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Abstract. Let p(z) be a polynomial of degree 1, which has no zeros in |z| <1, Dewan
et al. [K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial
inequalities, ]. Math. Anal. Appl., 363 (2010), pp. 38—41] established

wv'@)+p(a)| <5 { (5 [+ 5 maylp(al - (18- |5 mntocar}:

|z[=1 |z|=1

for any |B| <1 and |z| =1. In this paper we improve the above inequality for the
polynomial which has no zeros in |z| <k, k>1, except s-fold zeros at the origin. Our
results generalize certain well known polynomial inequalities.
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1 Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to a result known as Bernstein’s
inequality [3] on the derivative of a polynomial, we have

max|p'(z)| <nmax|p(z)]. (1.1)

The result is best possible and equality holds for the polynomials having all its zeros at
the origin.
If the polynomial p(z) has all its zeros in |z| <1, then it was proved by Turan [10] that

Tnla>1<lp( z)| >3 ﬂwflp( z)|. (1.2)
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With equality for those polynomials which have all their zeros at the origin.
For the class of polynomials having no zeros in |z| < 1, the inequality (1.1) can be
replaced by

ﬁa>flp( )!<2‘ ‘aXIp( z)|. (1.3)

The inequality (1.3) was conjectured by Erdos and later proved by Lax [6].
As an extension of the inequality (1.2) Malik [7] proved that if p(z) having all its zeros
in |z| <k, k<1, then
> — . .
ﬂwflp( )|_1+kﬁa>flp(2)! (1.4)
Govil [5] improved the inequality (1.4) and proved that if p(z) is a polynomial of degree
n having all its zeros in |z| <k, k<1, then

n 1
> . 1.
max|p'(z )’—1+k{ﬁa’f”’( 2)|+ g minfp(2 2)|} (15)
As a refinement of the inequality (1.4) Aziz and Zargar [2] proved that if p(z) is a poly-
nomial of degree n having all its zeros in |z| <k, k <1, with s-fold zeros at the origin,
then

max|p’ (1.6)

n+sk n—s .
> L .
max|p'(2)| = T maxlp ()1 + e minlp(2)]
Recently Dewan and Hans [4] obtained a refinement of inequalities (1.2) and (1.3). They
proved that if p(z) is a polynomial of degree n and has all its zeros in |z| <1, then for
every real or complex number B with [8| <1,
np

Eflr}‘z”() - Pz \ (1+ \rm_qlp (1.7)

and in the case that p(z) having no zeros in |z| <1, they proved that

max|p'(z) + "L p(2)

|z[=1

amlk regl-[3]
e (. L) )
In this paper, we obtain an improvement and generalizations of the above inequalities.
For this purpose we first present the following result which is a generalization and re-

finement of inequalities (1.5), (1.6) and (1.7).

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in |z| <k, k<1, with s-fold
zeros at the origin where 0 <s <n, then for every p € C with ][5| <land|z|=1,

/()4 B p(e)| 2k

mm!P( )l (1.9)

|z[=k

+l3

With equality for p(z) =az" where a € C.
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Remark 1.1. Clearly for k=1 and s=0 the inequality (1.9) reduces to the inequality (1.7).

According to Lemma 2.1, if p(z) is a polynomial of degree n, having all its zeros in
|z| <k, k<1, with s-fold zeros at the origin, then for |z| =1,

n+sk

2p'(2)| 2 SR (),

then for every complex number g with || <1, by choosing suitable argument of p we
have

n+sk n—+sk
2/ (2)+ B ()| =12p (2) |~ 1Bl T e 2] (1.10)
Combining (1.9) and (1.10) we have
n+sk
29/ (2) |- Bl ()| 2K | \mmrp
or
n-+sk " n—+sky .
2/ ()| =Bl P 2K (n= 1Bl ) minlp(z)],
equivalently

2/ (2)] > B )|k (S k)\\'kr;o(z)r.

Making || — 1, then

n-+sk n—s .
P (2)|> = 11k p(z )HWTZIF:I}JP(Z)"

Since for 0<s<n and k<1, we have < kn —= and for s=n we have n—s=0, therefore the
following result is a refinement and extention of the inequality (1.6).

Corollary 1.1. If p(z) is a polynomial of degree n having all its zeros in |z| <k, k<1, with
s-fold zeros at the origin, then we have

n+sk . n—s .
>__ " - )
‘rr‘ur}!r)( )= 37% glllzr;!P(Z)H(Hk)kn,l ‘rzr‘u:r;{!P(Z)!, (1.11a)
n+sk n—s i
> — : :
mwflp( 2= gllaz>1<lp(Z)|+(]th)kn_1 g‘lg;{lp(Z)! (1.11b)

If we take s=0 in Corollary 1.1, then inequality (1.11b) reduce to inequality (1.5). Now
if we take f= —1 in Theorem 1.1, we have the following result
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Corollary 1.2. If p(z) is a polynomial of degree n having all its zeros in |z| <k, k<1, with
s-fold zeros at the origin, then

, n—+sk n—s )
_ > , .
2P ()= 75 P3| 2 e minlp ()l (1.12)
If p(z) is a polynomial of degree 1, having no zeros in |z| <k, k>1, except s-fold zeros
at the origin, i.e., p(z) =z°h(z), where h(z) is a polynomial of degree (n—s) that does not
vanish in |z| <k, k>1, then the polynomial

=25 (0) =D == (- D)

is of degree n, having all its zeros in |z| <1/k, with s-fold zeros at the origin. Also

. 1
min, 19(2)| = s minlp ()]

By applying Theorem 1.1 for the polynomial 4(z), we get the following result

Corollary 1.3. If p(z) is a polynomial of degree n, having no zeros in |z| <k, k>1, except
s-fold zeros at the origin, then for any € C with [f| <1 and |z|=1,

4 (2) B ()] 2k

where

q(z)zz”“p(i).

Z

Finally by using Corollary 1.3, we prove the following interesting result which is a
generalization of the inequality (1.8).

Theorem 1.2. If p(z) is a polynomial of degree n, having no zeros in |z| <k, k>1, except s-fold
zeros at the origin, then for every complex number p with |B| <1,

max 29 )+ L )|
ST A=
Rt ﬁkfks -k S+5nlk:k ‘}Z k!P(Z)!] (1.14)

If we take k=1 in (1.14) we have
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Corollary 1.4. If p(z) is a polynomial of degree 1, having no zeros in |z| <1, except s-fold
zeros at the origin, then for every complex number g with |8| <1,

n—+s

max|zp'(2)+ 7P (2)
<5 {6757+ +ﬁ”+s bmaxp ()|
{‘ +5—H ﬂ‘ }g‘ur}!r’( )!} (1.15)

For s =0 the inequality (1.15) reduces to the inequality (1.8).

2 Lemmas

For the proof of these theorems, we need the following lemmas. The first lemma is due
to Aziz and Shah [1].

Lemma 2.1. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| <k,
k <1, with s-fold zeros at the origin, then for |z| =1,

n-+sk
29/ (2) |2 T |p(2)] 1)

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in |z| <k, k<1 and f(z) be
a polynomial of degree not exceeding that of F(z). If | f(z)| <|F(z)| for |z| =k, k<1, and F(z),
f(z) have common s- fold zeros at the origin, then for every real or complex number B with |B| <1
and |z| =1,

o (2) B )| <[P (2) + 85 P ) | 22)

Proof. Let a be a complex number with |a| <1, then |af(z)| < |F(z)| for |z| =k. Itis
concluded from Rouche’s Theorem, the polynomial af(z) —F(z) has as many zeros in
|z| <k as F(z) and so has all of its zeros in |z| < k, with s-fold zeros at the origin. On
applying Lemma 2.1, we have for |z| =

azf (2) ~2F' ()] 2 " af (2) - F(2)L.

Therefore for any real or complex number g with |8| <1, the polynomial

T(2) =azf(2)~2F'(2) 4L (af (2) ~ F(2) £0,

for |z| =1.
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Equivalently
T(2)=a{2f () +6 7T £(2) )~ {2F () +B5E T =)} 40, 23)
for |z| =1. This concludes that
k k
oo <o o) e

for |z| =1. If the inequality (2.4) is not true, then there is a point z =2z with |zo| =1 such
that

—|—sk

20f"(20)

1—|—kf( )‘ (ZOF(Zo)H% (zo)(.

Now take

Z()F/(Zo) qi‘c;{kF( 20

z0f'(20) +BU% f (2
then |a| <1 and with this choice of a, we have from (2.3), T(zp) =0 for |z9| =1. But this

contradicts the fact that T(z) #0 for |z| =1. For g with || =1, the inequality (2.4) follows
by continuity. This is equivalent to the desired result. O

)
ok

If we take F(z) = M(})" in Lemma 2.2, where M =max|;|_¢|p(z)], then we have:

Lemma 2.3. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then for any p€C
with |B| <1, k<1land |z|=1,

/()4 B p(2) <k

P [maxlp() 25)

Lemma 2.4. If p(z) is a polynomial of degree n with s—fold zeros at the origin and k> 1, then for
any p€C with || <1and |z|=1,

o (2)+p5 ()] <k

(r|n|a>k< p(z (2.6)

where

1(:)=2""p(3).

z
Proof. Let p(z) =z°h(z), where h(z) is a polynomial of degree n—s. Then the polynomial

=+ G- -+((D)

is of degree n with s-fold zeros at the origin. Also

1
maXW( 2)|= s maxlp ()1

|z[=

By applying Lemma 2.3 for the polynomial q(z), we get the result. O
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Lemma 2.5. If p(z) is a polynomial of degree n with s-fold zeros at the origin and k> 1, then for
any BeC with |B| <1and |z|=1,

nk+s
2 (2)+ B p ()| 445 o' (2) + 654 )
nk+s nk+s
< S n .
<{lls i | #H B | pmaxlp(a)] 27)

where

q(z) :z”“@.

z

Proof. Let M =max,_|p(z)|, then for every complex number a with |a[ > 1, it follows
by Rouche’s Theorem that the polynomial G(z) = p(z) —aM(%)® has no zeros in |z| <k,
except s-fold zeros at the origin. Correspondingly the polynomial

H(z)=z""°G (%) =gq(z)—wk °Mz",

has all its zeros in |z| <1/k with s-fold zeros at the origin and

1
fn+s

%2)| = |H ()|

for |z| =1/k. Therefore, by applying Lemma 2.2 to polynomials G(k?z) and k"**H(z), we
have for || <1,1/k<1and |z| =1,

‘zk2 (K )+ﬁnk+s G(K? )‘Sk”“ zH’(z)—F,Bnlk—jksH(z) ,
or
e 5 ) a1
<|k"*s (zq (z )—I—[Snlk:_;q( )) (n+[3nk+s>Mz” ) (2.8)

Now by applying the inequality (2.6) and choosing a suitable argument of «, we have

a0 <k

nk+s s nk+s
b k‘M—k zq(z)+,81+kq(z)‘. 2.9)

By combining inequalities (2.8) and (2.9), we obtain

—|a|k"|n

n +s nk+s

kKM

|22 (02) + BT P (K22) | a5+ BT

nk—l—s

nis|, nk+s
B (M k

<[afk" |n 7@+ 210)
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Or
2./ (12 @ 2 n-+s|. ./ nk+s
22 (22) + B p(22) | 4K |2 (2) + B4 (2)
nk+s nk+s
< S n SR . .
<lal{K’|s+p e R LR (}M 2.11)
Making || — 1 we have the result. O

The following lemma is due to Zireh [11].
Lemma 2.6. If
n
pz)=) a2
v=0

is a polynomial of degree n, having all its zeros in |z| <k, (k>0), then m <k"|a,,
miny, ¢ [p(z)].

, where m =

3 Proofs of the theorems

Proof of Theorem 1.1. If p(z) has a zero on |z|=k, then min|;|_¢|p(z)|=0 and the inequality
(1.9) is true. Therefore we suppose that p(z) has all its zeros in |z| < k with s-fold zeros
at the origin. We consider p(z) =z°h(z), where h(z) is a polynomial of degree (n—s) has
all its zeros in |z| <k and h(0) # 0. Let m =min|,|_|p(z)| and m; =min, _|h(z)| then
m=kmy >0 and

p(z)|=m| (7)]
for |z| =k, hence

otz (2)"

for |z| =k. Therefore, if |A| <1 then it follows by Rouche’s Theorem that the polynomial

)=t (5)" = -2 3] )

has all its zeros in |z| < k with s-fold zeros at the origin. Also by using Lemma 2.6 the
polynomial

G(z) :p(z)—)\m<z>n

is of degree n, for |A| <1. On applying Lemma 2.1 to the polynomial G(z) of degree n,
we get

n-+sk
1+k

2G'(2)| = G(2)],
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ie.,

" > n+tsk p(z)—)\m(%y

‘zp'(z)—)\mn(z) -

7

where |z| =1.
Therefore for p with |B| <1, it can be easily verified that the polynomial

7(2)= (2p'(2) ~Amn (£)") 485K pi) - (2)",

Te) = (=9 @) - (7) (1755

will have no zeros on |z|=1. As |A| <1 we have for g with || <1 and |z|=1,

ie.,

285 2t ) )
ie.,
/()4 B p(e)| 2 k|t K| 61

For p with |B|=1, (3.1) follows by continuity. This completes the proof of Theorem 1.1. [J

Proof of the Theorern 1.2. Let m=miny,_¢|p(z)|. By hypothesis the polynomial p(z) has
no zeros in |z| <k, except s-fold zeros at the origin. Correspondingly the polynomial

1:)=2""p(3)

Z

has all its zeros in |z| <1/k with s-fold zeros at the origin and

k,Hs p(z)|=q(2)|

for |z] =1/k. Then by applying Lemma 2.2 to the polynomials p(k?z) and k"%4(z), we
have for |z| =1,

‘zkzp'(kzz)

nk+s 5 s nk+s
<
T P <k |

zq’(z)+ﬁ1—+kq(z) .

(3.2)

If m=0, by combining inequalities (3.2) and (2.7), Theorem 1.2 follows.
Therefore we suppose that m # 0 then for every complex number A with |A| <1, we
have

[Am| <m<[p(z)],
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where |z| =k. Hence by Rouche’s Theorem the polynomial

z

G(z)=p(z)—Am (%)s

has no zero in |z| <k except s-fold zeros at the origin. Therefore the polynomial

H(z)=z"""G(1/z) =q(z) — Ak °*mz",
will have all its zeros in |z| <1/k with s-fold zeros at the origin. Also |G (k?z)|=k""$|H(z)|

for |z|=1/k.
On applying Lemma 2.2 for G(k?z) and k"**H(z), we have

nk+s nk+s\ . o
17k p(k“z) (S—i—,B Tk )/\k mz

" nk+s nk+s\=
Kte (zq’(z)+ﬁ 1Tk q(z)) —K" (n+ﬁ Tk >Amz

|29 (K%2) + B

<

(3.3)

By using the inequality (1.13), for an appropriate choice of the argument of A, we have

nts nk—+s » nk+s\~
K (zq’(z)+/3 Tk q(z)) —k <n+ﬁ 1Tk )Amz
sl nk+s o nk+s
=K' |2q' () + P 7(z)| k" [n+p — [1Alm. (3.4)

By combining (3.3) and (3.4), we get for |z| =1 and |B| <1,

nk+s s nk+s
‘Zkzp’(kzz)+ﬁ Tk p(k2z)‘—k s+ 1Tk ‘|/\]m
k+s nk+s
< n—+s ! n " .
Equivalently
2 1012 nk+s .5
[ () + B p(R2)
k+s nk+s nk+s
< n—+s ! n — n K I E—— .
<K"l2q'(2)+Bo 6/(2)‘ {k'|n+p el I Ry ‘}W’"
As |[A]—1, we have
2 1012 nk+s o
2K (2) + o ()
k+s nk+s nk+s
<JNFS| 4 n _Jn — k5 .
<K |20’ (2)+ B 6/(2)‘ {k nB | TR AT ‘}m

This is a conjunction with inequality (2.7), which completes the proof of Theorem 1.2. [
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