DOI: 10.4208/ata.2015.v31.n1.5

Analysis in Theory and Applications Anal. Theory Appl., Vol. **31**, No. 1 (2015), pp. 58-67

C^p Condition and the Best Local Approximation

H. H. Cuenya^{*} and D. E. Ferreyra

Departamento de Matemática, Universidad Nacional de Río Cuarto, (5800) Río Cuarto, Argentina

Received 22 May 2014; Accepted (in revised version) 8 March 2015

Abstract. In this paper, we introduce a condition weaker than the L^p differentiability, which we call C^p condition. We prove that if a function satisfies this condition at a point, then there exists the best local approximation at that point. We also give a necessary and sufficient condition for that a function be L^p differentiable. In addition, we study the convexity of the set of cluster points of the net of best appoximations of f, $\{P_{\epsilon}(f)\}$ as $\epsilon \to 0$.

Key Words: Best *L^p* approximation, local approximation, *L^p* differentiability.

AMS Subject Classifications: 41A50, 41A10

1 Introduction

Let x_1 , $a \in \mathbb{R}$, a > 0, and let \mathcal{L} be the space of equivalence class of Lebesgue measurable real functions defined on $I_a := (x_1 - a, x_1 + a)$. For each Lebesgue measurable set $A \subset I_a$, with |A| > 0, we consider the semi-norm on \mathcal{L} ,

$$\|h\|_{p,A} := \left(|A|^{-1} \int_{A} |h(x)|^{p} dx\right)^{1/p}, \quad 1$$

where |A| denotes the measure of the set A. As usual, we denote by $L^p(I_a)$ the space of functions $h \in \mathcal{L}$ with $||h||_{p,I_a} < \infty$. If $0 < \epsilon \le a$, $I_{-\epsilon} := (x_1 - \epsilon, x_1)$, $I_{+\epsilon} := (x_1, x_1 + \epsilon)$, we write $||h||_{p, I_{\epsilon}} = ||h||_{p, I_{\epsilon}}$, and $||h||_{p,\epsilon} = ||h||_{p,I_{\epsilon}}$. For a non negative integer s, we denote by Π^s the linear space of polynomials of degree at most s. Henceforward, we consider $n \in \mathbb{N} \cup \{0\}$. If $h \in L^p(I_a)$, it is well known that there exists a unique best $||\cdot||_{p,\epsilon}$ -approximation of h from Π^n , say $P_{\epsilon}(h)$, i.e., $P_{\epsilon}(h) \in \Pi^n$ satisfies

$$||h-P_{\epsilon}(h)||_{p,\epsilon} \leq ||h-P||_{p,\epsilon}$$
 for all $P \in \Pi^n$.

http://www.global-sci.org/ata/

©2015 Global-Science Press

^{*}Corresponding author. *Email addresses:* hcuenya@exa.unrc.edu.ar (H. H. Cuenya), deferreyra@exa.unrc.edu.ar (D. E. Ferreyra)

 $P_{\epsilon}(h)$ is the unique polynomial in Π^{n} , which verifies

$$\int_{I_{\epsilon}} |(h - P_{\epsilon}(h))(x)|^{p-1} \operatorname{sgn}((h - P_{\epsilon}(h))(x))(x - x_1)^j dx = 0, \quad 0 \le j \le n,$$
(1.1)

see [2].

If $\lim_{\epsilon \to 0} P_{\epsilon}(h)$ exists, say $P_0(h)$, it is called the *best local approximation of h at x*₁ *from* Π^n (b.l.a.). In general, we shall also denote by $P_0(h)$ the set

$$\Big\{P\in\Pi^n:P=\lim_{k\to\infty}P_{\epsilon_k}(h) \text{ for some } \epsilon_k\downarrow 0\Big\}.$$

The problem of best local approximation was formally introduced and studied in a paper by Chui, Shisha and Smith [3]. However, the initiation of this could be dated back to results of J. L. Walsh [10], who proved that the Taylor polynomial of an analytic function h over a domain is the limit of the net of polynomial best approximations of a given degree, by shrinking the domain to a single point. Later, several authors studied the existence of the b.l.a. assuming a certain order of differentiability. In [8] and [12], this problem was considered when h is L^p differentiable. Recently, in [7] and [5] the authors proved the existence of the b.l.a. under weaker conditions, more precisely they assumed existence of lateral L^p derivatives of order n and L^p differentiability of order n-1. In [4] it was proved that if p = 2 and h is differentiable up to order n-1, then $P_0(h)$ is either empty or convex. Later, in [11] using interpolation properties of the best approximation, the author extended this result for 1 . The main purpose of this paper is to givemore general conditions on a function <math>h so that there exists the b.l.a., and to study its connection with the L^p differentiability. Further, we study the convexity of $P_0(h)$. The following definition is motivated by the characterization (1.1).

Definition 1.1. We shall say that $f \in L^p(I_a)$ satisfies the C^p condition of order n at x_1 , if there exists $Q \in \Pi^n$ such that

$$\int_{I_{\epsilon}} |(f-Q)(x)|^{p-1} \operatorname{sgn}((f-Q)(x))(x-x_1)^j dx = o(\epsilon^{n(p-1)+j+1}),$$
(1.2)

 $0 \le j \le n$, as $\epsilon \to 0$.

Analogously, we shall say that *f* satisfies the left (right) C^p condition of order *n* at x_1 , if there exists $Q \in \Pi^n$ verifying (1.2) with $I_{-\epsilon}(I_{+\epsilon})$ instead of I_{ϵ} .

We denote with $c_n^p(x_1)$ the class of functions in $L^p(I_a)$ which satisfy the C^p condition of order n at x_1 . We recall that a function $f \in L^p(I_a)$ is L^p differentiable of order n at x_1 (i.e., $f \in t_n^p(x_1)$) if there exists $Q \in \Pi^n$ such that $||f - Q||_{p,\epsilon} = o(\epsilon^n)$. This concept was introduced by Calderón and Zygmund in [1]. Using the Hölder inequality, it is easy to see that $t_n^p(x_1) \subset c_n^p(x_1)$, moreover the inclusion is strict. In fact, if $h(x) = \sin(1/x)$, $x \neq 0$, then $h \in c_0^2(0)$, however a straightforward computation shows that $h \notin t_0^2(0)$. It immediately follows from Definition 1.1 that $c_n^p(x_1)$ satisfies: a) If $f \in c_n^p(x_1)$, then $f + P \in c_n^p(x_1)$ for all $P \in \Pi^n$, and b) If $f \in c_n^p(x_1)$, then $\lambda f \in c_n^p(x_1)$, for all $\lambda \in \mathbb{R}$. In the second section of this paper, we prove that if $f \in c_n^p(x_1)$, $2 \le p < \infty$, then there exists the b.l.a., and it is the unique $Q \in \Pi^n$ satisfying (1.2). We also prove that $f \in t_n^p(x_1)$ if and only if $f \in c_n^p(x_1)$ and $||f - P_{\epsilon}(f)||_{p,\epsilon} = o(\epsilon^n)$. In the case p = 2, we show that Definition (1.1) allows us to introduce a new concept of differentiation. In the third section of this paper we prove that if $f \in c_{n-1}^p(x_1)$, then $P_0(f)$ is either empty or convex. It extends, for $p \ge 2$ and a broader class of functions, a similar result established in [11]. Henceforward, without loss of generality, we shall establish our results at the point $x_1 = 0$. We shall write K for a positive constant not necessarily the same in each occurrence.

2 The main results

In this section we shall prove a theorem of existence of the best local approximation for $p \ge 2$. Given a function $f \in L^p(I_a)$, $Q \in \Pi^n$, and $0 < \epsilon \le a$, we define the following sets.

$$A_{\epsilon} = \{ f \ge P_{\epsilon}(f) > Q \} \cap I_{\epsilon}, \qquad B_{\epsilon} = \{ Q < f < P_{\epsilon}(f) \} \cap I_{\epsilon}, \qquad (2.1a)$$

$$C_{\epsilon} = \{ f \le Q < P_{\epsilon}(f) \} \cap I_{\epsilon}, \qquad D_{\epsilon} = \{ P_{\epsilon}(f) < f < Q \} \cap I_{\epsilon}, \qquad (2.1b)$$

$$E_{\epsilon} = \{ f \ge Q > P_{\epsilon}(f) \} \cap I_{\epsilon}, \qquad F_{\epsilon} = \{ f \le P_{\epsilon}(f) < Q \} \cap I_{\epsilon}.$$
(2.1c)

Suppose that $P_{\epsilon}(f) - Q$ has *m* zeros in I_{ϵ} , according to their multiplicity counting, for a net $\epsilon \downarrow 0$, say $x_i = x_i(\epsilon)$. We write $(P_{\epsilon}(f) - Q)(x) = \prod_{i=1}^{s(\epsilon)} (x - x_i)^{r_i(\epsilon)} H_{\epsilon}(x)$, with $H_{\epsilon}(x) \neq 0$, $x \in I_{\epsilon}$, and $\sum_{i=1}^{s(\epsilon)} r_i(\epsilon) = m$.

Let $R_{\epsilon}(x) := \eta(\epsilon) \prod_{i=1}^{s(\epsilon)} (x - x_i)^{r_i(\epsilon)}$ be with $\eta(\epsilon) = \pm 1$ such that $R_{\epsilon}(x)(P_{\epsilon}(f) - Q)(x) \ge 0$, $x \in I_{\epsilon}$. We put $R_{\epsilon}(x) = \sum_{j=0}^{m} b_j x^j$, $b_j = b_j(\epsilon)$. With this notation we establish the following lemma.

Lemma 2.1. Suppose that $f \in c_l^p(0)$, $0 \le l \le n$. If $Q \in \Pi^l$ verifies (1.2) and $m \le l$, then

1.

$$\int_{M_{\epsilon}} |(|(f - P_{\epsilon}(f))(x)|^{p-1} - |(f - Q)(x)|^{p-1})R_{\epsilon}(x)| \frac{dx}{\epsilon} = o(\epsilon^{l(p-1)}) \sum_{j=0}^{m} |b_j|\epsilon^j,$$

where M_{ϵ} is equal to A_{ϵ} , C_{ϵ} , E_{ϵ} or F_{ϵ} .

2.

$$\int_{N_{\epsilon}} |(|(f - P_{\epsilon}(f))(x)|^{p-1} + |(f - Q)(x)|^{p-1})R_{\epsilon}(x)|\frac{dx}{\epsilon} = o(\epsilon^{l(p-1)})\sum_{j=0}^{m} |b_{j}|\epsilon^{j},$$

where N_{ϵ} is equal to B_{ϵ} or D_{ϵ} .

Proof. Clearly, the sets defined in (2.1) are pairwise disjoint and

$$A_{\epsilon} \cup B_{\epsilon} \cup C_{\epsilon} \cup D_{\epsilon} \cup E_{\epsilon} \cup F_{\epsilon} = I_{\epsilon}, \qquad (2.2)$$

except by the set of zeros of R_{ϵ} .

By hypothesis we have

$$\int_{I_{\epsilon}} |(f-Q)(x)|^{p-1} \operatorname{sgn}((f-Q)(x)) x^{j} dx$$

= $o(\epsilon^{l(p-1)+j+1}) = o_{j}(\epsilon^{l(p-1)+1}) \epsilon^{j}, \quad 0 \le j \le l, \text{ as } \epsilon \to 0.$ (2.3)

From (1.1) we have

$$\int_{I_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} \operatorname{sgn}((f - P_{\epsilon}(f))(x)) x^{j} dx = 0, \quad 0 \le j \le l.$$
(2.4)

Multiplying (2.3) member to member by b_j and adding on j from 0 to m, we obtain

$$\int_{A_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx + \int_{B_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx$$

$$-\int_{C_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx + \int_{D_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx$$

$$-\int_{E_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx + \int_{F_{\epsilon}} |(f-Q)(x)|^{p-1} |R_{\epsilon}(x)| dx$$

$$= \sum_{j=0}^{m} o_{j}(\epsilon^{l(p-1)+1}) b_{j} \epsilon^{j} = o(\epsilon^{l(p-1)+1}) \sum_{j=0}^{m} |b_{j}| \epsilon^{j}.$$
(2.5)

In fact, if

$$w = w(\epsilon) := \sum_{j=0}^{m} |b_j| \epsilon^j \neq 0,$$

the last equality is a consequence of

$$\left|w^{-1}\sum_{j=0}^{m}o_{j}(\epsilon^{l(p-1)+1})b_{j}\epsilon^{j}\right| \leq \sum_{j=0}^{m}|o_{j}(\epsilon^{l(p-1)+1})| = o(\epsilon^{l(p-1)+1}).$$

In a similar way, from (2.4) we get

$$\begin{split} &\int_{A_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx - \int_{B_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx \\ &- \int_{C_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx - \int_{D_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx \\ &- \int_{E_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx + \int_{F_{\epsilon}} |(f - P_{\epsilon}(f))(x)|^{p-1} |R_{\epsilon}(x)| dx = 0. \end{split}$$

$$(2.6)$$

Subtracting the Eq. (2.5) from (2.6), we get

$$-\int_{A_{\epsilon}} (|(f-Q)(x)|^{p-1} - |(f-P_{\epsilon}(f))(x)|^{p-1})|R_{\epsilon}(x)|dx$$

$$-\int_{B_{\epsilon}} (|(f-P_{\epsilon}(f))(x)|^{p-1} + |(f-Q)(x)|^{p-1})|R_{\epsilon}(x)|dx$$

$$-\int_{C_{\epsilon}} (|(f-P_{\epsilon}(f))(x)|^{p-1} - |(f-Q)(x)|^{p-1})|R_{\epsilon}(x)|dx$$

$$-\int_{D_{\epsilon}} (|(f-P_{\epsilon}(f))(x)|^{p-1} - |(f-Q)(x)|^{p-1})|R_{\epsilon}(x)|dx$$

$$-\int_{E_{\epsilon}} (|(f-Q)(x)|^{p-1} - |(f-P_{\epsilon}(f))(x)|^{p-1})|R_{\epsilon}(x)|dx$$

$$=o(\epsilon^{l(p-1)+1})\sum_{j=0}^{m} |b_{j}|\epsilon^{j}.$$
(2.7)

Now, we observe that the six integrals in (2.7) are nonnegative. Thus, each term in (2.7) is equal to $o(\epsilon^{l(p-1)+1})\sum_{j=0}^{m} |b_j|\epsilon^j$. This proves the lemma.

Next, we prove one of our main results.

Theorem 2.1. Let $p \ge 2$, $0 \le l \le n$, and $f \in c_l^p(0)$. If $Q \in \Pi^l$ verifies (1.2) then $P_0(f)$ is either empty or for each j, $0 \le j \le l$, and for each $P \in P_0(f)$,

$$P^{(j)}(0) = Q^{(j)}(0).$$
(2.8)

Proof. We suppose $P_0(f) \neq \emptyset$. Let $P \in P_0(f)$ and let $\epsilon_k \downarrow 0$ be such that $\lim_{k\to\infty} P_{\epsilon_k}(f) = P$. Without loss of generality, we can assume that $P_{\epsilon_k}(f) \neq Q$ for all k. Suppose that there exists a sequence (which we do not relabel) such that $P_{\epsilon_k}(f) - Q$ has m zeros, according to their multiplicity counting, in I_{ϵ_k} , say $x_{i,k}$, $0 \le i \le m-1$. As above of Lemma 2.1, we consider $R_{\epsilon_k}(x) = \sum_{j=0}^m b_j x^j$ such that $R_{\epsilon_k}(x) (P_{\epsilon_k}(f) - Q)(x) \ge 0$, $x \in I_{\epsilon_k}$. The proof is divided in two parts: (a) $m \ge l+1$ and (b) $m \le l$.

We assume (a). Clearly, the divided differences $P_{\epsilon_k}[x_{0,k}, \dots, x_{j,k}]$ and $Q[x_{0,k}, \dots, x_{j,k}], 0 \le j \le l$, are equals. On the other hand, $P_{\epsilon_k}[x_{0,k}, \dots, x_{j,k}] = (j!)^{-1}P_{\epsilon_k}^{(j)}(\eta_{j,k})$ and $Q[x_{0,k}, \dots, x_{j,k}] = (j!)^{-1}Q^{(j)}(\nu_{j,k})$, where $\eta_{j,k}, \nu_{j,k} \in I_{\epsilon_k}$. Thus, $P^{(j)}(0) = Q^{(j)}(0), 0 \le j \le l$.

Now, we assume (b). Let M_{ϵ_k} and N_{ϵ_k} be the sets introduced in Lemma 2.1. For $a \ge 0$ and $b \ge 0$ there exists a constant K > 0 such that $(a+b)^{p-1} \le K(a^{p-1}+b^{p-1})$. If $x \in N_{\epsilon_k}$, $a = |(f - P_{\epsilon_k}(f))(x)|$, and b = |(f - Q)(x)|, we have

$$|(P_{\epsilon_k}(f) - Q)(x)|^{p-1} \le K(|(f - P_{\epsilon_k}(f))(x)|^{p-1} + |(f - Q)(x)|^{p-1}).$$

Therefore

$$\int_{N_{\epsilon_{k}}} |R_{\epsilon_{k}}(x)| |(P_{\epsilon_{k}}(f) - Q)(x)|^{p-1} dx
\leq K \int_{N_{\epsilon_{k}}} |(f - P_{\epsilon_{k}}(f))(x)|^{p-1} |R_{\epsilon_{k}}(x)| dx + K \int_{N_{\epsilon_{k}}} |(f - Q)(x)|^{p-1}) |R_{\epsilon_{k}}(x)| dx
\leq o(\epsilon_{k}^{l(p-1)+1}) \sum_{j=0}^{m} |b_{j}| \epsilon_{k}^{j}.$$
(2.9)

Since $p-1 \ge 1$, for $a \ge 0$ and $b \ge 0$ it verifies $a^{p-1} + b^{p-1} \le (a+b)^{p-1}$. If $x \in M_{\epsilon_k}$, $a = |(f - P_{\epsilon_k}(f))(x)|$, and $b = |(P_{\epsilon_k}(f) - Q)(x)|$ we get, a+b = |(f-Q)(x)|, therefore

$$|(P_{\epsilon_k}(f) - Q)(x)|^{p-1} \le |(f - Q)(x)|^{p-1} - |(f - P_{\epsilon_k}(f))(x)|^{p-1}.$$
(2.10)

From (2.10) we obtain

$$\int_{M_{\epsilon_{k}}} |R_{\epsilon_{k}}(x)| |(P_{\epsilon_{k}}(f) - Q)(x)|^{p-1} dx
\leq \int_{M_{\epsilon_{k}}} ||(f - Q)(x)|^{p-1} - |(f - P_{\epsilon_{k}}(f))(x)|^{p-1} ||R_{\epsilon_{k}}(x)| dx
\leq o(\epsilon_{k}^{l(p-1)+1}) \sum_{j=0}^{m} |b_{j}| \epsilon_{k}^{j}.$$
(2.11)

Adding the two inequalities of type (2.9) for the sets B_{ϵ_k} and D_{ϵ_k} , and the four inequalities of type (2.11) for the sets A_{ϵ_k} , C_{ϵ_k} , E_{ϵ_k} and F_{ϵ_k} , we have

$$\int_{I_{\epsilon_k}} |R_{\epsilon_k}(x)| |(P_{\epsilon_k}(f) - Q)(x)|^{p-1} \frac{dx}{2\epsilon_k} \le o(\epsilon_k^{l(p-1)}) \sum_{j=0}^m |b_j| \epsilon_k^j.$$
(2.12)

Now, we consider the norm ρ on Π^n defined by $\rho(T) = \sum_{j=0}^n |c_j|$ if $T(x) = \sum_{j=0}^n c_j x^j$, and we define $T^{\epsilon}(x) := T(\epsilon x)$. By means of the change of variable $x = \epsilon_k t$, (2.12) can be written

$$\int_{I_1} |R_{\epsilon_k}^{\epsilon_k}(x)|| (P_{\epsilon_k}(f) - Q)^{\epsilon_k}(x)|^{p-1} \frac{dx}{2} \rho^{-1} (R_{\epsilon_k}^{\epsilon_k}) \le o(\epsilon_k^{l(p-1)}).$$

$$(2.13)$$

Let

$$W_{\epsilon_k} = \frac{R_{\epsilon_k}^{\epsilon_k}}{\rho(R_{\epsilon_k}^{\epsilon_k})}$$

Since $\rho(W_{\epsilon_k}) = 1$, there exists a subsequence, which we denote in the same way, such that and $W_{\epsilon_k} \rightarrow W_0 \in \Pi^m$. Let $S \subset I_1$ be a compact set of positive measure, which does not contain any zero of W_0 , and let $\beta = \min_{t \in S} |W_0(t)| > 0$. There exists k_0 such that $|W_{\epsilon_k}(t)| > \beta/2$ for all $k \ge k_0$ and for all $t \in S$. As a consequence, we have

$$\frac{\beta}{2} \int_{S} |(P_{\epsilon_{k}}(f) - Q)^{\epsilon_{k}}(x)|^{p-1} dx \leq \int_{I_{1}} |(P_{\epsilon_{k}}(f) - Q)^{\epsilon_{k}}(x)|^{p-1} |W_{\epsilon_{k}}(t)| dx = o(\epsilon_{k}^{l(p-1)}),$$

i.e.,

$$\|(P_{\epsilon_k}(f) - Q)^{\epsilon_k}\|_{p-1,S} = o(\epsilon_k^l).$$

$$(2.14)$$

Now, we recall a Pólya type inequality (see [6, Lemma 2.1]) There exists a constant K > 0 such that

$$|(P_{\epsilon}(f)-Q)^{(j)}(0)| \leq \frac{K}{\epsilon^{j}} ||P_{\epsilon}(f)-Q||_{p-1,\epsilon}, \quad 0 \leq j \leq n, \quad 0 < \epsilon \leq a.$$

$$(2.15)$$

From (2.14), (2.15), and the equivalence two norms on Π^n , we obtain

$$|(P_{\epsilon_{k}}(f) - Q)^{(j)}(0)| \leq \frac{K}{\epsilon_{k}^{j}} ||(P_{\epsilon_{k}}(f) - Q)^{\epsilon_{k}}||_{p,1} = o(\epsilon_{k}^{l-j}),$$
(2.16)

so

$$(P_{\epsilon_k}(f) - Q)^{(j)}(0) \to 0, \quad 0 \le j \le l \quad \text{as } k \to \infty.$$

$$(2.17)$$

Therefore, since $\lim_{k\to\infty} P_{\epsilon_k}(f) = P$, we get (2.8).

Remark 2.1. We observe that the constraint $p \ge 2$, only was used to obtain the inequality (2.11).

As a consequence of the proof of Theorem 2.1 we obtain

Theorem 2.2. If $p \ge 2$ and $f \in c_n^p(0)$, then there exists the best local approximation of f at 0 from Π^n , and it is the unique polynomial in Π^n which satisfies (1.2).

Proof. Since $m \le n$, the theorem analogously follows as in the proof of Theorem 2.1, (b), for l = n. In fact, (2.17) implies $P_{\epsilon_k}(f) \to Q$, as $k \to \infty$. Finally, as $\{\epsilon_k\}$ is arbitrary we get $P_{\epsilon}(f) \to Q$, as $\epsilon \to 0$. Now, the uniqueness of Q verifying (1.2) is clear.

The next theorem gives a characterization of L^p differentiable functions.

Theorem 2.3. Let $p \ge 2$ and $f \in L^p(I_a)$. Then $f \in t_n^p(0)$ if and only if $f \in c_n^p(0)$ and $||f - P_{\epsilon}(f)||_{p,\epsilon} = o(\epsilon^n)$.

Proof. Suppose $f \in t_n^p(0)$. Since we have mentioned in Introduction $t_n^p(0) \subset c_n^p(0)$ and clearly $||f - P_{\epsilon}(f)||_{p,\epsilon} = o(\epsilon^n)$. Now, assume $f \in c_n^p(0)$ and $||f - P_{\epsilon}(f)||_{p,\epsilon} = o(\epsilon^n)$. Let $Q \in \Pi^n$ be verifying (1.2). From the equivalence two norms on Π^n and (2.14), we have $||P_{\epsilon}(f) - Q||_{p,\epsilon} = o(\epsilon^n)$. Therefore, we get

$$\|f-Q\|_{p,\epsilon} \le \|f-P_{\epsilon}(f)\|_{p,\epsilon} + \|P_{\epsilon}(f)-Q\|_{p,\epsilon} = o(\epsilon^{n}), \text{ i.e., } f \in t_{n}^{p}(0).$$

So, we complete the proof.

Given $Q_1, Q_2 \in \Pi^n$, let S_{ϵ} be one of the following sets $\{f > Q_i > Q_j\} \cap I_{\epsilon}, \{f < Q_i < Q_j\} \cap I_{\epsilon}, i, j = 1, 2, i \neq j$.

64

Lemma 2.2. Let *f* be a bounded function on I_a , and let 1 .

(a) Let $Q_1, Q_2 \in \Pi^n$ be such that $Q_1(0) \neq Q_2(0)$. Then there exist $0 < \epsilon_0 \le a$ and K > 0 such that

$$\left| |(f - Q_1)(x)|^{p-1} - |(f - Q_2)(x)|^{p-1} \right| \ge K |(Q_1 - Q_2)(x)|^{p-1}$$
(2.18)

for all $x \in S_{\epsilon}$, and for all $0 < \epsilon \leq \epsilon_0$,.

(b) Let $Q \in \Pi^0$, and let $P_{\epsilon}(f)$ be the best constant approximation of f. Suppose that for a sequence $\epsilon_k \downarrow 0$, $|Q - P_{\epsilon_k}(f)| \ge \alpha > 0$, then there exist K > 0 and $k_0 \in \mathbb{N}$ such that

$$\left| |(f-Q)(x)|^{p-1} - |(f-P_{\epsilon_k}(f))(x)|^{p-1} \right| \ge K |Q-P_{\epsilon_k}(f)|^{p-1}$$
(2.19)

for all $x \in M_{\epsilon_k}$, $k \ge k_0$, where M_{ϵ_k} was introduced in Lemma 2.1.

Proof. (a) If (2.18) is not true, then there exist a sequence $\epsilon_m \downarrow 0$ and $x_m \in S_{\epsilon_m}$ such that

$$0 \le \left| |(f - Q_1)(x_m)|^{p-1} - |(f - Q_2)(x_m)|^{p-1} \right| \le \frac{1}{m} |(Q_1 - Q_2)(x_m)|^{p-1}.$$
(2.20)

Since *f* is bounded on I_a , the sequences $\{(f-Q_1)(x_m)\}$ and $\{(f-Q_2)(x_m)\}$ are bounded. Therefore, for some subsequence which we denote in the same way, it follows from (2.20)

$$|(Q_1-Q_2)(x_m)| = ||(f-Q_1(x_m))| - |(f-Q_2)(x_m)|| \to 0.$$

The last equality follows from definition of the set S_{ϵ_m} . Since $x_m \to 0$, we have $Q_1(0) = Q_2(0)$, a contradiction.

(b) Since *f* is bounded and $P_{\epsilon_k}(f)$ is constant, it is easy to see that $\{P_{\epsilon_k}(f)\}$ is uniformly bounded. Then there exists a subsequence, which we denote in the same way, and $T \in \Pi^0$ such that $P_{\epsilon_k}(f) \to T$. If (2.19) is not true, a similar argument to the proof of (a) yields Q - T = 0. On the other hand, $|Q - T| \ge \alpha > 0$, a contradiction.

Theorem 2.4. Let 1 , and let*f* $be a bounded function on <math>I_a$. Then

- (a) If $Q_1, Q_2 \in \Pi^n$ satisfy (1.2) then $Q_1(0) = Q_2(0)$. In particular, for n = 0 there exists at most a constant polynomial verifying (1.2).
- (b) If $f \in c_0^p(0)$ then there exists the best local approximation of f at 0, and it is the unique constant polynomial verifying (1.2).

Proof. (a) Suppose that $Q_1(0) \neq Q_2(0)$. By Lemma 2.2, there exist ϵ_0 and K > 0 verify (2.18). Proceeding as in Theorem 2.1 with Q_1 instead of Q and Q_2 instead of $P_{\epsilon}(f)$ we obtain that $Q_1 - Q_2 = 0$, a contradiction. In fact, we observe that (2.11) remains valid for all p, $1 , <math>\epsilon_k \le \epsilon_0$ and $S_{\epsilon} = M_{\epsilon}$.

(b) Let $Q \in \Pi^0$ be verifying (1.2) and $P_{\epsilon}(f)$ the best constant approximant. If $P_{\epsilon_k}(f) \rightarrow Q$, for some sequence $\epsilon_k \downarrow 0$, using Lemma 2.2 and proceeding as in Theorem 2.1, we have that $P_{\epsilon_k}(f) \rightarrow Q$, which is a contradiction.

Remark 2.2. We observe that all the theorems proved in this Section hold, with the obvious modifications, if *f* satisfies the left (right) C^p condition of order *n* at 0, and we consider $\|\cdot\|_{p,-\epsilon}(\|\cdot\|_{p,+\epsilon})$ instead of $\|\cdot\|_{p,\epsilon}$.

If $f \in c_n^p(0)$, and $p \ge 2$, let $T_{n,p}(f)$ be the unique polynomial in Π^n satisfying (1.2). The next theorem can be easily proved.

Theorem 2.5. *The operator* $T_{n,2}:c_n^2(0) \to \Pi^n$ *is linear. Further,* $c_n^2(0) \subset c_{n-1}^2(0)$ *, and if* $f \in c_n^2(0)$ *, then* $T_{n,2}(f)(x) = T_{n-1,2}(f)(x) + \alpha(f)x^n$, $\alpha(f) \in \mathbb{R}$.

If $f \in c_n^2(0)$, the Theorem 2.5 allows us to define the *k*-th derivative in the C^2 sense by $f^{(k)}(0) := (T_{n,2}(f))^{(k)}(0), 0 \le k \le n$. Clearly, if *f* has a *k*-th derivative in the L^2 sense, it coincides with the *k*-th derivative in the C^2 sense.

3 Convexity of $P_0(f)$

We begin this section by proving the continuity of the function $F: (0,a) \to \Pi^n$ defined by $F(\epsilon) = P_{\epsilon}(f)$, with $f \in L^p(I_a)$, 1 .

Lemma 3.1. *F* is a continuous function.

Proof. Fix $\epsilon_0 \in (0,a)$, and let $\epsilon_m \in (0,a)$ be such that $\epsilon_m \to \epsilon_0$. There exists $m_0 \in \mathbb{N}$ such that for all $m \ge m_0$ we have $\epsilon_m \ge \epsilon_0/2$. Then,

$$\|f - P_{\epsilon_m}(f)\|_{p,\frac{\epsilon_0}{2}}^p \le \frac{2\epsilon_m}{\epsilon_0} \|f - P_{\epsilon_m}(f)\|_{p,\epsilon_m}^p \le \frac{2\epsilon_m}{\epsilon_0} \|f\|_{p,\epsilon_m}^p \le K.$$
(3.1)

Thus, the sequence $\{P_{\epsilon_m}\}$ is uniformly bounded. Consequently, there exists a subsequence which denote in the same way, such that $P_{\epsilon_m}(f)$ converges to $Q \in \Pi^n$. In addition, by (1.1) we have

$$\int_{I_a} |(f - P_{\epsilon_m}(f))(x)|^{p-1} \operatorname{sgn}((f - P_{\epsilon_m}(f))(x)) x^j \chi_{I_{\epsilon_m}} dx = 0, \quad 0 \le j \le n,$$
(3.2)

where χ_A is the characteristic function of the set *A*. It is easy to see that the integrands in (3.2) are bounded by an integrable function, so from (3.2) and Lebesgue Dominated Convergence Theorem, we get

$$\int_{I_a} |(f-Q)(x)|^{p-1} \operatorname{sgn}((f-Q)(x)) x^j \chi_{I_{\epsilon_0}} dx = 0, \quad 0 \le j \le n.$$
(3.3)

Therefore $Q = P_{\epsilon_0}(f)$, i.e., $F(\epsilon_m) \to F(\epsilon_0)$.

Using the same technique that in [4], Proposition 3.1, and Lemma 3.1, we can prove the following theorem.

Theorem 3.1. Let $f \in L^p(I_a)$, $1 , be such that its best <math>\|\cdot\|_{p,\epsilon}$ -approximation from Π^n , is $P_{\epsilon}(f) = \sum_{i=0}^{n} \alpha_i(\epsilon) x^i$, where $\alpha_i(\epsilon) \to \alpha_i$, as $\epsilon \to 0$, $0 \le i \le n-1$. Then $P_0(f)$ is either empty or convex.

As a consequence of Theorem 2.1 for l = n-1, and Theorem 3.1, we have the next result, which extends Corollary 3 in [11] for $p \ge 2$.

Theorem 3.2. Let $p \ge 2$ and $f \in c_{n-1}^p(0)$. Then $P_0(f)$ is either empty or convex.

Remark 3.1. In [9], the author gave an example of a function $f \in L^2(I_a)$, continuous at 0 such that the set of cluster points of the best $\|\cdot\|_{2,\epsilon}$ -approximation from Π^2 is not empty and is not convex. Since f is continuous at 0, $f \in c_0^2(0)$. Therefore, we cannot assume the weaker condition $f \in c_{n-2}^2(0)$ in Theorem 3.2.

Acknowledgements

This work was supported by Universidad Nacional de Río Cuarto and Conicet.

References

- [1] A. P. Calderón and A. Zygmund, Local properties of solution of elliptic partial differential equation, Studia Math., 20 (1961), 171–225.
- [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
- [3] C. K. Chui, O. Shisha, and P. W. Smith, Best local approximation, Approx. Theory, 15 (1975), 371–381.
- [4] C. K. Chui, P. W. Smith and I. D. Ward, Best L₂-local approximation, Approx. Theory, 22 (1978), 254–261.
- [5] H. H. Cuenya and D. E. Ferreyra, Best local approximation and differentiability lateral, Jaén J. Approx., 5(1) (2013), 35–53.
- [6] H. H. Cuenya and F. E. Levis, Pólya-type polinomial inequalities in L^p spaces and best local approximation, Numer. Funct. Anal. Optim., 26(7-8) (2005), 813–827.
- [7] H. H. Cuenya and C. N. Rodriguez, Differentiability and best local approximation, Rev. Un. Mat. Argentina, 54(1) (2013), 15–25.
- [8] M. Marano, Mejor Aproximación Local, Ph. D. Dissertation, Universidad Nacional de San Luis, 1986.
- [9] X. Y. Su, Convexity in best L₂ local approximation, Approx. Theory Appl., 7 (1991), 16–22.
- [10] J. L. Walsh, On approximation to an analitic function by rational functions of best approximation, Math. Z., 38 (1934), 163–176.
- [11] J. M. Wolfe, Interpolation and best L_p local approximation, Approx. Theory, 32 (1981), 96–102.
- [12] F. Zó and H. H. Cuenya, Best approximation on small regions: a general approach, Advanced Courses of Mathematical Analysis II, Proc. of the Second Internat. School, (2007), W. Scientific, Spain.