–17.
- [11] K. Palmer, Shadowing in Dynamical Systems, Dordrecht: Kluwer Academic Press, 2000.
- [12] S. Pilyugin, Shadowing in Dynamical Systems, New York, USA: Springer-Verlag, 1999.
- [13] D. Thakkar and R. Das, Topological stability of a sequence of maps on a compact metric space, Bull. Math. Sci., 4 (2014), 99–111.
- [14] K. Sakai, Various shadowing properties for positively expansive maps, Topology Appl., 131 (2003), 15–31.
- [15] H. Rasuli, On the shadowing property of nonautonomous discrete systems, Int. J. Nonlinear Anal. Appl., 7(1) (2016), 271–277.