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Laboratoire LISA, Ecole Nationale des Sciences Appliqués, Fes, Morocco
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Abstract. We give an existence result of the obstacle parabolic equations

∂b(x,u)

∂t
−div(a(x,t,u,∇u))+div(φ(x,t,u))= f in QT,

where b(x,u) is bounded function of u, the term −div(a(x,t,u,∇u)) is a Leray-Lions
type operator and the function φ is a nonlinear lower order and satisfy only the growth
condition. The second term f belongs to L1(QT). The proof of an existence solution is
based on the penalization methods.
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1 Introduction

In this paper, we investigate the problem of existence of solutions of the obstacle prob-
lems associated to the following nonlinear parabolic problem:















∂b(x,u)

∂t
−div(a(x,t,u,∇u))+div(φ(x,t,u))= f in QT,

u(x,t)=0 on ∂Ω×(0,T),

b(x,u)(t=0)=b(x,u0(x)) in Ω,

(1.1)
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where Ω is a bounded open set of IRN (N ≥ 2), T is a positive real number, and QT =
Ω×(0,T). Let b:Ω×IR−→IR is a Carathéodory function such that for every x∈Ω, b(x,·) is
a strictly increasing C1-function, the data f and b(·,u0) in L1(QT) and L1(Ω) respectively.

The term −div(a(x,t,u,∇u)) is a Leray-Lions operator defined on Lp(0,T;W
1,p
0 (Ω)) (see

assumptions (3.3a)-(3.3c)). The function φ(x,t,u) is a Carathéodory assumed to be contin-
uous on u (see assumptions (3.3d)-(3.3e)). Under these assumptions, the above problem
does not admit, in general, a weak solution since the fields a(x,t,u,∇u) and φ(x,t,u) does
not belongs in (L1

loc(Q))N in general.

In the case of equation in the classical Sobolev spaces H. Redwane [5] proved the
existence of solution of problem (1.1) where φ(x,t,u) = 0, and where div(φ(x,t,u)) =
H(x,t,u,∇u) and f ∈ L1(Q) by Y. Akdim et al. [2] in the degenerated Sobolev spaces
without the sign condition and the coercivity condition on the term H(x,t,u,∇u).

The existence of a solution is shown in [5, 8] with b(x,u) = u, using the framework
of renormalized solution, and in [7] for the case −div(a(x,t,u,∇u)) =−∆u, using the
framework of entropy solution.

It is our purpose, in this paper to generalize the result of [2, 7], and we prove the
existence of unilateral entropy solution for the problem (1.1) and without the coercivity
condition on φ. More precisely, this paper deals with the existence of a solution to the
obstacle parabolic problem associated to (1.1) in the sense of unilateral entropy solution
(see Theorem 3.1).

The aim of this work is to investigate the relationship between the obstacle problem
(1.1) and some penalized sequence of approximate equations (3.9). We study the possibil-
ity to find a solution of (1.1) (see Theorem 3.1) as limit of a subsequence uǫ of solutions of
(3.9). The penalized term 1

ǫ T1
ǫ
(uǫ−ψ)− introduced in (3.9) play a crucial role in the proof

of our main result, in particular term allows to prove that the solution of (3.9) belongs in
the convex set Kψ.

The plan of the paper is as follows: in Section 2 we give some preliminaries and basic
assumptions. In Section 3 we give the definition of entropy solution of (1.1), and we
establish (see Theorem 3.1) the existence of such solution.

2 Preliminaries

Let Ω be a bounded open set of IRN (N ≥ 2), T is a positive real number, and QT =
Ω×(0,T). We need the Sobolev embeddings result.

Lemma 2.1 (Gagliardo-Niremberg). Let v∈Lq(0,T;Lq(Ω))∩L∞(0,T;Lρ(Ω)), with q≥1 and

ρ≥1. Then v∈Lσ(Ω) with σ=q(N+ρ
N ) and

∫

QT

|v|σdxdt≤C‖v‖
ρq
N

L∞ (0,T;Lρ(Ω))

∫

QT

|∇v|qdxdt.
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Lemma 2.2 (see [8]). Assume that Ω is an open set of IRN of finite measure and 1< p<+∞.

Let u be a measurable function satisfying Tk(u)∈ Lp(0,T;W
1,p
0 (Ω))∩L∞(0,T;L2(Ω)) for every

k and such that:

sup
t∈(0,T)

∫

Ω

|∇Tk(u)|
2dx+

∫

QT

|∇Tk(u)|
pdxdt≤Mk, ∀k>0,

where M is a positive constant. Then

‖|u|p−1‖
L

p(N+1)−N
N(p−1)

,∞
(QT)

≤CM
( p

N +1) N
N+p′ |QT |

1
p′
( N

N+p′
)
,

‖|∇u|p−1‖
L

p(N+1)−N
(N+1)(p−1)

,∞
(QT)

≤CM
(N+2)(p−1)
p(N+1)−N ,

where C is a constant depend only on N and p.

3 Assumptions and statements of main results

Throughout this paper, we assume that the following assumptions hold true:

b : Ω× IR→ IR is a Carathéodory function such that for every x∈Ω, (3.1)

b(x,·) is a strictly increasing C
1(IR)-function and b∈L∞(Ω× IR) with b(x,0)=0.

Next, there exists a constant λ>0 and two functions A∈ L∞(Ω) and B∈ Lp(Ω) such
that:

λ≤
∂b(x,s)

∂s
≤A(x) and

∣

∣

∣
∇x

(∂b(x,s)

∂s

)
∣

∣

∣
≤B(x) (3.2)

almost every x∈Ω and for all s∈ IR.
For any k>0, there exists hk ∈Lp′(QT) such that

|a(x,t,s,ξ)|≤ν
(

hk(x,t)+|ξ|p−1
)

, ∀|s|≤ k, and with ν>0, (3.3a)

a(x,t,s,ξ)ξ≥α|ξ|p with α>0, (3.3b)

(a(x,t,s,ξ)−a(x,t,s,η)(ξ−η)>0 with ξ 6=η, (3.3c)

|φ(x,t,s)|≤ c(x,t)|s|γ with γ=
N+2

N+p
(p−1), (3.3d)

c(x,t)∈ (Lτ(QT))
N with τ=

N+p

p−1
, (3.3e)

for almost every (x,t)∈QT , for every s∈ IR and every ξ,η∈ IRN ,

f ∈L1(QT), (3.4a)

u0∈L1(Ω) such that b(x,u0)∈L1(Ω). (3.4b)
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Let ψ be a measurable function with values in IR such that

ψ∈Lp(0,T;W
1,p
0 (Ω))∩L∞(QT) (3.5)

and let

Kψ=
{

u∈Lp(0,T;W
1,p
0 (Ω))/u≥ψ almost every in QT

}

.

Throughout the paper, Tk denotes the truncation function at height k≥0:

Tk(r)=max(−k,min(k,r)), ∀r∈ IR.

Theorem 3.1. Assume that (3.2)-(3.5) hold true. Then there exists at last one solution u such
that b(x,u)∈L∞(0,T;L1(Ω)), b(x,u)(t=0)=b(x,u0) a.e. in Ω and for all t∈ [0,T],











































Tk(u)∈Lp(0,T,W
1,p
0 (Ω)), u≥ψ a.e. in QT,

∫ t

0

〈∂b(x,u)

∂s
;Tk(u−ϕ)

〉

ds+
∫

Qt

a(x,s,u,∇u)∇Tk(u−ϕ)dxds

−
∫

Qt

φ(x,s,u)∇Tk(u−ϕ)dxds≤
∫

Qt

f Tk(u−ϕ)dxds,

∀k>0 and ∀ϕ∈Kψ∩L∞(Q) such that
∂ϕ

∂t
∈Lp′(0,T,W−1,p′(Ω)),

(3.6)

where Qt=Ω×(0,t).

Proof. The proof is divided into six steps.
Step 1: Approximate problem and a priori estimates. For each ǫ> 0, we define the fol-
lowing approximations

aǫ(x,t,s,ξ)= a(x,t,T1
ǫ
(s),ξ) a.e. (x,t)∈QT , ∀s∈ IR, ∀ξ∈ IRN , (3.7a)

φǫ(x,t,r)=φ(x,t,T1
ǫ
(r)) a.e. (x,t)∈QT , ∀r∈ IR, (3.7b)

fǫ ∈Lp′(QT) such that fǫ → f strongly in L1(QT), (3.7c)

and

u0ǫ ∈C
∞

0 (Ω) such that b(x,u0ǫ)→b(x,u0) strongly in L1(Ω). (3.8)

Consider the approximate problem:















∂b(x,uǫ)

∂t
−div(aǫ(x,t,uǫ,∇uǫ))+div(φǫ(x,t,uǫ))−

1

ǫ
T1

ǫ
(uǫ−ψ)−= fǫ in QT,

uǫ(x,t)=0 on ∂Ω×(0,T),

b(x,uǫ)(t=0)=b(x,u0ǫ) in Ω.

(3.9)

As a consequence, proving existence of a weak solution uǫ ∈ Lp(0,T;W
1,p
0 (Ω)) is an easy

task (see e.g., [13]).
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Step 2: Let τ1∈(0,T) and t fixed in (0,τ1). By choosing Th(uǫ−Tβ(uǫ))≡Tβ+h(uǫ)−Tβ(uǫ)
with β≥‖ψ‖∞ as test function in (3.9), we get

∫

Ω

Bβ,h(x,uǫ(t))dx+
∫

Qt

aǫ(x,t,uǫ,∇uǫ)∇Th(uǫ−Tβ(uǫ))dxds

−
1

ǫ

∫

Qt

T1
ǫ
(uǫ−ψ)−Th(uǫ−Tβ(uǫ))dxds

≤
∫

Qt

c(x,t)|uǫ|
γ|∇Th(uǫ−Tβ(uǫ))|dxds+

∫

Qt

fǫTh(uǫ−Tβ(uǫ))dxds

+
∫

Ω

Bβ,h(x,u0ǫ)dx, (3.10)

where

Bβ,h(x,r)=
∫ r

0
Th(s−Tβ(s))

∂b(x,s)

∂s
ds.

Due to definition of Bǫ
k we have:

∫

Ω

Bβ,h(x,uǫ(t))dx≥
λ

2

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx, ∀h>0, (3.11)

and

0≤
∫

Ω

Bβ,h(x,u0ǫ)dx≤h
∫

Ω

|b(x,u0ǫ)|dx=h||b(x,u0ǫ)||L1(Ω), ∀h>0. (3.12)

Using (3.11) and (3.12) and since Th(uǫ−Tβ(uǫ))= uǫ−β on {(x,t)/β≤ |uǫ |≤ β+h}, we
obtain

λ

2

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx+α

∫

Qt

|∇Th(uǫ−Tβ(uǫ))|
pdxds

−
1

ǫ

∫

Qt

T1
ǫ
(uǫ−ψ)−Th(uǫ−Tβ(uǫ))dxds

≤
∫

Qt

c(x,t)|Th(uǫ−Tβ(uǫ))+β|γ|∇Th(uǫ−Tβ(uǫ))|dsdx

+h(||b(x,u0ǫ)||L1(Ω)+|| fǫ||L1(QT)
)

≤C
∫

Qt

c(x,t)|Th(uǫ−Tβ(uǫ))|
γ|∇Th(uǫ−Tβ(uǫ))|dsdx

+C
∫

Qt

c(x,t)|∇Th(uǫ−Tβ(uǫ))|dsdx

+h(||b(x,u0ǫ)||L1(Ω)+|| fǫ||L1(QT)), (3.13)

where C is a constant which varies from line to line and depends only the data. By
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Gagliardo-Niremberg and Young inequalities we deduce
∫

Qt

c(x,t)|Th(uǫ−Tβ(uǫ))|
γ|∇Th(uǫ−Tβ(uǫ))|dsdx

+
∫

Qt

c(x,t)|∇Th(uǫ−Tβ(uǫ))|dsdx

≤C
γ

N+2
||c(x,t)||Lτ (Qτ1

) sup
t∈(0,τ1)

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx

+C
N+2−γ

N+2
||c(x,t)||Lτ (Qτ1

)

(

∫

Qτ1

|∇Th(uǫ−Tβ(uǫ))|
pdxds

)( 1
p+

Nγ
(N+2)p

) N+2
N+2−γ

. (3.14)

Since

γ=
(N+2)

N+p
(p−1),

and by using (3.13) and (3.14), we can easily see that

λ

2

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx+α

∫

Qt

|∇Th(uǫ−Tβ(uǫ))|
pdxds

−
1

ǫ

∫

Qt

T1
ǫ
(uǫ−ψ)−Th(uǫ−Tβ(uǫ))dxds

≤C
γ

N+2
||c(x,t)||Lτ (Qτ1

) sup
t∈(0,τ1)

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx

+C
N+2−γ

N+2
||c(x,t)||Lτ (Qτ1

)

∫

Qτ1

|∇Th(uǫ−Tβ(uǫ))|
pdxds

+h (||b(x,u0ǫ)||L1(Ω)+|| fǫ ||L1(QT)
), (3.15)

which is equivalent to

(λ

2
−C

γ

N+2
||c(x,t)||Lτ (Qτ1

)

)

sup
t∈(0,τ1)

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx

+
(

α−C
N+2−γ

N+2
||c(x,t)||Lτ (Qτ1

)

)

∫

Qτ1

|∇Th(uǫ−Tβ(uǫ))|
pdxds

−
1

ǫ

∫

Qt

T1
ǫ
(uǫ−ψ)−Th(uǫ−Tβ(uǫ))dxds

≤h(||b(x,u0ǫ)||L1(Ω)+|| fǫ||L1(QT)
).

If we choose τ1 such that

(λ

2
−C

γ

N+2
||c(x,t)||Lτ (Qτ1

)

)

>0, (3.16)

and
(

α−C
N+2+γ

N+2
||c(x,t)||Lτ (Qτ1

)

)

>0, (3.17)
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then, let us denote by C the minimum between (3.16) and (3.17), we obtain

sup
t∈(0,τ1)

∫

Ω

|Th(uǫ−Tβ(uǫ))|
2dx+

∫

Qτ1

|∇Th(uǫ−Tβ(uǫ))|
pdxdt

−
C

ǫ

∫

Qτ1

T1
ǫ
(uǫ−ψ)−Th(uǫ−Tβ(uǫ))dxds≤Ch. (3.18)

It follows that

−
∫

Qτ1

1

ǫ
T1

ǫ
(uǫ−ψ)−

Th(uǫ−Tβ(uǫ))

h
dxdt≤C,

since

−
∫

Qτ1

1

ǫ
T1

ǫ
(uǫ−ψ)−

Th(uǫ−Tβ(uǫ))

h
dxdt≥0,

for every β≥‖ψ‖∞ , we deduce by Fatou’s lemma as h→0 that

∫

Qτ1

1

ǫ
T1

ǫ
(uǫ−ψ)−≤C. (3.19)

Let τ1∈(0,T) and t fixed in (0,τ1). Using Tk(uǫ)χ(0,t) as test function in (3.9), we integrate
between (0,τ1), we obtain with the same techniques used previously that

sup
t∈(0,τ1)

∫

Ω

|Tk(uǫ)|
2dx+

∫

Qτ1

|∇Tk(uǫ)|
pdxdt≤Ck. (3.20)

Then, by (3.20) and Lemma 2.2, we conclude that Tk(uǫ) is bounded in Lp(0,T;W
1,p
0 (Ω))

independently of ǫ and for any k ≥ 0, so there exists a subsequence still denoted by uǫ

such that
Tk(uǫ)⇀ ξk weakly in Lp(0,T;W

1,p
0 (Ω)). (3.21)

Let k>0 be large enough and BR be a ball of Ω, we have:

k meas
{

{|uǫ|> k}∩BR×[0,T]
}

=
∫ T

0

∫

{|uǫ|>k}∩BR

|Tk(uǫ)|dxdt

≤
∫ T

0

∫

BR

|Tk(uǫ)|dxdt

≤
(

∫

Q
|Tk(uǫ)|

pdxdt
)

1
p
(

∫ T

0

∫

BR

dxdt
)

1
p′

≤TCR(CMk)
1
p .

Which implies that:

meas
{

{|uǫ|> k}∩BR×[0,T]
}

≤
c1

k
1− 1

p

, ∀k≥1,
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so we have
lim

k→+∞

meas
{

{|uǫ|> k}∩BR×[0,T]
}

=0.

We will now use a method in [3] to show that for a subsequence still indexed by uǫ and
b(x,uǫ) converges almost everywhere in QT. For any integer M≥1, let SM an increasing
function of C2(IR) and such that SM(r)=r for |r|≤ M

2 and SM(r)=M for |r|≥M. Remark
that suppS′

M ⊂ [−M,M]. We will show in the sequel that for any fixed integer M the
sequence

BSM
(x,z)=

∫ z

0

∂b(x,s)

∂s
S′

M(s)ds,

satisfies
BSM

(x,uǫ) is bounded in Lp(0,T;W
1,p
0 (Ω)), (3.22)

and
∂BSM

(x,uǫ)

∂t
is bounded in L1(QT)+Lp′(0,T;W−1,p′(Ω)), (3.23)

independently of ǫ. Indeed, we have first
∣

∣

∣
∇BSM

(x,uǫ)
∣

∣

∣
≤‖A‖L∞(Ω)|∇TM(uε)|‖S′

M‖L∞(IR)+M‖S′
M‖L∞(IR)B(x) a.e. in QT. (3.24)

As a consequence of (3.20), (3.24) we then obtain (3.22). To show that (3.23) hold true, we
multiply the approximate equation by S′

M(uǫ), we get

∂BSM
(x,uǫ)

∂t
=div

(

aǫ(x,t,uǫ,∇uǫ)S
′
M(uǫ)

)

−aǫ(x,t,uǫ,∇uǫ)S
′′
M(uǫ)∇uǫ

−div
(

φǫ(x,t,uǫ)S
′
M(uǫ)

)

+S′′
M(uǫ)φǫ(x,t,uǫ)∇uǫ

+
1

ǫ
T1

ǫ
(uǫ−ψ)−S′

M(uǫ)+ fǫS′
M(uǫ). (3.25)

Each term in the right hand side of (3.25) is bounded in L1(QT) or in Lp′(0,T;W−1,p′(Ω)).
Actually, since suppS′

M and suppS′′
M are both included in [−M,M], uǫ may be replaced

by TM(uǫ) in each of these terms. For 0<ǫ< 1
M , by (3.7b) we obtain

∣

∣

∣

∫

QT

φǫ(x,t,uǫ)
p′(S′

M(uǫ))
p′dxdt

∣

∣

∣
≤
∫

QT

c(x,t)p′ |T1
ǫ
(uǫ)|

p′γ|S′
M(uǫ))|

p′dxdt

=
∫

{(x,t);|uǫ|≤k}
c(x,t)p′ |TM(uǫ)|

p′γ|S′
M(uǫ)|

p′dxdt.

Using Hölder and Gagliardo-Niremberg inequality, in the right hand side integral, we
obtain

∫

{(x,t);|uǫ|≤k}
c(x,t)p′ |TM(uǫ)|

p′γ|S′
M(b(uǫ))|

p′dxdt

≤‖S′
M‖L∞(IR)||c(x,t)||

p′

Lτ (QT)

(

sup
t∈(0,T)

(
∫

Ω

|TM(uǫ)|
2)

p
N +

∫

QT

|∇TM(uǫ)|
pdxdt

)

≤cM,
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where cM is a constant independently of ǫ which will vary from line to line. By (3.3d) we
deduce that

∣

∣

∣

∫

QT

φǫ(x,t,uǫ)
p′(S′′

M(uǫ)∇uǫ)
p′dxdt

∣

∣

∣

≤
∫

QT

(S′′
M(uǫ))

p′ |c(x,t)|p
′
|T1

ǫ
(uǫ)|

p′ |∇uǫ|
p′dxdt≤ cM , (3.26)

as a consequence of (3.25), we obtain (3.23).
As mentioned above, from (3.22) and (3.23), we deduce that for a subsequence, still

indexed by ǫ, uǫ and b(x,uǫ) converges almost everywhere in QT, as ǫ goes to zero (see
e.g., [4]) to a measurable functions u and b(x,u) respectively. With the fact that Tk(uǫ)

is bounded in Lp(0,T;W
1,p
0 (Ω)) then Tk(uǫ)⇀Tk(u) weakly in Lp(0,T;W

1,p
0 (Ω)) for any

k≥0 as ǫ tends to zero. Actually b(x,u) belongs to L∞(0,T;L1(Ω)).
Indeed by using (3.12), (3.13), (3.14), (3.19) and (3.20) we deduce that

∫

Ω

Bk(x,uǫ)dx≤ kC+C1,

and passing to the limit-inf as ǫ tends to zero, we obtain that with

Bk(x,r)=
∫ r

0

∂b(x,s)

∂s
Tk(s)ds.

On the other hand, we have
1

k

∫

Ω

Bk(x,u(τ))dx≤C2

for almost any τ in (0,T). Due to the definition of Bk(x,r) and the fact that

1

k
Bk(x,u)

converges pointwise to
∫ u

0
sg(s)

∂b(x,s)

∂s
ds= |b(x,u)|

as k tends to +∞, as a consequence b(x,u) belongs to L∞(0,T;L1(Ω)).

Lemma 3.1. Let uǫ be a solution of the approximate problem (3.9). Then

lim
n→+∞

limsup
ǫ→0

∫

{n≤|uǫ|≤n+1}
a(x,t,uǫ,∇uǫ)∇uǫdxdt=0.

Proof. Let us now the Lipschitz continuous bounded function θn(uǫ)≡Tn+1(uǫ)−Tn(uǫ)
as a test function in (3.9) to obtain

∫

Ω

Bn(x,uǫ)(T)dx+
∫

QT

aǫ(x,t,uǫ,∇uǫ)∇θn(uǫ)dxdt−
∫

QT

1

ǫ
T1

ǫ
(uǫ−ψ)−θn(uǫ)dxdt

≤
∫

QT

c(x,t)|T1
ǫ
(uǫ)|

γ|∇θn(uǫ)|dxdt+
∫

QT

fǫθn(uǫ)dxdt+
∫

Ω

Bn(x,u0ǫ)dx, (3.27)
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where

Bn(x,r)=
∫ r

0

∂b(x,s)

∂s
θn(s)ds,

gives

∫

Ω

Bn(x,uǫ)(T)dx+
∫

QT

aǫ(x,t,uǫ,∇uǫ)∇θn(uǫ)dxdt−
∫

QT

1

ǫ
T1

ǫ
(uǫ−ψ)−θn(uǫ)

≤
∫

QT

c(x,t)|T1
ǫ
(uǫ)|

γ|∇θn(uǫ)|dxdt+
∫

Ω

Bn(x,u0ǫ)dx+
∫

QT

fǫθn(uǫ)dxdt.

We have set θn ≥0,
∫

Ω

Bn(x,uǫ)(T)dx≥0 and −
∫

QT

1

ǫ
T1

ǫ
(uǫ−ψ)−θn(uǫ)dxdt,

which indeed a positive function, then for every 0<ǫ< 1
n+1 , we have

aǫ(x,t,uǫ,∇uǫ)∇θn(uǫ)= a(x,t,uǫ,∇uǫ)∇θn(uǫ) a.e. in QT.

As a consequence
∫

QT

a(x,t,uǫ,∇uǫ)∇θn(uǫ)dxdt

≤
∫

QT

c(x,t)|T1
ǫ
(uǫ)|

γ|∇θn(uǫ)|dxdt+
∫

Ω

Bn(x,u0ǫ)dx+
∫

QT

fǫθn(uǫ)dxdt. (3.28)

Proceeding as in [1,4,6], we show θn(u) converges to 0 strongly in Lp(0,T;W
1,p
0 (Ω)), and

by passing to the limit in (3.28) as ǫ tends to zero, and n tends to +∞, we obtain

lim
n→+∞

lim
ǫ→0

∫

{n≤|uǫ|≤n+1}
a(x,t,uǫ,∇uǫ)∇uǫdxdt=0. (3.29)

Thus, we complete the proof. �

Step 3: This step is devoted to introduce for k≥0 fixed a time regularization of the func-
tion Tk(u) in order to perform the monotonicity method. This kind of regularization has
been introduced by R. Landes (see Lemma 6 and Proposition 3, pp. 230, and Proposi-

tion 4, pp. 231, in [12]). Let v
µ
0 be a sequence of function in L∞(Ω)∩W

1,p
0 (Ω) such that

‖v
µ
0‖L∞(Ω) ≤ k for all µ > 0. and v

µ
0 converges to Tk(u0) a.e. in Ω and 1

µ‖v
µ
0‖Lp(Ω) con-

verges to 0. For k≥0 and µ>0, let us consider the unique solution (Tk(u))µ ∈ L∞(QT)∩

Lp(0,T;W
1,p
0 (Ω)) of the monotone problem:

∂(Tk(u))µ

∂t
+µ((Tk(u))µ−Tk(u))=0 in D′(QT),

(Tk(u))µ(t=0)=ν
µ
0 in Ω.
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Remark that (Tk(u))µ converges to Tk(u) a.e. in QT, weakly-∗ in L∞(QT) and strongly in

Lp(0,T;W
1,p
0 (Ω)) as µ tends to +∞, and we have

||(Tk(u))µ||L∞(QT)≤max(||(Tk(u))||L∞(QT),||ν
µ
0 ||L∞(Ω))≤ k, ∀µ, k>0.

Lemma 3.2 (see H. Redwane [15]). Let k≥0 be fixed. Let S be a C∞(IR)−function such that
S(r)= r for |r|≤ k, and suppS′ is compact. Then

liminf
µ→+∞

lim
ǫ→0

∫ T

0

〈∂b(x,uǫ)

∂t
,S′(uǫ)(Tk(uǫ)−(Tk(u))µ)

〉

dt≥0,

where 〈·,·〉 denotes the duality pairing between L1(Ω)+W−1,p′(Ω) and L∞(Ω)∩W1,p(Ω).

We prove the following lemma which is the critical point in the development of the
monotonicity method.

Lemma 3.3. The subsequence of uǫ satisfies for any k≥0

limsup
ǫ→0

∫

QT

a(x,t,uǫ,∇Tk(uǫ))∇Tk(uǫ)dxdt≤
∫

QT

σk∇Tk(u)dxdt.

Proof. Let Sn be a sequence of increasing C∞-function such that

Sn(r)= r for |r|≤n, supp(S′
n)⊂ [−(n+1),(n+1)] and ‖S′′

n‖L∞(IR)≤1 for any n≥1.

We use the sequence (Tk(u))µ of approximation of Tk(u), let

Wǫ
µ =Tk(uǫ)−(Tk(u))µ,

and plug the test function S′
n(uǫ)Wǫ

µ in (3.9), we obtain

∫ T

0

〈∂b(x,uǫ)

∂t
,S′

n(uǫ)W
ǫ
µ

〉

dt+
∫

QT

aǫ(x,t,uǫ,∇uǫ)S
′
n(uǫ)∇Wǫ

µdxdt

+
∫

QT

aǫ(x,t,uǫ,∇uǫ)S
′′
n(uǫ)∇uǫ∇Wǫ

µdxdt

−
∫

QT

φǫ(x,t,uǫ)S
′
n(uǫ)∇Wǫ

µdxdt−
∫

QT

1

ǫ
T1

ǫ
(uǫ−ψ)−S′

n(uǫ)W
ǫ
µdxdt

−
∫

QT

S′′
n(uǫ)φǫ(x,t,uǫ)∇uǫ∇Wǫ

µdxdt

=
∫

QT

fǫS′
n(uǫ)W

ǫ
µdxdt. (3.30)

Now we pass to the limit in (3.30) as ǫ→0, µ→+∞ and then n→+∞ for k real number
fixed. In order to perform this task we prove below the following results for any fixed
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k≥0

liminf
µ→+∞

lim
ǫ→0

∫ T

0

〈∂b(x,uǫ)

∂t
,Wǫ

µ

〉

dt≥0 for any n≥ k, (3.31a)

lim
µ→+∞

lim
ǫ→0

∫

QT

φǫ(x,t,uǫ)S
′
n(uǫ)∇Wǫ

µdxdt=0 for any n≥1, (3.31b)

lim
µ→+∞

lim
ǫ→0

∫

QT

φǫ(x,t,uǫ)S
′′
n(uǫ)∇uǫ∇Wǫ

µdxdt=0 for any n≥1, (3.31c)

lim
n→+∞

limsup
µ→+∞

limsup
ǫ→0

∫

QT

aǫ(x,t,uǫ,∇uǫ)S
′′
n(uǫ)∇uǫ∇Wǫ

µdxdt=0, (3.31d)

lim
µ→+∞

lim
ǫ→0

∫

QT

1

ǫ
T1

ǫ
(uǫ−ψ)−S′

n(uǫ)W
ǫ
µdxdt=0, (3.31e)

lim
µ→+∞

lim
ǫ→0

∫

QT

fǫS′
n(uǫ)W

ǫ
µdxdsdt=0. (3.31f)

Proof of (3.31a). The function Sn is increasing and belongs in C∞(IR), then we have for
|r|≤k≤n, Sn(r)=r, while suppS′

n is compact. In view of the definition of Wǫ
µ and lemma

3.2 applies with S=Sn for fixed n≥ k, as a consequence (3.31a) holds true.

Proof of (3.31b). Let us recall the main properties of Wǫ
µ. For fixed µ>0 : Wǫ

µ converges to

Tk(u)−(Tk(u))µ weakly in Lp(0,T;W
1,p
0 (Ω)) as ǫ→ 0. Remark that ||Wǫ

µ ||L∞(QT)≤ 2k for
any ǫ,µ>0, then we deduce that

Wǫ
µ ⇀Tk(u)−(Tk(u))µ a.e in QT and L∞(QT) weakly ∗, (3.32)

when ǫ→0, one had suppS′′
n ⊂ [−(n+1),−n]∪[n,n+1] for any fixed n≥1 and 0<ǫ< 1

n+1 :
φǫ(x,t,uǫ)S′

n(uǫ)∇Wǫ
µ = φǫ(x,t,Tn+1(uǫ))S′

n(uǫ)∇Wǫ
µ a.e. in QT, since suppS′ ⊂ [−(n+

1),n+1], on the other hand φǫ(x,t,Tn+1(uǫ))S′
n(uǫ) converges to φ(x,t,Tn+1(u))S

′
n(u) a.e.

in QT, and |φǫ(x,t,Tn+1(uǫ))S′
n(uǫ)|≤ c(x,t)(n+1)γ for n≥1, by (3.32) and strongly con-

vergence of Tk(uǫ)µ in Lp(0,T,W
1,p
0 (Ω)) we obtain (3.31b).

Proof of (3.31c). For any fixed n≥1 and 0<ǫ< 1
n+1 .

φǫ(x,t,uǫ)S
′′
n(uǫ)∇uǫWǫ

µ =φǫ(x,t,Tn+1(uǫ))S
′′
n(uǫ)∇Tn+1(uǫ)W

ǫ
µ a.e. in QT,

as in the previous step it is possible to pass to the limit for ǫ→0 since by (3.32) we have

φǫ(x,t,Tn+1(uǫ))S
′′
n(uǫ)W

ǫ
µ →φ(x,t,Tn+1(u))S

′′
n(u)Wµ a.e. in QT.

Since |φ(x,t,Tn+1(u))S
′′
n(u)Wµ|≤2k|c(x,t)|(n+1)γ a.e. in QT and (Tk(u))µ converges to 0

in Lp(0,T;W
1,p
0 (Ω)), we obtain (3.31c).

Proof of (3.31d). In view of the definition of Sn we have
∣

∣

∣

∫

QT

aǫ(x,t,uǫ,∇uǫ)S
′′
n(uǫ)W

ǫ
µdxdt

∣

∣

∣

≤T‖S′′
n(uǫ)‖L∞(IR)‖Wǫ

µ‖L∞(QT)

∫

{n≤|uǫ|≤n+1}
a(x,t,uǫ,∇uǫ)∇uǫdxdt
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for any n≥1, any 0<ǫ< 1
n+1 any µ>0. By (3.29) it is possible to establish (3.31d).

Proof of (3.31f). By (3.7c), the pointwise convergence of uǫ and Wǫ
µ and its boundness it is

possible to pass the limit for ǫ→0, then for µ→+∞ and for any n≥1:

lim
µ→+∞

lim
ǫ→0

∫

QT

fǫS′
n(uǫ)(Tk(uǫ)−(Tk(u))µ)dxdt=0.

Proof of (3.31e). Similar to (3.31f). Now we turn back to the proof of Lemma 3.3. Due to
(3.31a)-(3.31f) we can to pass to the limit-sup when µ tends to +∞ and to the limit as n
tends to +∞ in (3.30). using the definition of Wǫ

µ we deduce that for any k≥0

lim
n→+∞

limsup
µ→+∞

limsup
ǫ→0

∫

QT

S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ)(∇Tk(uǫ)−∇(Tk(u)µ)dxdt≤0.

Since

S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ)= a(x,t,uǫ,∇uǫ)∇Tk(uǫ)

for k≤ 1
ǫ and k≤n, using the properties of S′

n the above inequality implies that for k≤n:

limsup
ǫ→0

∫

QT

aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ)dxdt

≤ lim
n→+∞

limsup
µ→+∞

limsup
ǫ→0

∫

QT

S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ)∇Tk(u)µdxdt. (3.33)

On the other hand, for ǫ< 1
n+1 ,

S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ)=S′

n(uǫ)a(x,t,Tn+1(uǫ),∇Tn+1(uǫ)) a.e. in QT.

Furthermore we have

aǫ(x,t,uǫ,∇uǫ)⇀σk weakly in (Lp′(QT))
N , (3.34)

it follows that for a fixed n≥1 : S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ) converges to S′

n(uǫ)σn+1 weakly in
Lp′(QT) when ǫ tends to 0. Finally, using the strong convergence of (Tk(u)µ) to Tk(u) in

Lp(0,T;W
1,p
0 (Ω)) as µ tends to +∞, we get

lim
µ→+∞

lim
ǫ→0

∫

QT

S′
n(uǫ)aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ)µdxdsdt

=
∫

QT

S′
n(uǫ)σn+1∇Tk(u)dxdt (3.35)

as soon as k≤n. Now for k≤n we have

a(x,t,Tn+1(uǫ),∇Tn+1(uǫ))χ{|uǫ|≤k}= a(x,t,Tk(uǫ),∇Tk(uǫ))χ{|uǫ|≤k} a.e. in QT,
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which implies that, by the fact that uǫ →u a.e.QT, and (3.34), and by passing to the limit
when ǫ tends to 0,

σn+1χ|u|≤k=σkχ{|u|≤k} a.e. in QT−{|u|= k} for k≤n. (3.36)

Finally, by (3.36) and (3.34) we have for k≤n: σn+1∇Tk(u)=σk∇Tk(u) a.e. in QT. Recalling
(3.33), (3.35) the proof of the lemma is complete. �

Step 4: We prove that the weak limit σk of a(x,t,Tk(uǫ),∇Tk(uǫ)) can be identified with
a(x,t,Tk(u),∇Tk(u)).

Lemma 3.4. the subsequence of uǫ defined in Step 1 satisfies for any k≥0

lim
ǫ→0

∫

QT

(

a(x,t,Tk(uǫ),∇Tk(uǫ))−a(x,t,Tk(uǫ),∇Tk(u))
)(

∇Tk(uǫ)−∇Tk(u)
)

dxdt

=0. (3.37)

Proof. Using (3.3b) we have

lim
ǫ→0

∫

QT

(

a(x,t,Tk(uǫ),∇Tk(uǫ))−a(x,t,Tk(uǫ),∇Tk(u))
)(

∇Tk(uǫ)−∇Tk(u)
)

dxdt

≥0. (3.38)

Furthermore, by (3.3a), the almost everywhere convergence of uǫ, we have the sequence
a(x,t,Tk(uǫ),∇Tk(u))) converges to a(x,t,Tk(u),∇Tk(u))) a.e. in QT, and

|a(x,t,Tk(uǫ),∇Tk(uǫ)))|≤ν[hk(x,t)+|∇Tk(uǫ)|
p−1] a.e. in QT,

uniformly with respect to ǫ. As a consequence

a(x,t,Tk(uǫ),∇Tk(u)))→ a(x,t,Tk(u),∇Tk(u))) strongly in (Lp′(QT))
N. (3.39)

Finally, using the fact that uǫ →u a.e. in QT, (3.34) and (3.39) make it possible to pass to
the lim-sup as ǫ tends to 0 in (3.38) and we have (3.37). �

Lemma 3.5. For fixed k≥0, we have

σk = a(x,t,Tk(u),∇Tk(u))) a.e. in QT, (3.40)

and as ǫ tends to 0

a(x,t,Tk(uǫ),∇Tk(uǫ))∇Tk(uǫ)⇀ a(x,t,Tk(u),∇Tk(u)))∇Tk(u) (3.41)

weakly in L1(QT).

lim
n→+∞

∫

{n≤|u|≤n+1}
a(x,t,u,∇u)∇udxdt=0, (3.42a)

u≥ψ a.e. in Ω. (3.42b)
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Proof. We observe that for for any k>0, any 0<ǫ< 1
k and any ξ∈ IRN :

aǫ(x,t,Tk(uǫ),ξ)= a(x,t,Tk(uǫ),ξ)= a 1
k
(x,t,Tk(uǫ),ξ) a.e. in QT.

Since Tk(uǫ) converges to Tk(u) weakly in Lp(0,T;W
1,p
0 (Ω)), and by (3.37) we obtain

lim
ǫ→0

∫

QT

a 1
k
(x,t,Tk(uǫ),∇Tk(uǫ))∇Tk(uǫ)dxdt=

∫

QT

σk∇Tk(u)dxdt. (3.43)

Since, for fixed k>0, the function a 1
k
(x,t,s,ξ) is continuous and bounded with respect to

s, the usual Minty’s argument applies in view of (3.34) and (3.43). It follows that (3.40)
holds true. In order to prove (3.43), by (3.3b), (3.37) and proceeding as in [4] it’s easy to
show (3.41). Taking the limit as ǫ tends to 0 in (3.29) and using (3.41) show that u satisfies
(3.42a).

Using the estimate (3.19), we have
∫

QT

T1
ǫ
(uǫ−ψ)−≤Cǫ,

by letting ǫ to 0, we obtain
∫

QT

T1
ǫ
(uǫ−ψ)−dxdt=0,

then we conclude that u≥ψ a.e. in QT. �

Step 5: We show that u satisfies (3.6). Let ϕ∈Kψ∩L∞(QT) such that

∂ϕ

∂t
∈Lp′(0,T;W−1,p′(Ω)).

Pointwise multiplication of the approximate equation (3.9) by Tk(uǫ−ϕ) and use the in-
tegration par parts, we get:

∫ t

0

〈∂b(x,uǫ)

∂s
;Tk(uǫ−ϕ)

〉

ds+
∫

Qt

aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ−ϕ)dxds

−
∫

Qt

φǫ(x,t,uǫ)Tk(uǫ−ϕ)dxds−
1

ǫ

∫

Qt

T1
ǫ
(uǫ−ψ)−Tk(uǫ−ϕ)dxds

=
∫

Qt

fǫTk(uǫ−ϕ)dxds. (3.44)

We pass to the limit as in (3.44) ǫ tend to 0. The first term of (3.44) can be written

∫ t

0

〈∂b(x,uǫ)

∂s
;Tk(uǫ−ϕ)

〉

ds

=
∫ t

0

〈∂ϕ

∂t
,
∂b(x,uǫ)

∂s
Tk(uǫ−ϕ)

〉

ds

+
∫

Ω

∫ uǫ−ϕ

0
Tk(r)

∂b(x,r+ϕ)

∂r
dsdx−

∫

Ω

∫ u0ǫ−ϕ(0)

0
Tk(r)

∂b(x,r+ϕ(0))

∂r
drdx.
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In view of (3.4b), (3.5), (3.8) and since uǫ converges to u a.e in QT, we deduce that

∫ t

0

〈∂b(x,uǫ)

∂s
;Tk(uǫ−ϕ)

〉

ds

converges to
∫ t

0

〈∂b(x,u)

∂s
;Tk(u−ϕ)

〉

ds

as ǫ tends to zero and for all t∈ (0,T).
The term

aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ−ϕ)= a(x,t,TM(uǫ),∇TM(uǫ))∇Tk(TM(uǫ)−ϕ)

for ǫ≤ 1
M , where M= k+‖ϕ‖L∞(QT), so using Lemma 3.5, we get

aǫ(x,t,uǫ,∇uǫ)∇Tk(uǫ−ϕ)

converges to a(x,t,u,∇u)∇Tk(u−ϕ) weakly in L1(QT).
Furthermore, since

φǫ(x,t,uǫ)∇Tk(uǫ−ϕ)=φ(x,t,TM(uǫ))∇Tk(TM(uǫ)−ϕ)

a.e. in QT, for ǫ≤ 1
M and where M=k+‖ϕ‖L∞(QT). We can easily see that φǫ(x,t,uǫ)∇Tk(uǫ−

ϕ) converges to φ(x,t,u)∇Tk(u−ϕ) weakly in L1(QT).
Finally, the term

−
1

ǫ
T1

ǫ
(uǫ−ψ)−Tk(uǫ−ϕ)

is positive and we have fǫTk(uǫ−ϕ) converges to f Tk(u−ϕ) strongly in L1(QT).
As a consequence of the above convergence result, we are in a position to pass to the

limit as ǫ tends to 0 in Eq. (3.44) and to conclude that u satisfies (3.6).
It remains to show that b(x,u) satisfies the initial condition. To this end, firstly re-

mark that, in view of the definition of S′
M (see (3.22)), we have BM(x,uǫ) is bounded in

L∞(QT)∩Lp(0,T;W
1,p
0 (Ω)). Secondly, by (3.23) we show that

∂BM(x,uǫ)

∂t

is bounded in L1(Q)+Lp′(0,T;W−1,p′(Ω)). As a consequence, an Aubin’s type
Lemma (see e.g., [16], Corollary 4) implies that BM(x,uǫ) lies in a compact set of
C0([0,T];W−1,s(Ω)) for any s< inf(p′, N

N−1). It follows that, on one hand, BM(x,uǫ)(t=0)

converges to BM(x,u)(t= 0) strongly in W−1,s(Ω). On the order hand, the smoothness
of BM imply that BM(x,uǫ) (t = 0) converges to BM(x,u)(t = 0) strongly in Lq(Ω) for
all q<+∞, we conclude that BM(x,uǫ)(t = 0) = BM(x,u0ǫ) converges to BM(x,u)(t= 0)
strongly in Lq(Ω), we obtain BM(x,u)(t=0)=BM(x,u0) a.e. in Ω and for all M>0, now
letting M to +∞, we conclude that b(x,u)(t=0)=b(x,u0) a.e. in Ω.

As a conclusion of Step 1 to Step 5, the proof of Theorem 3.1 is complete. �
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[9] R. Di Nardo, F. Fo and O. Guibé, Existence result for nonlinear parabolic equations with
lower order terms. Anal. Appl, Singap., 9(2) (2011), 161–186.

[10] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations
with general measure data, Ann. Scuala Norm. Sup. Pisa Cl. Sci. (4) (1999), 28.

[11] R.-J. Diperna and P.-L. Lions, On the Cauchy Problem for the Boltzmann Equations: Global
existence and weak stability, Ann. Math., 130 (1989), 285–366.

[12] R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary
problems, Proc. Roy. Soc. Edinburgh Sect. A, 89 (1981), 321–366.
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