# $H^{1}$-Estimates of the Littlewood-Paley and Lusin Functions for Jacobi Analysis II 

Takeshi Kawazoe*<br>Department of Mathematics, Keio University at SFC, Endo, Fujisawa, Kanagawa, 252-8520, Japan

Received 17 November 2014; Accepted (in revised version) 28 October 2015


#### Abstract

Let $\left(\mathbb{R}_{+}, *, \Delta\right)$ be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley $g$ function and the Lusin area function for the Jacobi hypergroup and consider their $\left(H^{1}, L^{1}\right)$ boundedness. Although the $g$ operator for $\left(\mathbb{R}_{+}, *, \Delta\right)$ possesses better property than the classical $g$ operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the $\left(H^{1}, L^{1}\right)$ estimate for the Lusin area operator, a slight modification in its form is required.


Key Words: Jacobi analysis, Jacobi hypergroup, $g$ function, area function, real Hardy space.
AMS Subject Classifications: 22E30, 43A30, 43A80

## 1 Introduction

One of main subjects of the so-called real method in classical harmonic analysis related to the Poisson integral $f * p_{t}$ is to investigate the Littlewood-Paley theory. For example, in the one dimensional setting, the following singular integral operators were respectively well-known as the Littlewod-Paley $g$ function and the Lusin area function

$$
\begin{align*}
& g^{\mathbb{R}}(f)(x)=\left(\int_{0}^{\infty}\left|f * t \frac{\partial}{\partial t} p_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2},  \tag{1.1a}\\
& S^{\mathbb{R}}(f)(x)=\left(\int_{0}^{\infty} \frac{1}{t} \chi_{t} *\left|f * t \frac{\partial}{\partial t} p_{t}\right|^{2}(x) \frac{d t}{t}\right)^{1 / 2}, \tag{1.1b}
\end{align*}
$$

where $\chi_{t}$ is the characteristic function of $[-t, t]$. These operators satisfy the maximal theorem, that is, a weak type $L^{1}$ estimate and a strong type $L^{p}$ estimate for $1<p \leq \infty$. Moreover, they are bounded form $H^{1}$ into $L^{1}$ (cf. [10-12]). Our matter of concern is to extend these results to other topological spaces $X$. Roughly speaking, in some examples of $X$ of homogeneous type (see [2]), Poisson integrals are generalized on $X$ and analogous

[^0]Littlewood-Paley theory has been developed (cf. [2,5,10]). On the other hand, if the space $X$ is not of homogeneous type, we encounter difficulties. As an example of $X$ of non homogeneous type with Poisson integrals, noncompact Riemannian symmetric spaces $X=G / K$ are well-known. Lohoue [9] and Anker [1] generalize the Littlewood-Paley $g$ function and the Luzin area function to $G / K$ and show that they satisfy the maximal theorem (see below). However, we know little or nothing whether they are bounded from $H^{1}$ into $L^{1}$, because we first have to find out a suitable definition of a real Hardy space on $G / K$. The aim of this paper is to introduce a real Hardy space $H^{1}(\Delta)$ and show that they are bounded from $H^{1}(\Delta)$ into $L^{1}(\Delta)$ for the Jacobi hypergroup $\left(\mathbb{R}_{+}, *, \Delta\right)$, which is a generalization of $K$-invariant setting on $G / K$ of real rank one.

We briefly overview the Jacobi hypergroup $\left(\mathbb{R}_{+}, *, \Delta\right)$. We refer to [4] and [8] for a description of general context. For $\alpha \geq \beta \geq-\frac{1}{2}$ and $(\alpha, \beta) \neq\left(-\frac{1}{2},-\frac{1}{2}\right)$ we define the weight function $\Delta$ on $\mathbf{R}_{+}$as

$$
\Delta(x)=(2 \operatorname{sh} x)^{2 \alpha+1}(2 \operatorname{ch} x)^{2 \beta+1} .
$$

Clearly, it follows that

$$
\Delta(x) \leq c \begin{cases}e^{2 \rho x}, & x>1, \\ x^{2 \gamma_{0}}, & x \leq 1,\end{cases}
$$

where $\rho=\alpha+\beta+1$ and $\gamma_{0}=\alpha+\frac{1}{2}$. For $\lambda \in \mathbb{C}$ let $\phi_{\lambda}$ be the Jacobi function on $\mathbb{R}_{+}$defined by

$$
\phi_{\lambda}(x)={ }_{2} F_{1}\left(\frac{\rho+i \lambda}{2}, \frac{\rho-i \lambda}{2} ; \alpha+1 ;-(\operatorname{sh} x)^{2}\right),
$$

where ${ }_{2} F_{1}$ the hypergeometric function. Then the Jacobi transform $\hat{f}$ of a function $f$ on $\mathbb{R}_{+}$is defined by

$$
\hat{f}(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} f(x) \phi_{\lambda}(x) \Delta(x) d x
$$

We define a generalized translation on $\mathbb{R}_{+}$by using the kernel form of the product formula of Jacobi functions: For $x, y \in \mathbb{R}_{+}$,

$$
\phi_{\lambda}(x) \phi_{\lambda}(y)=\int_{0}^{\infty} \phi_{\lambda}(z) K(x, y, z) \Delta(z) d x .
$$

The kernel $K(x, y, z)$ is non-negative and symmetric in the tree variables. Then the generalized translation $T_{x}$ of $f$ is defined as

$$
T_{x} f(y)=\int_{0}^{\infty} f(z) K(x, y, z) \Delta(z) d z
$$

and the convolution of $f, g$ is given by

$$
f * g(x)=\int_{0}^{\infty} f(y) T_{x} g(y) \Delta(y) d y
$$

Since $T_{x} f(y)=T_{y} f(x)$ and $\widehat{T_{x} f}(\lambda)=\phi_{\lambda}(x) \hat{f}(\lambda)$, it follows that $f * g=g * f$ and $\widehat{f * g}(\lambda)=$ $\hat{f}(\lambda) \cdot \hat{g}(\lambda)$. We call $\left(\mathbb{R}_{+}, *, \Delta\right)$ the Jacobi hypergroup and the associated harmonic analysis is called by Jacobi analysis. The Jacobi hypergroup is not a space of homogeneous type, because $\Delta(x)$ has an exponential growth order $e^{2 \rho x}$ when $x$ goes to $\infty$.

In Jacobi analysis, the Poisson kernel $p_{t}(x), t>0$, is defined as the function such that

$$
\widehat{p}_{t}(\lambda)=e^{-t \sqrt{\lambda^{2}+\rho^{2}}} .
$$

Then, as analogue of the classical case, we introduce a generalized Littlewood-Paley $g$ function $g_{\sigma}(f)$ and a generalized Lusin area function $S_{a, h}(f)$, which are respectively defined by

$$
\begin{align*}
& g_{\sigma}(f)(x)=\left(\int_{0}^{\infty} e^{2 \sigma t}\left|f * t \frac{\partial}{\partial t} p_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2},  \tag{1.2a}\\
& S_{a, h}(f)(x)=\frac{1}{h(x)}\left(\int_{0}^{\infty} \tilde{\chi}_{B(a t)} *\left|h \cdot f * t \frac{\partial}{\partial t} p_{t}\right|^{2}(x) \frac{d t}{t}\right)^{1 / 2}, \tag{1.2b}
\end{align*}
$$

where $\sigma, a \geq 0, h(x)$ is a positive function on $\mathbb{R}_{+}$and

$$
\tilde{\chi}_{B(a t)}=\frac{1}{|B(t)|} \chi_{B(a t)} .
$$

Here $\chi_{B(t)}$ is the characteristic function of $B(t)=[0, t]$ and $|B(t)|$ the volume of $B(t)$ with respect to $\Delta(x) d x$. Similarly as in the case of non-compact Riemannian symmetric spaces (see $[1,9]), g_{\sigma}$ is strongly bounded on $L^{p}(\Delta)$ for $\sigma<2 \rho / \sqrt{p p^{\prime}}$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $g_{0}$ satisfies a weak type $L^{1}$ estimate with respect to $\Delta(x) d x$. In the previous paper [7], the author introduces a real Hardy space $H^{1}(\Delta)$ and shows that $g_{0}$ is bounded form $H^{1}(\Delta)$ into $L^{1}(\Delta)$. As for $S_{a, h}$, the strong type $L^{p}$ estimate of $S_{a, 1}$ for $p>1$ is essentially obtained in [9]. However, whether $S_{a, 1}$ is bounded from $H^{1}(\Delta)$ into $L^{1}(\Delta)$ is still an open question. In [7], Section 7, we obtained a partial answer for a modified operator of $S_{a, 1}$ with $a \leq \frac{1}{3}$. In this paper we refine this result and extend it to a more general area operator $S_{a, h}$.

This paper is organized as follows. Basic notations are given in Section 2. Especially we recall the definition of the Hardy space $H^{1}(\Delta)$ and give a relation with Euclidean weighted Hardy spaces $H_{w}^{1}(\mathbb{R})$. In Section 3 we prove key lemmas on generalized translations. Finally, in Section 4 and Section 5 we consider $\left(L^{2}(\Delta), L^{2}(\Delta)\right)$ and $\left(H^{1}(\Delta), L^{1}(\Delta)\right)$ boundedness of $g_{\sigma}$ and $S_{a, h}$ respectively.

## 2 Notations

Let $L^{p}(\Delta)$ denote the space of functions $f$ on $\mathbb{R}_{+}$with finite $L^{p}$-norm:

$$
\|f\|_{L^{p}(\Delta)}^{p}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty}|f(x)|^{p} \Delta(x) d x
$$

and $L_{\text {loc }}^{1}(\Delta)$ the space of locally integrable functions on $\mathbb{R}_{+}$. We may regard these functions on $\mathbb{R}_{+}$as even function on $\mathbb{R}$. Let $C_{c}^{\infty}$ be the space of compactly supported $C^{\infty}$ even functions on $\mathbb{R}$. For $f \in C_{c}^{\infty}$ the Jacobi transform $\hat{f}$ is well-defined and the Paley-Wiener theorem holds: The map $f \rightarrow \hat{f}$ is a bijection of $C_{c}^{\infty}$ onto the space of entire holomorphic even functions of exponential type on $\mathbb{R}$. The inverse transform is given as

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \hat{f}(\lambda) \phi_{\lambda}(x)|C(\lambda)|^{-2} d \lambda
$$

where $C(\lambda)$ is Harish-Chandra's C-function. Furthermore, the map $f \rightarrow \hat{f}$ extends to an isometry of $L^{2}(\Delta)$ onto $L^{2}\left(\mathbb{R}_{+},|C(\lambda)|^{-2} d \lambda\right)$ :

$$
\|f\|_{L^{2}(\Delta)}=\|\hat{f}\|_{L^{2}\left(\mathbb{R}_{+},|C(\lambda)|^{-2} d \lambda\right)}
$$

(see [4, Section 2] and [8, Theorem 3.1, Remark 3]). Let $f \in L^{1}(\Delta)$. Since $\phi_{\lambda}$ is bounded by 1 for $|\Im \lambda| \leq \rho$ (see [4, (2.17)]), $\hat{f}$ has a holomorphic extension on $|\Im \lambda| \leq \rho$ and $|\hat{f}(\lambda)| \leq$ $\|f\|_{L^{1}(\Delta)}$. We recall that, as a function of $\lambda, \phi_{\lambda}(x)$ is the Fourier Cosine transform of a function $A(x, y)$ supported on $[0, x]$ :

$$
\Delta(x) \phi_{\lambda}(x)=\int_{0}^{x} \cos \lambda y A(x, y) d y
$$

(see [8, (2.16)]). Hence, if we define the Abel transform $W_{+}^{0}(f)$ of $f$ by

$$
W_{+}^{0}(f)(x)=\int_{x}^{\infty} f(y) A(x, y) d y
$$

then we see that

$$
\hat{f}(\lambda)=c \mathcal{F}\left(W_{+}^{0}(f)\right)(\lambda)
$$

where $W_{+}^{0}(f)$ is extended as an even function on $\mathbb{R}$ and $\mathcal{F}$ is the Euclidean Fourier transform on $\mathbb{R}$. We put

$$
W_{+}^{s}(f)(x)=e^{s \rho x} W_{+}^{0}(f)(x) .
$$

Since $|A(x, y)| \leq c e^{\rho y}(\text { thy })^{2 \alpha}$ by the explicit form (see [8], (2.18)), it follows that

$$
\left\|W_{+}^{s}(f)\right\|_{L^{1}\left(\mathbb{R}_{+}\right)} \leq c\|f\|_{L^{1}(\Delta)} \text { for }|s| \leq 1,
$$

and for $\lambda \in \mathbb{R}$,

$$
\hat{f}(\lambda+i \rho s)=c \mathcal{F}\left(W_{+}^{s}(f)\right)(\lambda)
$$

Especially, we have

$$
W_{+}^{s}(f * g)=W_{+}^{s}(f) \otimes W_{+}^{s}(g),
$$

where $\otimes$ denotes the Euclidean convolution on $\mathbb{R}$. As shown in [8], Section 3, $W_{+}^{0}$ is of the form:

$$
W_{+}^{0}(f)=c W_{\alpha-\beta}^{1} \circ W_{\beta+1 / 2}^{2}(f),
$$

where $W_{\mu}^{\sigma}$ is the generalized Weyl type fractional operators on $\mathbb{R}_{+}$; for $n=0,1,2, \cdots, \Re \mu>$ $-n$ and $\sigma \in \mathbb{R}$,

$$
W_{\mu}^{\sigma}(f)(s)=\frac{(-1)^{n}}{\Gamma(1+n)} \int_{s}^{\infty} \frac{d^{n}}{d(\operatorname{ch} \sigma t)^{n}} f(t) \cdot(\operatorname{ch} \sigma t-\operatorname{ch} \sigma s)^{\mu+n-1} d(\operatorname{ch} \sigma t) .
$$

Since the inverse of $W_{\mu}^{\sigma}$ is given by $W_{-\mu}^{\sigma}$, the inverse operator $W_{-}^{s}$ of $W_{+}^{s}$ is given by $W_{-}^{s}(f)=W_{-(\beta+1 / 2)}^{2} \circ W_{-(\alpha-\beta)}^{1}\left(e^{-s \rho x} f\right)$. The following formula is obtained in [7, Corollary 3.7]. For $f \in L^{1}(\Delta)$, let $F=W_{+}^{1}(f)$. Then there exist finite sets $\Gamma_{0}, \Gamma_{1}$ in $\mathbb{R}_{+}$for which

$$
\begin{align*}
& f(x)=W_{-}^{1} \circ W_{+}^{1}(f)(x)=W_{-}^{1}(F) \\
= & \frac{1}{\Delta(x)}\left(\sum_{\gamma \in \Gamma_{0}} W_{-\gamma}^{\mathbb{R}}(F)(x)(\operatorname{th} x)^{\gamma}+\sum_{\gamma \in \Gamma_{1}}(\operatorname{th} x)^{\gamma} \int_{x}^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma}(x, s) d s\right), \tag{2.1a}
\end{align*}
$$

where $W_{-\gamma}^{\mathbb{R}}$ is the Weyl type fractional operator on $\mathbb{R}$, which is defined by replacing $\operatorname{ch} \sigma t$ and ch $\sigma s$ in the above definition of $W_{\gamma}^{\sigma}(f)(s)$ with $t$ and $s \in \mathbb{R}$ respectively. For some properties of $A_{\gamma}(x, s)$ see [7, Lemma 3.6]. In particular, if $\alpha$ and $\beta$ both belong to $\mathbb{N}+\frac{1}{2}$, then the integral terms in (2.1) vanish; $\Gamma_{1}=\varnothing$ and $\Gamma_{0}=\left\{0,1,2, \cdots, \gamma_{0}\right\}, \gamma_{0}=\alpha+\frac{1}{2}$. Since $e^{-\rho x} F$ is an even function on $\mathbb{R}, L^{1}$ norm of $W_{-\gamma}^{\mathbb{R}}(F)(-x)$ on $\mathbb{R}_{+}$is controlled by $L^{1}$ norms of $W_{-\gamma}^{\mathbb{R}}(F)(x)$ on $\mathbb{R}_{+}{ }^{\dagger}$. Hence it follows that

$$
\|f\|_{L^{1}(\Delta)} \sim \sum_{\gamma \in \Gamma_{0} \cup \Gamma_{1}}\left\|W_{-\gamma}^{\mathbb{R}}(F)\right\|_{L_{w_{\gamma}}^{1}(\mathbb{R})},
$$

where $L_{w_{\gamma}}^{1}(\mathbb{R})$ is the $w_{\gamma}$-weighted $L^{1}$ space on $\mathbb{R}$ and $w_{\gamma}(x)=(\operatorname{th}|x|)^{\gamma}$.
We now define the real Hardy space $H^{1}(\Delta)$ as the subspace of $L^{1}(\Delta)$ consisting of all functions with finite $H^{1}(\Delta)$-norm:

$$
\begin{equation*}
\|f\|_{H^{1}(\Delta)}=\sum_{\gamma \in \Gamma_{0} \cup \Gamma_{1}}\left\|W_{-\gamma}^{\mathbb{R}}(F)\right\|_{H_{w \gamma}^{1}(\mathbb{R})}, \tag{2.2}
\end{equation*}
$$

where $H_{w_{\gamma}}^{1}(\mathbb{R})$ is the $w_{\gamma}$-weighted $H^{1}$ Hardy space on $\mathbb{R}$ that coincides with the weighted homogeneous Triebel-Lizorkin space $\dot{F}_{1,2}^{\gamma, w_{\gamma}}$ (cf. [3]). Thereby the above $H^{1}(\Delta)$-norm is equivalent to

$$
\|F\|_{H^{1}(\mathbb{R})}+\left\|W_{-\gamma_{0}}^{\mathbb{R}}(F)\right\|_{H_{w_{\gamma_{0}}}^{1}(\mathbb{R})} .
$$

In [7], Section 4 we define a radial maximal operator $M$ for the Jacobi hypergroup $\left(\mathbb{R}_{+}, *, \Delta\right)$ and deduce that $H^{1}(\Delta)$ coincides with the space consisting of all $f \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$whose radial maximal functions $M f$ belong to $L^{1}(\Delta)$ and $\|f\|_{H^{1}(\Delta)} \sim\|M f\|_{L^{1}(\Delta)}$.

The letter $c$ will be used to denote a positive constant which may assume different values at different places.

[^1]
## 3 Key lemmas

The following lemmas on the generalized translation $T_{x}$ will play a key role in the arguments in Section 4 and Section 5. The first one is obtained in [4, (5.2)], and the second one is essentially obtained in [6, Lemma 2.2], for group cases.

Lemma 3.1 (see [4]). Let $f \in L^{p}(\Delta), 1 \leq p \leq \infty$, and $x \in \mathbb{R}_{+}$. Then

$$
\left\|T_{x} f\right\|_{L^{p}(\Delta)} \leq\|f\|_{L^{p}(\Delta)}
$$

Moreover, if $f$ is positive, then the equality holds.
Lemma 3.2. Let $x, y \geq 0$. Then

$$
0 \leq T_{x} e^{-2 \rho(\cdot)}(y) \leq c e^{-2 \rho \max \{x, y\}},
$$

where $c$ is independent of $x, y$.
Proof. We may assume that $x \geq y$. It follows from [4, (4.19)], that

$$
\begin{aligned}
T_{x} e^{-2 \rho(\cdot)}(y) & =\int_{x-y}^{x+y} e^{-2 \rho z} K(x, y, z) \Delta(z) d z \\
& \leq c(\operatorname{th} x)^{-2 \alpha} e^{-\rho x}(\text { th } y)^{-2 \alpha} e^{-\rho y} \int_{x-y}^{x+y} \text { th } z e^{-\rho z} d z \\
& \leq c(\operatorname{th} x)^{-2 \alpha}(\text { th } y)^{-2 \alpha} e^{-2 \rho x} \text { th } y
\end{aligned}
$$

and moreover, from [4, (4.20)], that

$$
\begin{equation*}
T_{x} e^{-2 \rho(\cdot)}(y) \leq \int_{0}^{\infty} K(x, y, z) \Delta(z) d z=1 . \tag{3.1}
\end{equation*}
$$

Hence we can obtain the desired estimate.

Lemma 3.3. Let $x, t \geq 0$. Then

$$
\int_{0}^{\infty} T_{x} \chi_{t}(y) d y \leq c t
$$

where $c$ is independent of $x, t$.
Proof. Similarly as (3.1), $T_{x} \chi_{t}(y) \leq 1$. Since $T_{x} \chi_{t}(y)$ is supported on $[|x-t|, x+t]$, the desired result is obvious.

## 4 Littlewood-Paley $g$ functions

As shown in [1, Corollary 6.2], $g_{\sigma}$ is strongly bounded on $L^{p}(\Delta)$ provided $\sigma<2 \rho / \sqrt{p p^{\prime}}$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $g_{0}$ satisfies a weak type $L^{1}$ estimate. We give a simple proof of the $L^{2}$ boundedness of $g_{\sigma}$ for $\sigma<\rho$ and consider a modified operator $g_{\rho, \beta}$ when $\sigma=\rho$.

Theorem 4.1 (see [1]). Let $\sigma<\rho$. Then $g_{\sigma}$ is $\left(L^{2}(\Delta), L^{2}(\Delta)\right)$ bounded.
Proof. Since

$$
2 \sigma \frac{t}{\sqrt{\lambda^{2}+\rho^{2}}} \leq \frac{2 \sigma}{\rho} t<2 t
$$

for $\lambda \in \mathbb{R}$ and $t>0$, it follows that

$$
\begin{aligned}
\left\|g_{\sigma}(f)\right\|_{2}^{2} & =\int_{0}^{\infty} \int_{0}^{\infty} e^{2 \sigma t}\left|f * t \frac{\partial}{\partial t} p_{t}\right|^{2}(x) \frac{d t}{t} \Delta(x) d x \\
& =\int_{0}^{\infty} e^{2 \sigma t}\left\|f * t \frac{\partial}{\partial t} p_{t}\right\|_{L^{2}(\Delta)}^{2} \frac{d t}{t} \\
& =\int_{0}^{\infty} e^{2 \sigma t}\left\|\hat{f} \cdot\left(t \frac{\partial}{\partial t} p_{t}\right)^{\wedge}\right\|_{L^{2}\left(\mathbb{R}_{+}|C(\lambda)|^{-2} d \lambda\right)}^{2} \frac{d t}{t} \\
& =\int_{0}^{\infty} e^{2 \sigma t} \int_{0}^{\infty}\left|\hat{f}(\lambda) t \sqrt{\lambda^{2}+\rho^{2}} e^{-t \sqrt{\lambda^{2}+\rho^{2}}}\right|^{2}|C(\lambda)|^{-2} d \lambda \frac{d t}{t} \\
& =\int_{0}^{\infty}|\hat{f}(\lambda)|^{2}|C(\lambda)|^{-2}\left(\int_{0}^{\infty} e^{2 \sigma t} t^{2}\left(\lambda^{2}+\rho^{2}\right) e^{-2 t \sqrt{\lambda^{2}+\rho^{2}}} \frac{d t}{t}\right) d \lambda \\
& =\int_{0}^{\infty}|\hat{f}(\lambda)|^{2}|C(\lambda)|^{-2}\left(\int_{0}^{\infty} e^{\left.2 \sigma \frac{t}{\sqrt{\lambda^{2}+\rho^{2}}} t^{2} e^{-2 t} \frac{d t}{t}\right) d \lambda}\right. \\
& =\int_{0}^{\infty}|\hat{f}(\lambda)|^{2}|C(\lambda)|^{-2}\left(\int_{0}^{\infty} e^{2 \sigma t / \rho} t e^{-2 t} d t\right) d \lambda \\
& \leq c_{\sigma}\|f\|^{2},
\end{aligned}
$$

where

$$
c_{\sigma}=\int_{0}^{\infty} e^{-2(1-\sigma / \rho) t} t d t
$$

Thus, we complete the proof.
Theorem 4.2. Let $g_{\rho, \beta}$ be the operator defined by replacing $e^{2 \rho t}$ in the definition (1.2) of $g_{\rho}$ by

$$
e^{2 \rho t} \frac{1}{(1+t)^{\beta}}, \quad \beta>2
$$

Then $g_{\rho, \beta}$ is $\left(L^{2}(\Delta), L^{2}(\Delta)\right)$ bounded.

Proof. We note that

$$
\int_{0}^{\infty} e^{2 \rho \frac{t}{\sqrt{\lambda^{2}+\rho^{2}}}} \frac{1}{\left(1+\frac{t}{\sqrt{\lambda^{2}+\rho^{2}}}\right)^{\beta}} t^{2} e^{-2 t} \frac{d t}{t}
$$

is dominated by

$$
\begin{cases}\int_{0}^{\infty} \frac{t}{\left(1+\frac{t}{\sqrt{2} \rho}\right)^{\beta}} d t, & \text { if } 0 \leq \lambda<\rho, \\ \int_{0}^{\infty} e^{-(2-\sqrt{2}) t} t d t, & \text { if } \lambda \geq \rho .\end{cases}
$$

Hence the desired result follows similarly as in Theorem 4.1.
As shown in [7], Section $6, g_{0}$ is bounded from $H^{1}(\Delta)$ to $L^{1}(\Delta)$. In order to understand the usage of the formula (2.1) we give a sketch of the proof.
Theorem 4.3 (see [7]). $g_{0}$ is $\left(H^{1}(\Delta), L^{1}(\Delta)\right)$ bounded.
Proof. We recall (2.1) and, for simplicity, we suppose that the integral terms vanish, that corresponds to the case of $\alpha, \beta \in \mathbb{N}+\frac{1}{2}$. For general $\alpha, \beta$, we refer to the arguments in [7], Section 6. Hence, we see that

$$
f * t \frac{\partial}{\partial t} p_{t}(x)=\frac{1}{\Delta(x)} \sum_{\gamma \in \Gamma_{0}} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(x)(\operatorname{th} x)^{\gamma}
$$

where $F=W_{+}^{1}(f)$ and $P_{t}=W_{+}^{1}\left(t \frac{\partial}{\partial t} p_{t}\right)$. Since $P_{t}$ behaves similarly as the Euclidean Poisson kernel (see [7, Lemma 6.3]), it follows that

$$
\begin{aligned}
g_{0}(f)(x) & \leq \frac{1}{\Delta(x)} \sum_{\gamma \in \Gamma_{0}}\left(\int_{0}^{\infty}\left|W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}(\operatorname{th} x)^{\gamma} \\
& \leq \frac{c}{\Delta(x)} \sum_{\gamma \in \Gamma_{0}} g^{\mathbb{R}}\left(W_{-\gamma}^{\mathbb{R}}(F)\right)(\operatorname{th} x)^{\gamma},
\end{aligned}
$$

where $g^{\mathbb{R}}$ is the Euclidean $g$-function on $\mathbb{R}$ (see (1.1)). Since $g^{\mathbb{R}}$ is bounded form $H_{w_{\gamma}}^{1}(\mathbb{R})$ to $L_{w_{\gamma}}^{1}(\mathbb{R})$ (see [12, XII, Section 3], with a slight modification by a weight function), it follows from (2.2) that

$$
\begin{aligned}
\left\|g_{0}(f)\right\|_{L^{1}(\Delta)} & \leq c \sum_{\gamma \in \Gamma_{0}}\left\|g^{\mathbb{R}}\left(W_{-\gamma}^{\mathbb{R}}(F)\right)\right\|_{L_{w_{\gamma}}^{1}(\mathbb{R})} \\
& \left.\leq c \sum_{\gamma \in \Gamma_{0}} \| W_{-\gamma}^{\mathbb{R}}(F)\right)\left\|_{H_{w_{\gamma}}^{1}(\mathbb{R})}=c\right\| f \|_{H^{1}(\Delta)} .
\end{aligned}
$$

Thus, we complete the proof.

## 5 Lusin area functions

We shall consider strong type estimates of the modified area function $S_{a, h}$. Similarly as in the Euclidean case, the $L^{2}$ boundedness of $S_{a, h}$ is reduced to the one of $g_{\sigma}$.
Theorem 5.1. $S_{a, h}$ is $\left(L^{2}(\Delta), L^{2}(\Delta)\right)$ bounded provided that $a<2$ and $h$ is the following:
(a) $h=1$,
(b) $h=\sqrt{\Delta}$,
(c) $h=(\text { th })^{\gamma_{0}}$.

Proof. We note that $\left\|S_{a, h}(f)\right\|_{2}^{2}$ is given by

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{h(x)^{2}} \int_{0}^{\infty}\left(\int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y)\left|h(y) f * t \frac{\partial}{\partial t} p_{t}(y)\right|^{2} \Delta(y) d y\right) \frac{d t}{t} \Delta(x) d x \\
= & \left.\int_{0}^{\infty} \int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{h^{2}(y)}{h^{2}(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x\right)\left|f * t \frac{\partial}{\partial t} p_{t}(y)\right|^{2} \Delta(y) d y\right) \frac{d t}{t} .
\end{aligned}
$$

Therefore, if we can deduce that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{h^{2}(y)}{h^{2}(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x \leq c e^{2 \sigma t} \tag{5.1}
\end{equation*}
$$

where $c$ is independent of $y, t$, then we see that $\left\|S_{a, h}(f)\right\|_{2}^{2} \leq c\left\|g_{\sigma}(f)\right\|_{2}^{2}$ and thus, $\left\|S_{a, h}(f)\right\|_{2} \leq$ $c\|f\|_{2}$ provided $\sigma<\rho$ by Theorem 4.1.
(a) $h=1$ : It follows from Lemma 3.1 that

$$
\int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x=\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq \frac{|B(a t)|}{|B(t)|} \leq c e^{2(a-1) \rho t} .
$$

Therefore, (5.1) holds for $\sigma=(a-1) \rho$. Hence, if $a<2$, then $\sigma<\rho$.
(b) $h=\sqrt{\Delta}$ : We divide the integral (5.1) over $[0, \infty)$ into several segments.

Let $x \geq y$. Since

$$
\frac{\Delta(y)}{\Delta(x)} \leq 1,
$$

it follows that

$$
\int_{y}^{\infty} \frac{\Delta(y)}{\Delta(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x \leq\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq c e^{2(a-1) \rho t} .
$$

Let $x<y$ and $x \geq 1$. Since

$$
\frac{\Delta(y)}{\Delta(x)} \leq c e^{2 \rho(y-x)}
$$

it follows from Lemma 3.2 that

$$
\int_{1}^{y} \frac{\Delta(y)}{\Delta(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x \leq e^{2 \rho y} \tilde{\chi}_{a t} * e^{-2 \rho(\cdot)}(y) \leq\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq c e^{2(a-1) \rho t} .
$$

Let $x<y$ and $\alpha t<x<1$ for sufficiently small $\alpha>0$. Since $y<x+a t<\left(1+\frac{a}{\alpha}\right) x$ and $x<1$,

$$
\frac{\Delta(y)}{\Delta(x)} \leq \frac{\Delta\left(\left(1+\frac{a}{\alpha}\right) x\right)}{\Delta(x)} \leq c\left(1+\frac{a}{\alpha}\right)^{\gamma_{0}}=c_{a, \alpha}
$$

and thus,

$$
\int_{\alpha t}^{1} \frac{\Delta(y)}{\Delta(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x \leq c_{a, \alpha}\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq c_{a, \alpha} e^{2(a-1) \rho t}
$$

Let $x<y, x<1$ and $x<\alpha t$. Since $y<x+a t<(\alpha+a) t$, it follows from Lemma 3.3 that

$$
\int_{0}^{\alpha t} \frac{\Delta(y)}{\Delta(x)} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) d x \leq c \Delta((\alpha+a) t) \int_{0}^{\infty} T_{y} \tilde{\chi}_{a t}(x) d x \leq c \frac{\Delta((\alpha+a) t) t}{|B(t)|}=J(t)
$$

We note that, if $t \leq 1$, then $J(t) \leq c(\alpha+a)^{\gamma_{0}}$ and if $t>1$, then $J(t) \leq c e^{2 \rho(\alpha+a-1) t} t$. Therefore, for $a<2$, we can take a sufficiently small $\alpha>0$ for which $\alpha+a-1<1$.

Therefore, in each case, if $a<2$, then there exists $0<\sigma<\rho$ for which (5.1) holds.
(c) $h=(\text { th })^{\gamma_{0}}$ : Similarly as in (b), we divide the integral (5.1) over $[0, \infty)$.

Let $x \geq y$. Since

$$
\begin{equation*}
\frac{\text { th } y}{\operatorname{th} x} \leq c \tag{5.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\int_{y}^{\infty} \frac{(\text { thy })^{2 \gamma_{0}}}{(\operatorname{th} x)^{2 \gamma_{0}}} T_{x} \chi_{a t}(y) \Delta(x) d x \leq c e^{2(a-1) \rho t} \tag{5.3}
\end{equation*}
$$

Let $x<y$ and $x \geq 1$. Clearly (5.2) and thus, (5.3) hold.
Let $x<y$ and $\alpha t<x<1$ for $\alpha>0$. Since $y<x+a t<\left(1+\frac{a}{a}\right) x$, (5.2) and thus, (5.3) hold.
Let $x<y, x<1$ and $x<\alpha t$. Since $y<x+a t<(\alpha+a) t$ and $(\operatorname{th} x)^{-2 \gamma_{0}} \Delta(x) \leq c$ for $x<1$, $J(t)$ in the case of $(b)$ is replaced by

$$
\frac{(\operatorname{th}(\alpha+a) t)^{2 \gamma_{0}} t}{|B(t)|} .
$$

Hence, if $t \leq 1$, then $J(t) \leq c(\alpha+a)^{\gamma_{0}}$ and if $t>1$, then $J(t) \leq c e^{-2 \rho t} a t \leq c$. Therefore, in each case, if $a<2$, then there exists $0<\sigma<2$ for which (5.1) holds.

Theorem 5.2. $S_{a, h}$ is $\left(H^{1}(\Delta), L^{1}(\Delta)\right)$ bounded provided that a and $h$ are the following:
(a) $h=\sqrt{\Delta}$ and $a \leq 1$,
(b) $h=(\text { th })^{\gamma_{0}}$ and $a \leq \frac{1}{2}$.

Proof. Similarly as in the proof of Theorem 4.3, for simplicity, we may suppose that the integral terms in (2.1) vanish (see [7, Section 6], for general case). Then we see that $S_{a, h}(f)(x)$ is dominated as

$$
\begin{align*}
& \frac{1}{h(x)}\left(\int_{0}^{\infty} \tilde{\chi}_{a t} * \left\lvert\,\left.\frac{h}{\Delta} \sum_{\gamma \in \Gamma_{0}} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\text { th })^{\gamma}\right|^{2}(x) \frac{d t}{t}\right.\right)^{1 / 2} \\
\leq & c \sum_{\gamma \in \Gamma_{0}} \frac{1}{h(x)}\left(\int_{0}^{\infty} \tilde{\chi}_{a t} * \left\lvert\,\left.\frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\text { th })^{\gamma}\right|^{2}(x) \frac{d t}{t}\right.\right)^{1 / 2} . \tag{5.4}
\end{align*}
$$

Hence $\left\|S_{a, h}(f)\right\|_{L^{1}(\Delta)}$ is dominated by the sum of the $L^{1}$-norm of each term in (5.4) with respect to $\Delta(x) d x$ :

$$
\begin{align*}
& \int_{0}^{\infty} \frac{1}{h(x)}\left(\int_{0}^{\infty} \tilde{\chi}_{a t} * \left\lvert\,\left.\frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\text { th })^{\gamma}\right|^{2}(x) \frac{d t}{t}\right.\right)^{1 / 2} \Delta(x) d x \\
= & \int_{0}^{\infty} \frac{\Delta(x)}{h(x)(\operatorname{th} x)^{\gamma}}\left(\int_{0}^{\infty} \tilde{\chi}_{a t} * \left\lvert\,\left.\frac{h}{\Delta} W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(\text { th })^{\gamma}\right|^{2}(x) \frac{d t}{t}\right.\right)^{1 / 2}(\operatorname{th} x)^{\gamma} d x \\
= & \int_{0}^{\infty}\left(\int_{0}^{\infty} \int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \frac{h(y)^{2} \Delta(x)^{2}(\text { th } y)^{2 \gamma}}{h(x)^{2} \Delta(y)(\operatorname{th} x)^{2 \gamma}} \times\left|W_{-\gamma}^{\mathbb{R}}(F) \otimes P_{t}(y)\right|^{2} d y \frac{d t}{t}\right)^{1 / 2}(\text { th } x)^{\gamma} d x . \tag{5.5}
\end{align*}
$$

We note that, for $f \in H^{1}(\Delta)$, each $W_{-\gamma}^{\mathbb{R}}(F)$ belongs to $H_{w_{\gamma}}^{1}(\mathbb{R})$ and $P_{t}$ behaves similarly as the Euclidean Poisson kernel. Therefore, if we can deduce that

$$
\begin{equation*}
\int_{0}^{\infty} T_{x} \tilde{x}_{a t}(y) \frac{h(y)^{2}}{h(x)^{2}} \frac{\Delta(x)^{2}}{\Delta(y)} \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d x \leq c \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} T_{x} \tilde{x}_{a t}(y) \frac{h(y)^{2}}{h(x)^{2}} \frac{\Delta(x)^{2}}{\Delta(y)} \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d y \leq c \tag{5.7}
\end{equation*}
$$

where $c$ is independent of $x, y, t$, then we can apply the arguments used in the Euclidean case (see [12, Proposition 1.2]). Then (5.5) is dominated by $\left\|W_{-\gamma}^{\mathbb{R}}(F)\right\|_{H_{w_{\gamma}}^{1}(\mathbb{R})}$ and thus,

$$
\left\|S_{a, h}(f)\right\|_{L^{1}(\Delta)} \leq c \sum_{\gamma}\left\|W_{-\gamma}(F)\right\|_{H_{w_{\gamma}}^{1}(\mathbb{R})}=c\|f\|_{H^{1}(\Delta)}
$$

(a): $h=\sqrt{\Delta}$ and $a \leq 1$. The integrand of (5.6) and (5.7) is the following:

$$
T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} .
$$

The proof of (5.6): We divide the integral (5.6) over [0, $\infty$ ). Let $x>y$ or $x \leq y$ and $x \geq 1$ or $x \leq y$ and $\frac{a t}{2}<x<1$. In these cases, similarly as in the proof of (b) in Theorem 5.1, it follows that

$$
\frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq c
$$

and thus, (5.6) is dominated by $e^{2(a-1) \rho t}$. Let $x \leq y, x<1$ and $x<\frac{a t}{2}$. Since $y \leq x+a t<\frac{3}{2} a t$, it follows that

$$
\Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma_{0}}}{(\operatorname{th} x)^{2 \gamma_{0}}} \leq c\left(\operatorname{th} \frac{3}{2} a t\right)^{2 \gamma_{0}} .
$$

Hence we see from Lemma 3.3 that

$$
\int_{0}^{1} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d x \leq c \frac{(\operatorname{th} t)^{2 \gamma_{0}} t}{|B(t)|} \leq c
$$

Therefore, in each case, if $a \leq 1$, then (5.6) holds.
The proof of (5.7): We divide the integral (5.7) over $[0, \infty)$.
Let $x>y, t>1$ and $y>1$. Since

$$
\Delta(x) \leq \frac{\Delta(x)}{\Delta(y)} \Delta(y) \leq e^{2 \rho(x-y)} \Delta(y)
$$

it follows from Lemma 3.2 that

$$
\int_{1}^{x} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{\operatorname{th} x)^{2 \gamma}} d y \leq c e^{2 \rho x} \tilde{\chi}_{a t} * e^{-2 \rho(\cdot)}(x) \leq c\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq c e^{2 \rho(a-1) t} .
$$

Let $x>y, t>1$ and $y \leq 1$. Since $x \leq y+a t \leq 1+a t$, it follows that

$$
\int_{0}^{1} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d y \leq c \Delta(1+a t) \int_{0}^{1} T_{x} \tilde{\chi}_{a t}(y) d y \leq c \frac{\Delta(1+a t)}{|B(t)|} \leq c e^{2 \rho(a-1) t} .
$$

Let $x>y, t \leq 1$ and at $>\frac{x}{2}$. Since $x \leq 2 a t$, it follows Lemma 3.3 that

$$
\int_{0}^{x} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d y \leq c \Delta(2 a t) \int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) d y \leq c \frac{\Delta(2 a t) t}{|B(t)|} \leq c a^{2 \gamma_{0}}
$$

Let $x>y, t \leq 1$ and $a t \leq \frac{x}{2}$. Since $x \leq y+a t \leq y+a$ and $y>x-a t>\frac{x}{2}$, it follows that

$$
\frac{\Delta(x)}{\Delta(y)} \leq c \begin{cases}\frac{\Delta(x)}{\Delta(x-a)}, & \text { if } x>2 a \\ \frac{\Delta(x)}{\Delta\left(\frac{x}{2}\right)}, & \text { if } x \leq 2 a\end{cases}
$$

$$
\leq c_{a}
$$

Hence, replacing $\Delta(x)$ by $c_{a} \Delta(y)$, we can deduce that

$$
\int_{0}^{x} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d y \leq c_{a} \int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \Delta(y) d y=c\left\|\tilde{\chi}_{a t}\right\|_{L^{1}(\Delta)} \leq c e^{2 \rho(a-1) t}
$$

Let $x<y$ and $1<x$. Since

$$
\Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq \Delta(x) \leq \Delta(y)
$$

it follows that

$$
\int_{x}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\mathrm{th} y)^{2 \gamma}}{(\mathrm{th} x)^{2 \gamma}} d y \leq c \int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \Delta(y) d y \leq c e^{2 \rho(a-1) t} .
$$

Let $x<y$ and $2 a t<x<1$. Since $y \leq x+a t \leq \frac{3}{2} x$, we see that

$$
\Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq \Delta(x) \frac{\left(\operatorname{th} \frac{3}{2} x\right)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq c \Delta(x) \leq c \Delta(y)
$$

and thus, we can obtain the above estimate.
Let $x<y, x<1$ and $x<2 a t$. Since $y \leq x+a t \leq 3 a t$, it follows that

$$
\Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} \leq \Delta(x) \frac{(\text { th } y)^{2 \gamma_{0}}}{(\text { th } x)^{2 \gamma_{0}}} \leq c(\text { th } 3 a t)^{2 \gamma_{0}} .
$$

Therefore, we see from Lemma 3.3 that

$$
\int_{x}^{\infty} T_{x} \tilde{\chi}_{a t}(y) \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}} d y \leq c(\operatorname{th} 3 a t)^{2 \gamma_{0}} \int_{0}^{\infty} T_{x} \tilde{\chi}_{a t}(y) d y \leq c \frac{(\operatorname{th} 3 a t)^{2 \gamma_{0}} t}{|B(t)|} \leq c .
$$

Therefore, in each case, (5.7) holds if $a \leq 1$.
(b): $h=(\text { th })^{\gamma_{0}}$ and $a \leq \frac{1}{2}$. The integrand of (5.6) and (5.7) is the following.

$$
c T_{x} \tilde{\chi}_{a t}(y) e^{2 \rho(x-y)} \Delta(x) \frac{(\text { th } y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}}
$$

Since $x-y \leq a t$, this is dominated by

$$
c T_{x} \tilde{\chi}_{a t}(y) e^{2 \rho a t} \Delta(x) \frac{(\operatorname{th} y)^{2 \gamma}}{(\operatorname{th} x)^{2 \gamma}}
$$

Hence it follows from the previous arguments in (a) that the integrals in (5.6) and (5.7) are dominated by

$$
e^{2 \rho a t} e^{2 \rho(a-1) t}=e^{2 \rho(2 a-1) t} .
$$

Therefore, if $a \leq \frac{1}{2}$, then (5.6) and (5.7) hold.
Remark 5.1. In the definition of $S_{a, h}$ in (1.2) we can insert the term $e^{2 \sigma t}$ as in the one of $g_{\sigma}$. Then it is easy to see that the condition $a<2$ in Theorem 5.1 is replaced by

$$
\sigma+(a-1) \rho<\rho
$$

and the conditions $a \leq 1$ and $a \leq \frac{1}{2}$ in Theorem 5.2(a), (b) are respectively replaced by

$$
\begin{aligned}
& \sigma+(a-1) \rho \leq 0 \\
& \sigma+(2 a-1) \rho \leq 0
\end{aligned}
$$

## Acknowledgements

The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 24540191, Japan Society for the Promotion of Science.

## References

[1] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., 65 (1992), 257-297.
[2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.
[3] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93 (1990), 34-170.
[4] M. Flensted-Jensen and T. Koornwonder, The convolution structure and Jacobi transform expansions. Ark. Mat., 11 (1973), 245-262.
[5] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, New Jersey, 1982.
[6] T. Kawazoe, Hardy spaces and maximal operators on real rank one semisimple Lie groups I, Tohoku Math. J., 52 (2000), 1-18.
[7] T. Kawazoe, $H^{1}$-estimates of the Littlewood-Paley and Lusin functions for Jacobi analysis, Anal. Theory Appl., 25 (2009), 201-229.
[8] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., 13 (1975), 145-159.
[9] N. Lohoue, Estimation des fonctions de Littlewood-Paley-Stein sur les variétés Riemanniennes à courbure non positive, Ann. Scient. Éc. Norm. Sup., 20 (1987), 505-544.
[10] E. M. Stein, Topics in Harmonic Analysis. Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, 63, Princeton University Press, New Jersey, 1970.
[11] E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, New Jersey, 1993.
[12] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, 123, Academic Press, Orlando, Florida, 1986.


[^0]:    *Corresponding author. Email address: kawazoe@sfc.keio.ac.jp (T. Kawazoe)

[^1]:    ${ }^{\dagger}$ We also use the fact that $W_{-\gamma}^{\mathbb{R}}, 0<\gamma<1$, corresponds to the Fourier multiplier of $-i|\lambda|^{\gamma}\left(\operatorname{sgn}(\lambda) \sin \frac{\gamma \pi}{2}-\right.$ $i \cos \frac{\gamma \pi}{2}$ ).

