*H*¹-Estimates of the Littlewood-Paley and Lusin Functions for Jacobi Analysis II

Takeshi Kawazoe*

Department of Mathematics, Keio University at SFC, Endo, Fujisawa, Kanagawa, 252-8520, Japan

Received 17 November 2014; Accepted (in revised version) 28 October 2015

Abstract. Let $(\mathbb{R}_+,*,\Delta)$ be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley *g* function and the Lusin area function for the Jacobi hypergroup and consider their (H^1,L^1) boundedness. Although the *g* operator for $(\mathbb{R}_+,*,\Delta)$ possesses better property than the classical *g* operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the (H^1,L^1) estimate for the Lusin area operator, a slight modification in its form is required.

Key Words: Jacobi analysis, Jacobi hypergroup, g function, area function, real Hardy space.

AMS Subject Classifications: 22E30, 43A30, 43A80

1 Introduction

One of main subjects of the so-called real method in classical harmonic analysis related to the Poisson integral $f * p_t$ is to investigate the Littlewood-Paley theory. For example, in the one dimensional setting, the following singular integral operators were respectively well-known as the Littlewod-Paley *g* function and the Lusin area function

$$g^{\mathbb{R}}(f)(x) = \left(\int_0^\infty \left| f * t \frac{\partial}{\partial t} p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2}, \tag{1.1a}$$

$$S^{\mathbb{R}}(f)(x) = \left(\int_0^\infty \frac{1}{t} \chi_t * \left| f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2},$$
(1.1b)

where χ_t is the characteristic function of [-t,t]. These operators satisfy the maximal theorem, that is, a weak type L^1 estimate and a strong type L^p estimate for 1 . $Moreover, they are bounded form <math>H^1$ into L^1 (cf. [10–12]). Our matter of concern is to extend these results to other topological spaces *X*. Roughly speaking, in some examples of *X* of homogeneous type (see [2]), Poisson integrals are generalized on *X* and analogous

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email address:* kawazoe@sfc.keio.ac.jp (T. Kawazoe)

Littlewood-Paley theory has been developed (cf. [2,5,10]). On the other hand, if the space X is not of homogeneous type, we encounter difficulties. As an example of X of non homogeneous type with Poisson integrals, noncompact Riemannian symmetric spaces X = G/K are well-known. Lohoue [9] and Anker [1] generalize the Littlewood-Paley g function and the Luzin area function to G/K and show that they satisfy the maximal theorem (see below). However, we know little or nothing whether they are bounded from H^1 into L^1 , because we first have to find out a suitable definition of a real Hardy space on G/K. The aim of this paper is to introduce a real Hardy space $H^1(\Delta)$ and show that they are bounded from $H^1(\Delta)$ into $L^1(\Delta)$ for the Jacobi hypergroup ($\mathbb{R}_+,*,\Delta$), which is a generalization of K-invariant setting on G/K of real rank one.

We briefly overview the Jacobi hypergroup $(\mathbb{R}_+,*,\Delta)$. We refer to [4] and [8] for a description of general context. For $\alpha \ge \beta \ge -\frac{1}{2}$ and $(\alpha,\beta) \ne (-\frac{1}{2},-\frac{1}{2})$ we define the weight function Δ on \mathbb{R}_+ as

$$\Delta(x) = (2\mathrm{sh}x)^{2\alpha+1}(2\mathrm{ch}x)^{2\beta+1}.$$

Clearly, it follows that

$$\Delta(x) \leq c \begin{cases} e^{2\rho x}, & x > 1, \\ x^{2\gamma_0}, & x \leq 1, \end{cases}$$

where $\rho = \alpha + \beta + 1$ and $\gamma_0 = \alpha + \frac{1}{2}$. For $\lambda \in \mathbb{C}$ let ϕ_{λ} be the Jacobi function on \mathbb{R}_+ defined by

$$\phi_{\lambda}(x) = {}_{2}F_{1}\left(\frac{\rho+i\lambda}{2}, \frac{\rho-i\lambda}{2}; \alpha+1; -(\mathrm{sh}x)^{2}\right),$$

where $_2F_1$ the hypergeometric function. Then the Jacobi transform \hat{f} of a function f on \mathbb{R}_+ is defined by

$$\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(x) \phi_\lambda(x) \Delta(x) dx.$$

We define a generalized translation on \mathbb{R}_+ by using the kernel form of the product formula of Jacobi functions: For $x, y \in \mathbb{R}_+$,

$$\phi_{\lambda}(x)\phi_{\lambda}(y) = \int_0^{\infty} \phi_{\lambda}(z)K(x,y,z)\Delta(z)dx.$$

The kernel K(x,y,z) is non-negative and symmetric in the tree variables. Then the generalized translation T_x of f is defined as

$$T_x f(y) = \int_0^\infty f(z) K(x, y, z) \Delta(z) dz$$

and the convolution of f, g is given by

$$f * g(x) = \int_0^\infty f(y) T_x g(y) \Delta(y) dy.$$

Since $T_x f(y) = T_y f(x)$ and $\widehat{T_x f}(\lambda) = \phi_\lambda(x) \widehat{f}(\lambda)$, it follows that f * g = g * f and $\widehat{f * g}(\lambda) = \widehat{f}(\lambda) \cdot \widehat{g}(\lambda)$. We call $(\mathbb{R}_+, *, \Delta)$ the Jacobi hypergroup and the associated harmonic analysis is called by Jacobi analysis. The Jacobi hypergroup is not a space of homogeneous type, because $\Delta(x)$ has an exponential growth order $e^{2\rho x}$ when x goes to ∞ .

In Jacobi analysis, the Poisson kernel $p_t(x)$, t > 0, is defined as the function such that

$$\widehat{p}_t(\lambda) = e^{-t\sqrt{\lambda^2 + \rho^2}}.$$

Then, as analogue of the classical case, we introduce a generalized Littlewood-Paley *g* function $g_{\sigma}(f)$ and a generalized Lusin area function $S_{a,h}(f)$, which are respectively defined by

$$g_{\sigma}(f)(x) = \left(\int_0^\infty e^{2\sigma t} \left| f * t \frac{\partial}{\partial t} p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2},$$
(1.2a)

$$S_{a,h}(f)(x) = \frac{1}{h(x)} \left(\int_0^\infty \tilde{\chi}_{B(at)} * \left| h \cdot f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2},$$
(1.2b)

where $\sigma, a \ge 0, h(x)$ is a positive function on \mathbb{R}_+ and

$$\tilde{\chi}_{B(at)} = \frac{1}{|B(t)|} \chi_{B(at)}.$$

Here $\chi_{B(t)}$ is the characteristic function of B(t) = [0,t] and |B(t)| the volume of B(t) with respect to $\Delta(x)dx$. Similarly as in the case of non-compact Riemannian symmetric spaces (see [1, 9]), g_{σ} is strongly bounded on $L^{p}(\Delta)$ for $\sigma < 2\rho/\sqrt{pp'}$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and g_{0} satisfies a weak type L^{1} estimate with respect to $\Delta(x)dx$. In the previous paper [7], the author introduces a real Hardy space $H^{1}(\Delta)$ and shows that g_{0} is bounded form $H^{1}(\Delta)$ into $L^{1}(\Delta)$. As for $S_{a,h}$, the strong type L^{p} estimate of $S_{a,1}$ for p > 1 is essentially obtained in [9]. However, whether $S_{a,1}$ is bounded from $H^{1}(\Delta)$ into $L^{1}(\Delta)$ is still an open question. In [7], Section 7, we obtained a partial answer for a modified operator of $S_{a,1}$ with $a \leq \frac{1}{3}$. In this paper we refine this result and extend it to a more general area operator $S_{a,h}$.

This paper is organized as follows. Basic notations are given in Section 2. Especially we recall the definition of the Hardy space $H^1(\Delta)$ and give a relation with Euclidean weighted Hardy spaces $H^1_w(\mathbb{R})$. In Section 3 we prove key lemmas on generalized translations. Finally, in Section 4 and Section 5 we consider $(L^2(\Delta), L^2(\Delta))$ and $(H^1(\Delta), L^1(\Delta))$ boundedness of g_{σ} and $S_{a,h}$ respectively.

2 Notations

Let $L^{p}(\Delta)$ denote the space of functions f on \mathbb{R}_{+} with finite L^{p} -norm:

$$\|f\|_{L^p(\Delta)}^p = \frac{1}{\sqrt{2\pi}} \int_0^\infty |f(x)|^p \Delta(x) dx,$$

and $L^1_{\text{loc}}(\Delta)$ the space of locally integrable functions on \mathbb{R}_+ . We may regard these functions on \mathbb{R}_+ as even function on \mathbb{R} . Let C_c^{∞} be the space of compactly supported C^{∞} even functions on \mathbb{R} . For $f \in C_c^{\infty}$ the Jacobi transform \hat{f} is well-defined and the Paley-Wiener theorem holds: The map $f \to \hat{f}$ is a bijection of C_c^{∞} onto the space of entire holomorphic even functions of exponential type on \mathbb{R} . The inverse transform is given as

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \hat{f}(\lambda) \phi_\lambda(x) |C(\lambda)|^{-2} d\lambda,$$

where $C(\lambda)$ is Harish-Chandra's C-function. Furthermore, the map $f \to \hat{f}$ extends to an isometry of $L^2(\Delta)$ onto $L^2(\mathbb{R}_+, |C(\lambda)|^{-2}d\lambda)$:

$$\|f\|_{L^{2}(\Delta)} = \|\hat{f}\|_{L^{2}(\mathbb{R}_{+},|C(\lambda)|^{-2}d\lambda)}$$

(see [4, Section 2] and [8, Theorem 3.1, Remark 3]). Let $f \in L^1(\Delta)$. Since ϕ_{λ} is bounded by 1 for $|\Im \lambda| \le \rho$ (see [4, (2.17)]), \hat{f} has a holomorphic extension on $|\Im \lambda| \le \rho$ and $|\hat{f}(\lambda)| \le |f||_{L^1(\Delta)}$. We recall that, as a function of λ , $\phi_{\lambda}(x)$ is the Fourier Cosine transform of a function A(x,y) supported on [0,x]:

$$\Delta(x)\phi_{\lambda}(x) = \int_0^x \cos\lambda y A(x,y) dy$$

(see [8, (2.16)]). Hence, if we define the Abel transform $W^0_+(f)$ of f by

$$W^0_+(f)(x) = \int_x^\infty f(y) A(x,y) dy,$$

then we see that

$$\hat{f}(\lambda) = c \mathcal{F}(W^0_+(f))(\lambda),$$

where $W^0_+(f)$ is extended as an even function on \mathbb{R} and \mathcal{F} is the Euclidean Fourier transform on \mathbb{R} . We put

$$W^{s}_{+}(f)(x) = e^{s\rho x}W^{0}_{+}(f)(x)$$

Since $|A(x,y)| \le ce^{\rho y} (thy)^{2\alpha}$ by the explicit form (see [8], (2.18)), it follows that

$$\|W^{s}_{+}(f)\|_{L^{1}(\mathbb{R}_{+})} \leq c \|f\|_{L^{1}(\Delta)} \text{ for } |s| \leq 1,$$

and for $\lambda \in \mathbb{R}$,

$$\hat{f}(\lambda + i\rho s) = c\mathcal{F}(W^s_+(f))(\lambda)$$

Especially, we have

$$W^{s}_{+}(f * g) = W^{s}_{+}(f) \otimes W^{s}_{+}(g),$$

where \otimes denotes the Euclidean convolution on \mathbb{R} . As shown in [8], Section 3, W^0_+ is of the form:

$$W^{0}_{+}(f) = cW^{1}_{\alpha-\beta} \circ W^{2}_{\beta+1/2}(f),$$

where W^{σ}_{μ} is the generalized Weyl type fractional operators on \mathbb{R}_+ ; for $n = 0, 1, 2, \dots, \Re \mu > -n$ and $\sigma \in \mathbb{R}$,

$$W^{\sigma}_{\mu}(f)(s) = \frac{(-1)^n}{\Gamma(1+n)} \int_s^{\infty} \frac{d^n}{d(\mathrm{ch}\sigma t)^n} f(t) \cdot (\mathrm{ch}\sigma t - \mathrm{ch}\sigma s)^{\mu+n-1} d(\mathrm{ch}\sigma t).$$

Since the inverse of W^{σ}_{μ} is given by $W^{\sigma}_{-\mu}$, the inverse operator W^{s}_{-} of W^{s}_{+} is given by $W^{s}_{-(\alpha-\beta)}(f) = W^{2}_{-(\beta+1/2)} \circ W^{1}_{-(\alpha-\beta)}(e^{-s\rho x}f)$. The following formula is obtained in [7, Corollary 3.7]. For $f \in L^{1}(\Delta)$, let $F = W^{1}_{+}(f)$. Then there exist finite sets Γ_{0}, Γ_{1} in \mathbb{R}_{+} for which

$$f(x) = W_{-}^{1} \circ W_{+}^{1}(f)(x) = W_{-}^{1}(F)$$
$$= \frac{1}{\Delta(x)} \Big(\sum_{\gamma \in \Gamma_{0}} W_{-\gamma}^{\mathbb{R}}(F)(x)(\operatorname{th} x)^{\gamma} + \sum_{\gamma \in \Gamma_{1}} (\operatorname{th} x)^{\gamma} \int_{x}^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma}(x,s) ds \Big),$$
(2.1a)

where $W_{-\gamma}^{\mathbb{R}}$ is the Weyl type fractional operator on \mathbb{R} , which is defined by replacing $ch\sigma t$ and $ch\sigma s$ in the above definition of $W_{\gamma}^{\sigma}(f)(s)$ with t and $s \in \mathbb{R}$ respectively. For some properties of $A_{\gamma}(x,s)$ see [7, Lemma 3.6]. In particular, if α and β both belong to $\mathbb{N} + \frac{1}{2}$, then the integral terms in (2.1) vanish; $\Gamma_1 = \emptyset$ and $\Gamma_0 = \{0, 1, 2, \dots, \gamma_0\}$, $\gamma_0 = \alpha + \frac{1}{2}$. Since $e^{-\rho x}F$ is an even function on \mathbb{R} , L^1 norm of $W_{-\gamma}^{\mathbb{R}}(F)(-x)$ on \mathbb{R}_+ is controlled by L^1 norms of $W_{-\gamma}^{\mathbb{R}}(F)(x)$ on \mathbb{R}_+ [†]. Hence it follows that

$$\|f\|_{L^1(\Delta)} \sim \sum_{\gamma \in \Gamma_0 \cup \Gamma_1} \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L^1_{w_{\gamma}}(\mathbb{R})},$$

where $L^1_{w_{\gamma}}(\mathbb{R})$ is the w_{γ} -weighted L^1 space on \mathbb{R} and $w_{\gamma}(x) = (\operatorname{th} |x|)^{\gamma}$.

We now define the real Hardy space $H^1(\Delta)$ as the subspace of $L^1(\Delta)$ consisting of all functions with finite $H^1(\Delta)$ -norm:

$$\|f\|_{H^{1}(\Delta)} = \sum_{\gamma \in \Gamma_{0} \cup \Gamma_{1}} \|W_{-\gamma}^{\mathbb{R}}(F)\|_{H^{1}_{w_{\gamma}}(\mathbb{R})},$$
(2.2)

where $H^1_{w_{\gamma}}(\mathbb{R})$ is the w_{γ} -weighted H^1 Hardy space on \mathbb{R} that coincides with the weighted homogeneous Triebel-Lizorkin space $\dot{F}_{1,2}^{\gamma,w_{\gamma}}$ (cf. [3]). Thereby the above $H^1(\Delta)$ -norm is equivalent to

$$||F||_{H^1(\mathbb{R})} + ||W^{\mathbb{R}}_{-\gamma_0}(F)||_{H^1_{w\gamma_0}(\mathbb{R})}.$$

In [7], Section 4 we define a radial maximal operator *M* for the Jacobi hypergroup ($\mathbb{R}_+, *, \Delta$) and deduce that $H^1(\Delta)$ coincides with the space consisting of all $f \in L^1_{loc}(\mathbb{R}_+)$ whose radial maximal functions *Mf* belong to $L^1(\Delta)$ and $||f||_{H^1(\Delta)} \sim ||Mf||_{L^1(\Delta)}$.

The letter *c* will be used to denote a positive constant which may assume different values at different places.

⁺We also use the fact that $W_{-\gamma}^{\mathbb{R}}$, $0 < \gamma < 1$, corresponds to the Fourier multiplier of $-i|\lambda|^{\gamma}(\operatorname{sgn}(\lambda)\sin\frac{\gamma\pi}{2} - i\cos\frac{\gamma\pi}{2})$.

T. Kawazoe / Anal. Theory Appl., 32 (2016), pp. 38-51

3 Key lemmas

The following lemmas on the generalized translation T_x will play a key role in the arguments in Section 4 and Section 5. The first one is obtained in [4, (5.2)], and the second one is essentially obtained in [6, Lemma 2.2], for group cases.

Lemma 3.1 (see [4]). Let $f \in L^p(\Delta)$, $1 \le p \le \infty$, and $x \in \mathbb{R}_+$. Then

$$||T_x f||_{L^p(\Delta)} \leq ||f||_{L^p(\Delta)}.$$

Moreover, if f is positive, then the equality holds.

Lemma 3.2. Let $x, y \ge 0$. Then

$$0 \leq T_x e^{-2\rho(\cdot)}(y) \leq c e^{-2\rho \max\{x,y\}},$$

where *c* is independent of x,y.

Proof. We may assume that $x \ge y$. It follows from [4, (4.19)], that

$$T_{x}e^{-2\rho(\cdot)}(y) = \int_{x-y}^{x+y} e^{-2\rho z} K(x,y,z) \Delta(z) dz$$

$$\leq c(\operatorname{th} x)^{-2\alpha} e^{-\rho x} (\operatorname{th} y)^{-2\alpha} e^{-\rho y} \int_{x-y}^{x+y} \operatorname{th} z e^{-\rho z} dz$$

$$\leq c(\operatorname{th} x)^{-2\alpha} (\operatorname{th} y)^{-2\alpha} e^{-2\rho x} \operatorname{th} y$$

and moreover, from [4, (4.20)], that

$$T_x e^{-2\rho(\cdot)}(y) \le \int_0^\infty K(x, y, z) \Delta(z) dz = 1.$$
(3.1)

Hence we can obtain the desired estimate.

Lemma 3.3. Let $x, t \ge 0$. Then

$$\int_0^\infty T_x \chi_t(y) dy \leq ct,$$

where c is independent of x, t.

Proof. Similarly as (3.1), $T_x \chi_t(y) \le 1$. Since $T_x \chi_t(y)$ is supported on [|x-t|, x+t], the desired result is obvious.

4 Littlewood-Paley *g* functions

As shown in [1, Corollary 6.2], g_{σ} is strongly bounded on $L^{p}(\Delta)$ provided $\sigma < 2\rho/\sqrt{pp'}$ where $\frac{1}{p} + \frac{1}{p'} = 1$ and g_{0} satisfies a weak type L^{1} estimate. We give a simple proof of the L^{2} boundedness of g_{σ} for $\sigma < \rho$ and consider a modified operator $g_{\rho,\beta}$ when $\sigma = \rho$.

Theorem 4.1 (see [1]). Let $\sigma < \rho$. Then g_{σ} is $(L^2(\Delta), L^2(\Delta))$ bounded.

Proof. Since

$$2\sigma \frac{t}{\sqrt{\lambda^2 + \rho^2}} \le \frac{2\sigma}{\rho} t < 2t$$

for $\lambda \in \mathbb{R}$ and t > 0, it follows that

$$\begin{split} \|g_{\sigma}(f)\|_{2}^{2} &= \int_{0}^{\infty} \int_{0}^{\infty} e^{2\sigma t} \left| f * t \frac{\partial}{\partial t} p_{t} \right|^{2} (x) \frac{dt}{t} \Delta(x) dx \\ &= \int_{0}^{\infty} e^{2\sigma t} \left\| f * t \frac{\partial}{\partial t} p_{t} \right\|_{L^{2}(\Delta)}^{2} \frac{dt}{t} \\ &= \int_{0}^{\infty} e^{2\sigma t} \left\| f \cdot \left(t \frac{\partial}{\partial t} p_{t} \right)^{\wedge} \right\|_{L^{2}(\mathbb{R}_{+},|C(\lambda)|^{-2}d\lambda)}^{2} \frac{dt}{t} \\ &= \int_{0}^{\infty} e^{2\sigma t} \int_{0}^{\infty} \left| \hat{f}(\lambda) t \sqrt{\lambda^{2} + \rho^{2}} e^{-t\sqrt{\lambda^{2} + \rho^{2}}} \right|^{2} |C(\lambda)|^{-2} d\lambda \frac{dt}{t} \\ &= \int_{0}^{\infty} |\hat{f}(\lambda)|^{2} |C(\lambda)|^{-2} \Big(\int_{0}^{\infty} e^{2\sigma t} t^{2} (\lambda^{2} + \rho^{2}) e^{-2t\sqrt{\lambda^{2} + \rho^{2}}} \frac{dt}{t} \Big) d\lambda \\ &= \int_{0}^{\infty} |\hat{f}(\lambda)|^{2} |C(\lambda)|^{-2} \Big(\int_{0}^{\infty} e^{2\sigma t} \sqrt{\lambda^{2} + \rho^{2}} t^{2} e^{-2t} \frac{dt}{t} \Big) d\lambda \\ &= \int_{0}^{\infty} |\hat{f}(\lambda)|^{2} |C(\lambda)|^{-2} \Big(\int_{0}^{\infty} e^{2\sigma t/\rho} t e^{-2t} dt \Big) d\lambda \\ &\leq c_{\sigma} \|f\|^{2}, \end{split}$$

where

$$c_{\sigma} = \int_0^{\infty} e^{-2(1-\sigma/\rho)t} t dt.$$

Thus, we complete the proof.

Theorem 4.2. Let $g_{\rho,\beta}$ be the operator defined by replacing $e^{2\rho t}$ in the definition (1.2) of g_{ρ} by

$$e^{2\rho t}\frac{1}{(1+t)^{\beta}}, \quad \beta > 2.$$

Then $g_{\rho,\beta}$ is $(L^2(\Delta), L^2(\Delta))$ bounded.

Proof. We note that

$$\int_0^\infty e^{2\rho} \frac{t}{\sqrt{\lambda^2 + \rho^2}} \frac{1}{\left(1 + \frac{t}{\sqrt{\lambda^2 + \rho^2}}\right)^\beta} t^2 e^{-2t} \frac{dt}{t}$$

is dominated by

$$\begin{cases} \int_0^\infty \frac{t}{\left(1+\frac{t}{\sqrt{2\rho}}\right)^{\beta}} dt, & \text{if } 0 \le \lambda < \rho, \\ \int_0^\infty e^{-(2-\sqrt{2})t} t dt, & \text{if } \lambda \ge \rho. \end{cases}$$

Hence the desired result follows similarly as in Theorem 4.1.

As shown in [7], Section 6, g_0 is bounded from $H^1(\Delta)$ to $L^1(\Delta)$. In order to understand the usage of the formula (2.1) we give a sketch of the proof.

Theorem 4.3 (see [7]). g_0 is $(H^1(\Delta), L^1(\Delta))$ bounded.

Proof. We recall (2.1) and, for simplicity, we suppose that the integral terms vanish, that corresponds to the case of $\alpha, \beta \in \mathbb{N} + \frac{1}{2}$. For general α, β , we refer to the arguments in [7], Section 6. Hence, we see that

$$f * t \frac{\partial}{\partial t} p_t(x) = \frac{1}{\Delta(x)} \sum_{\gamma \in \Gamma_0} W^{\mathbb{R}}_{-\gamma}(F) \otimes P_t(x) (\operatorname{th} x)^{\gamma},$$

where $F = W_+^1(f)$ and $P_t = W_+^1(t\frac{\partial}{\partial t}p_t)$. Since P_t behaves similarly as the Euclidean Poisson kernel (see [7, Lemma 6.3]), it follows that

$$g_{0}(f)(x) \leq \frac{1}{\Delta(x)} \sum_{\gamma \in \Gamma_{0}} \left(\int_{0}^{\infty} |W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(x)|^{2} \frac{dt}{t} \right)^{1/2} (\operatorname{th} x)^{\gamma}$$
$$\leq \frac{c}{\Delta(x)} \sum_{\gamma \in \Gamma_{0}} g^{\mathbb{R}} (W_{-\gamma}^{\mathbb{R}}(F)) (\operatorname{th} x)^{\gamma},$$

where $g^{\mathbb{R}}$ is the Euclidean *g*-function on \mathbb{R} (see (1.1)). Since $g^{\mathbb{R}}$ is bounded form $H^1_{w_{\gamma}}(\mathbb{R})$ to $L^1_{w_{\gamma}}(\mathbb{R})$ (see [12, XII, Section 3], with a slight modification by a weight function), it follows from (2.2) that

$$\begin{aligned} \|g_0(f)\|_{L^1(\Delta)} &\leq c \sum_{\gamma \in \Gamma_0} \|g^{\mathbb{R}}(W^{\mathbb{R}}_{-\gamma}(F))\|_{L^1_{w\gamma}(\mathbb{R})} \\ &\leq c \sum_{\gamma \in \Gamma_0} \|W^{\mathbb{R}}_{-\gamma}(F))\|_{H^1_{w\gamma}(\mathbb{R})} = c \|f\|_{H^1(\Delta)} \end{aligned}$$

Thus, we complete the proof.

5 Lusin area functions

We shall consider strong type estimates of the modified area function $S_{a,h}$. Similarly as in the Euclidean case, the L^2 boundedness of $S_{a,h}$ is reduced to the one of g_{σ} .

Theorem 5.1. $S_{a,h}$ is $(L^2(\Delta), L^2(\Delta))$ bounded provided that a < 2 and h is the following:

(a) h = 1, (b) $h = \sqrt{\Delta}$, (c) $h = (\text{th})^{\gamma_0}$.

Proof. We note that $||S_{a,h}(f)||_2^2$ is given by

$$\int_0^\infty \frac{1}{h(x)^2} \int_0^\infty \left(\int_0^\infty T_x \tilde{\chi}_{at}(y) \left| h(y) f * t \frac{\partial}{\partial t} p_t(y) \right|^2 \Delta(y) dy \right) \frac{dt}{t} \Delta(x) dx$$
$$= \int_0^\infty \int_0^\infty \left(\int_0^\infty \frac{h^2(y)}{h^2(x)} T_x \tilde{\chi}_{at}(y) \Delta(x) dx \right) \left| f * t \frac{\partial}{\partial t} p_t(y) \right|^2 \Delta(y) dy \right) \frac{dt}{t}.$$

Therefore, if we can deduce that

$$\int_0^\infty \frac{h^2(y)}{h^2(x)} T_x \tilde{\chi}_{at}(y) \Delta(x) dx \le c e^{2\sigma t},$$
(5.1)

where *c* is independent of *y*,*t*, then we see that $||S_{a,h}(f)||_2^2 \le c ||g_{\sigma}(f)||_2^2$ and thus, $||S_{a,h}(f)||_2 \le c ||f||_2$ provided $\sigma < \rho$ by Theorem 4.1.

(a) h = 1: It follows from Lemma 3.1 that

$$\int_0^\infty T_x \tilde{\chi}_{at}(y) \Delta(x) dx = \| \tilde{\chi}_{at} \|_{L^1(\Delta)} \le \frac{|B(at)|}{|B(t)|} \le c e^{2(a-1)\rho t}.$$

Therefore, (5.1) holds for $\sigma = (a-1)\rho$. Hence, if a < 2, then $\sigma < \rho$.

(b) $h = \sqrt{\Delta}$: We divide the integral (5.1) over $[0, \infty)$ into several segments. Let $x \ge y$. Since

$$\frac{\Delta(y)}{\Delta(x)} \le 1,$$

it follows that

$$\int_{y}^{\infty} \frac{\Delta(y)}{\Delta(x)} T_{x} \tilde{\chi}_{at}(y) \Delta(x) dx \leq \| \tilde{\chi}_{at} \|_{L^{1}(\Delta)} \leq c e^{2(a-1)\rho t}$$

Let x < y and $x \ge 1$. Since

$$\frac{\Delta(y)}{\Delta(x)} \le c e^{2\rho(y-x)},$$

it follows from Lemma 3.2 that

$$\int_1^y \frac{\Delta(y)}{\Delta(x)} T_x \tilde{\chi}_{at}(y) \Delta(x) dx \leq e^{2\rho y} \tilde{\chi}_{at} * e^{-2\rho(\cdot)}(y) \leq \|\tilde{\chi}_{at}\|_{L^1(\Delta)} \leq c e^{2(a-1)\rho t}.$$

T. Kawazoe / Anal. Theory Appl., 32 (2016), pp. 38-51

Let x < y and $\alpha t < x < 1$ for sufficiently small $\alpha > 0$. Since $y < x + at < (1 + \frac{a}{\alpha})x$ and x < 1,

$$\frac{\Delta(y)}{\Delta(x)} \le \frac{\Delta((1+\frac{a}{\alpha})x)}{\Delta(x)} \le c \left(1+\frac{a}{\alpha}\right)^{\gamma_0} = c_{a,\alpha}$$

and thus,

$$\int_{\alpha t}^{1} \frac{\Delta(y)}{\Delta(x)} T_x \tilde{\chi}_{at}(y) \Delta(x) dx \leq c_{a,\alpha} \| \tilde{\chi}_{at} \|_{L^1(\Delta)} \leq c_{a,\alpha} e^{2(a-1)\rho t}.$$

Let x < y, x < 1 and $x < \alpha t$. Since $y < x + at < (\alpha + a)t$, it follows from Lemma 3.3 that

$$\int_0^{\alpha t} \frac{\Delta(y)}{\Delta(x)} T_x \tilde{\chi}_{at}(y) \Delta(x) dx \le c \Delta((\alpha+a)t) \int_0^\infty T_y \tilde{\chi}_{at}(x) dx \le c \frac{\Delta((\alpha+a)t)t}{|B(t)|} = J(t).$$

We note that, if $t \le 1$, then $J(t) \le c(\alpha + a)^{\gamma_0}$ and if t > 1, then $J(t) \le ce^{2\rho(\alpha + a - 1)t}t$. Therefore, for a < 2, we can take a sufficiently small $\alpha > 0$ for which $\alpha + a - 1 < 1$.

Therefore, in each case, if a < 2, then there exists $0 < \sigma < \rho$ for which (5.1) holds.

(c) $h = (\text{th})^{\gamma_0}$: Similarly as in (b), we divide the integral (5.1) over $[0, \infty)$. Let $x \ge y$. Since

$$\frac{\mathrm{th}y}{\mathrm{th}x} \le c,\tag{5.2}$$

it follows that

$$\int_{y}^{\infty} \frac{(\text{th}y)^{2\gamma_{0}}}{(\text{th}x)^{2\gamma_{0}}} T_{x} \chi_{at}(y) \Delta(x) dx \le c e^{2(a-1)\rho t}.$$
(5.3)

Let x < y and $x \ge 1$. Clearly (5.2) and thus, (5.3) hold.

Let x < y and $\alpha t < x < 1$ for $\alpha > 0$. Since $y < x + at < (1 + \frac{a}{\alpha})x$, (5.2) and thus, (5.3) hold. Let x < y, x < 1 and $x < \alpha t$. Since $y < x + at < (\alpha + a)t$ and $(thx)^{-2\gamma_0}\Delta(x) \le c$ for x < 1, J(t) in the case of (b) is replaced by

$$\frac{(\operatorname{th}(\alpha+a)t)^{2\gamma_0}t}{|B(t)|}.$$

Hence, if $t \le 1$, then $J(t) \le c(\alpha + a)^{\gamma_0}$ and if t > 1, then $J(t) \le ce^{-2\rho t} at \le c$. Therefore, in each case, if a < 2, then there exists $0 < \sigma < 2$ for which (5.1) holds.

Theorem 5.2. $S_{a,h}$ is $(H^1(\Delta), L^1(\Delta))$ bounded provided that *a* and *h* are the following: (*a*) $h = \sqrt{\Delta}$ and $a \le 1$, (*b*) $h = (\operatorname{th})^{\gamma_0}$ and $a \le \frac{1}{2}$. *Proof.* Similarly as in the proof of Theorem 4.3, for simplicity, we may suppose that the integral terms in (2.1) vanish (see [7, Section 6], for general case). Then we see that $S_{a,h}(f)(x)$ is dominated as

$$\frac{1}{h(x)} \left(\int_{0}^{\infty} \tilde{\chi}_{at} * \left| \frac{h}{\Delta} \sum_{\gamma \in \Gamma_{0}} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\operatorname{th})^{\gamma} \right|^{2}(x) \frac{dt}{t} \right)^{1/2} \\
\leq c \sum_{\gamma \in \Gamma_{0}} \frac{1}{h(x)} \left(\int_{0}^{\infty} \tilde{\chi}_{at} * \left| \frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\operatorname{th})^{\gamma} \right|^{2}(x) \frac{dt}{t} \right)^{1/2}.$$
(5.4)

Hence $||S_{a,h}(f)||_{L^1(\Delta)}$ is dominated by the sum of the L^1 -norm of each term in (5.4) with respect to $\Delta(x)dx$:

$$\int_{0}^{\infty} \frac{1}{h(x)} \left(\int_{0}^{\infty} \tilde{\chi}_{at} * \left| \frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\operatorname{th})^{\gamma} \right|^{2}(x) \frac{dt}{t} \right)^{1/2} \Delta(x) dx$$

$$= \int_{0}^{\infty} \frac{\Delta(x)}{h(x)(\operatorname{th}x)^{\gamma}} \left(\int_{0}^{\infty} \tilde{\chi}_{at} * \left| \frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\operatorname{th})^{\gamma} \right|^{2}(x) \frac{dt}{t} \right)^{1/2} (\operatorname{th}x)^{\gamma} dx$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} \int_{0}^{\infty} T_{x} \tilde{\chi}_{at}(y) \frac{h(y)^{2} \Delta(x)^{2} (\operatorname{th}y)^{2\gamma}}{h(x)^{2} \Delta(y) (\operatorname{th}x)^{2\gamma}} \times |W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(y)|^{2} dy \frac{dt}{t} \right)^{1/2} (\operatorname{th}x)^{\gamma} dx. \quad (5.5)$$

We note that, for $f \in H^1(\Delta)$, each $W^{\mathbb{R}}_{-\gamma}(F)$ belongs to $H^1_{w_{\gamma}}(\mathbb{R})$ and P_t behaves similarly as the Euclidean Poisson kernel. Therefore, if we can deduce that

$$\int_0^\infty T_x \tilde{\chi}_{at}(y) \frac{h(y)^2}{h(x)^2} \frac{\Delta(x)^2}{\Delta(y)} \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} dx \le c$$
(5.6)

and

$$\int_0^\infty T_x \tilde{\chi}_{at}(y) \frac{h(y)^2}{h(x)^2} \frac{\Delta(x)^2}{\Delta(y)} \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} dy \le c,$$
(5.7)

where *c* is independent of *x*,*y*,*t*, then we can apply the arguments used in the Euclidean case (see [12, Proposition 1.2]). Then (5.5) is dominated by $||W_{-\gamma}^{\mathbb{R}}(F)||_{H^{1}_{w_{\gamma}}(\mathbb{R})}$ and thus,

$$\|S_{a,h}(f)\|_{L^{1}(\Delta)} \leq c \sum_{\gamma} \|W_{-\gamma}(F)\|_{H^{1}_{w_{\gamma}}(\mathbb{R})} = c \|f\|_{H^{1}(\Delta)}.$$

(a): $h = \sqrt{\Delta}$ and $a \le 1$. The integrand of (5.6) and (5.7) is the following:

$$T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}}.$$

The proof of (5.6): We divide the integral (5.6) over $[0,\infty)$. Let x > y or $x \le y$ and $x \ge 1$ or $x \le y$ and $\frac{at}{2} < x < 1$. In these cases, similarly as in the proof of (b) in Theorem 5.1, it follows that

$$\frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} \le c$$

T. Kawazoe / Anal. Theory Appl., 32 (2016), pp. 38-51

and thus, (5.6) is dominated by $e^{2(a-1)\rho t}$. Let $x \le y$, x < 1 and $x < \frac{at}{2}$. Since $y \le x + at < \frac{3}{2}at$, it follows that

$$\Delta(x)\frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} \leq \Delta(x)\frac{(\operatorname{th} y)^{2\gamma_0}}{(\operatorname{th} x)^{2\gamma_0}} \leq c(\operatorname{th} \frac{3}{2}at)^{2\gamma_0}.$$

Hence we see from Lemma 3.3 that

$$\int_0^1 T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} dx \leq c \frac{(\mathrm{th}t)^{2\gamma_0} t}{|B(t)|} \leq c.$$

Therefore, in each case, if $a \le 1$, then (5.6) holds.

The proof of (5.7): We divide the integral (5.7) over $[0,\infty)$.

Let x > y, t > 1 and y > 1. Since

$$\Delta(x) \leq \frac{\Delta(x)}{\Delta(y)} \Delta(y) \leq e^{2\rho(x-y)} \Delta(y),$$

it follows from Lemma 3.2 that

$$\int_1^x T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} dy \leq c e^{2\rho x} \tilde{\chi}_{at} * e^{-2\rho(\cdot)}(x) \leq c \|\tilde{\chi}_{at}\|_{L^1(\Delta)} \leq c e^{2\rho(a-1)t}.$$

Let x > y, t > 1 and $y \le 1$. Since $x \le y + at \le 1 + at$, it follows that

$$\int_0^1 T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} dy \le c \Delta(1+at) \int_0^1 T_x \tilde{\chi}_{at}(y) dy \le c \frac{\Delta(1+at)}{|B(t)|} \le c e^{2\rho(a-1)t}.$$

Let x > y, $t \le 1$ and $at > \frac{x}{2}$. Since $x \le 2at$, it follows Lemma 3.3 that

$$\int_0^x T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} dy \leq c \Delta(2at) \int_0^\infty T_x \tilde{\chi}_{at}(y) dy \leq c \frac{\Delta(2at)t}{|B(t)|} \leq c a^{2\gamma_0}.$$

Let x > y, $t \le 1$ and $at \le \frac{x}{2}$. Since $x \le y + at \le y + a$ and $y > x - at > \frac{x}{2}$, it follows that

$$\frac{\Delta(x)}{\Delta(y)} \leq c \begin{cases} \frac{\Delta(x)}{\Delta(x-a)}, & \text{if } x > 2a, \\ \frac{\Delta(x)}{\Delta(\frac{x}{2})}, & \text{if } x \leq 2a, \\ \leq c_a. \end{cases}$$

Hence, replacing $\Delta(x)$ by $c_a \Delta(y)$, we can deduce that

$$\int_0^x T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} dy \leq c_a \int_0^\infty T_x \tilde{\chi}_{at}(y) \Delta(y) dy = c \|\tilde{\chi}_{at}\|_{L^1(\Delta)} \leq c e^{2\rho(a-1)t}.$$

Let x < y and 1 < x. Since

$$\Delta(x)\frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} \leq \Delta(x) \leq \Delta(y),$$

it follows that

$$\int_x^\infty T_x \tilde{\chi}_{at}(y) \Delta(x) \frac{(\mathrm{th} y)^{2\gamma}}{(\mathrm{th} x)^{2\gamma}} dy \leq c \int_0^\infty T_x \tilde{\chi}_{at}(y) \Delta(y) dy \leq c e^{2\rho(a-1)t}.$$

Let x < y and 2at < x < 1. Since $y \le x + at \le \frac{3}{2}x$, we see that

$$\Delta(x) \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} \leq \Delta(x) \frac{(\mathrm{th}\frac{3}{2}x)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} \leq c\Delta(x) \leq c\Delta(y)$$

and thus, we can obtain the above estimate.

Let x < y, x < 1 and x < 2at. Since $y \le x + at \le 3at$, it follows that

$$\Delta(x)\frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}} \leq \Delta(x)\frac{(\mathrm{th}y)^{2\gamma_0}}{(\mathrm{th}x)^{2\gamma_0}} \leq c(\mathrm{th}3at)^{2\gamma_0}$$

Therefore, we see from Lemma 3.3 that

$$\int_{x}^{\infty} T_{x} \tilde{\chi}_{at}(y) \Delta(x) \frac{(\operatorname{th} y)^{2\gamma}}{(\operatorname{th} x)^{2\gamma}} dy \leq c (\operatorname{th} 3at)^{2\gamma_{0}} \int_{0}^{\infty} T_{x} \tilde{\chi}_{at}(y) dy \leq c \frac{(\operatorname{th} 3at)^{2\gamma_{0}} t}{|B(t)|} \leq c.$$

Therefore, in each case, (5.7) holds if $a \leq 1$.

(b): $h = (\text{th})^{\gamma_0}$ and $a \leq \frac{1}{2}$. The integrand of (5.6) and (5.7) is the following.

$$cT_x \tilde{\chi}_{at}(y) e^{2\rho(x-y)} \Delta(x) \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}}.$$

Since $x - y \le at$, this is dominated by

$$cT_x \tilde{\chi}_{at}(y) e^{2\rho at} \Delta(x) \frac{(\mathrm{th}y)^{2\gamma}}{(\mathrm{th}x)^{2\gamma}}.$$

Hence it follows from the previous arguments in (a) that the integrals in (5.6) and (5.7) are dominated by

$$e^{2\rho at}e^{2\rho(a-1)t} = e^{2\rho(2a-1)t}$$

Therefore, if $a \le \frac{1}{2}$, then (5.6) and (5.7) hold.

Remark 5.1. In the definition of $S_{a,h}$ in (1.2) we can insert the term $e^{2\sigma t}$ as in the one of g_{σ} . Then it is easy to see that the condition a < 2 in Theorem 5.1 is replaced by

$$\sigma + (a - 1)\rho < \rho$$

and the conditions $a \le 1$ and $a \le \frac{1}{2}$ in Theorem 5.2(a), (b) are respectively replaced by

$$\sigma + (a-1)\rho \le 0,$$

$$\sigma + (2a-1)\rho \le 0.$$

Acknowledgements

The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 24540191, Japan Society for the Promotion of Science.

References

- [1] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., 65 (1992), 257–297.
- [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569–645.
- [3] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93 (1990), 34–170.
- [4] M. Flensted-Jensen and T. Koornwonder, The convolution structure and Jacobi transform expansions. Ark. Mat., 11 (1973), 245–262.
- [5] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, New Jersey, 1982.
- [6] T. Kawazoe, Hardy spaces and maximal operators on real rank one semisimple Lie groups I, Tohoku Math. J., 52 (2000), 1–18.
- [7] T. Kawazoe, *H*¹-estimates of the Littlewood-Paley and Lusin functions for Jacobi analysis, Anal. Theory Appl., 25 (2009), 201–229.
- [8] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., 13 (1975), 145–159.
- [9] N. Lohoue, Estimation des fonctions de Littlewood-Paley-Stein sur les variétés Riemanniennes à courbure non positive, Ann. Scient. Éc. Norm. Sup., 20 (1987), 505–544.
- [10] E. M. Stein, Topics in Harmonic Analysis. Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, 63, Princeton University Press, New Jersey, 1970.
- [11] E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, New Jersey, 1993.
- [12] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, 123, Academic Press, Orlando, Florida, 1986.