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Abstract. Here we consider the following strongly singular integral

TΩ,γ,α,β f (x,t)=
∫

Rn
ei|y|−β

Ω(
y
|y|
)

|y|n+α
f (x−y,t−γ(|y|))dy,

where Ω∈Lp(Sn−1), p>1, n>1, α>0 and γ is convex on (0,∞).
We prove that there exists A(p,n)>0 such that if β> A(p,n)(1+α), then TΩ,γ,α,β is

bounded from L2(Rn+1) to itself and the constant is independent of γ. Furthermore,
when Ω∈C∞(Sn−1), we will show that TΩ,γ,α,β is bounded from L2(Rn+1) to itself only
if β>2α and the constant is independent of γ.
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1 Introduction

The standard Hilbert transform along a curve is defined as

HΓ f (x)=P.V.
∫ 1

−1
f (x−Γ(t))

dt

t
,

where Γ : (−1,1)→ Rn is a continuous curve in Rn. The study of these operators was
initiated by Fabes and Rivière [7]. In [18], Stein and Wainger proved that HΓ is bounded
on Lp(1<p<∞) if Γ is well-curved in Rn. Here we say that Γ is well-curved, if Γ is smooth
with Γ(0)= 0 and a segment of the curve containing the origin lies in a subspace of Rn

spanned by

d(k)Γ(t)

dt

∣∣∣
t=0

, k=1,2,··· .
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When n=2, Γ(t) can be written as (t,γ(t)). If γ(t) is flat at the origin, i.e.,

d(k)γ(t)

dt

∣∣∣
t=0

=0

for k= 1,2,··· , then it is easy to see that Γ(t) is not well-curved in R2. The main contri-
butions on the Hilbert transforms along the flat curves were made by Wainger and his
colleagues. Readers can see [1,12–15,19,21,22] among numerous references, in particular,
the good survey papers [18] and [23].

Another interesting operator in harmonic analysis is the hyper Hilbert transform

Hα f (x)=P.V.
∫ 1

−1
f (x−t)

dt

t|t|α
, 0<α<1.

We know that the operator Hα is bounded from the Sobolev space L
p
α to the Lebesgue

space Lp for 1 < p < ∞, because of the mean zero of the kernel of Hα. One naturally
expected that, without the assumption of the mean zero on the kernel, the worsened

singularity of Hα near the origin can be counterbalanced by an oscillatory factor ei|t|−β
(β>

0) as t approaches zero. This idea motivated the study of the oscillatory hyper Hilbert
transforms (see [10]) and the strongly singular integral operators in high dimensional
spaces. More details of the strongly singular integral operators can be found in [8, 9, 16,
20].

Consider the following oscillatory hyper Hilbert transforms,

HΓ,α,β f (x)=
∫ 1

−1
f (x−Γ(t))ei|t|−β dt

t|t|α
, α,β≥0,

where Γ(0)=0, β>α.

Zielinski [24] studied the L2−boundedness of HΓ,α,β along the parabola (t,t2). In [2],
for Γ(t) = (t,|t|q),q ≥ 2, Chandarana proved that HΓ,α,β is bounded on L2 if and only if
β≥3α. When n=3, a similar result was proved in [3].

In [4] and [5], we generalized these results in Rn and removed all assumptions on the
indexes. At the same time, Laghi and Lyall in [11] proved that if Γ(t) is well-curved, then
HΓ,α,β is bounded on L2(Rn) if and only if β≥ (n+1)α.

In [6] we study the general case Γ(t)=(t,γ(t)) in R2 where γ is flat on (0,1). We obtain
some interesting results. In the same paper, we construct some examples to illustrate the
complexity of this problem.

Here we consider the following oscillatory strongly singular integral associated to the
surfaces of revolution,

TΩ,γ,α,β f (x,t)=
∫

Rn
ei|y|−β

Ω( y
|y|
)

|y|n+α
f (x−y,t−γ(|y|))dy. (1.1)
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At first, when α=0 and Ω is mean zero on Sn−1, by virtue of the decay estimates of the
Fourier transform of Ω on Sn−1, T is bounded from L2 to itself without any assumptions
on γ. It is easy to see that this arguments does not work when α>0.

If Hγ,α,β is bounded from L2 to itself when n= 1, then TΩ,γ,α,β is bounded from L2 to

itself for any n>1 only if Ω∈ L1(Sn−1). But in [6] we have seen that, for general α,β>0
and a convex curve Γ(t)=(t,γ(t)), Hγ,α,β is not bounded from L2 to itself in general.

Here we will see that for the general convex curve, the L2-boundedness of TΩ,γ,α,β is
more simple, even if the kernel is rough. Our main results are stated as the following two
theorems.

Theorem 1.1. Suppose that Ω∈Lp(Sn−1), p>1, n>1, α>0 and γ is convex on (0,∞). There
exists A(p,n)>0 which depends only on p, n such that if β>A(p,n)(1+α), then we have

‖TΩ,γ,α,β f‖2 ≤C‖ f‖2,

where C is independent of γ and f .

Furthermore, if Ω∈C∞(Sn−1), we have

Theorem 1.2. Assume that Ω∈C∞(Sn−1), n> 1, α> 0 and γ is convex on (0,∞). If β> 2α,
then we have

‖TΩ,γ,α,β f‖2 ≤C‖ f‖2.

Throughout this note the letters C and c always denote two positive constants which
depend only on α, β, p and n. They maybe vary in different cases. In general, we take C
big enough and c small enough.

2 Proof of the main theorems

Firstly, we need the following Van der Corput lemma.

Lemma 2.1 (Van der Corput”s Lemma). If ψ, φ are two smooth functions on the interval (a,b)
and |ψ(k)(t)|≥λ>1 on t∈ (a,b) for some k∈N, then we have

∣∣∣
∫ b

a
eiψ(t)φ(t)dt

∣∣∣≤Ckλ−1/k(|φ(b)|+
∫ b

a
|φ′(t)|dt), (k≥2),

or

∣∣∣
∫ b

a
eiψ(t)φ(t)dt

∣∣∣≤C1λ−1
(
|φ(b)|+

∫ b

a
|φ′(t)|dt+

∫ b

a

|φ(t)ψ′′(t)|

|ψ′(t)|2
dt
)

, (k=1).

The lemma and its proof can be found in [17]. When k=1, the result can be checked
directly by the integral by parts.

We also need the following decay estimates of the Fourier transform of Ω on Sn−1.
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Lemma 2.2 (see [17]). If Ω∈C∞(Sn−1) and dµ=Ωdθ, then we have the following estimate

|d̂µ(ξ)|=
∣∣∣
∫

Sn−1
Ω(θ)eiθ·ξdθ

∣∣∣≤C(1+|ξ|)−
n−1

2 .

Lemma 2.3 (see [17]). If Ω ∈ Lp(Sn−1) for some p > 1 and dµ = Ωdθ, then there exists two
positive constants C and ǫ (<1) such that

∫ 1

0
|d̂µ(tξ)|2dt≤C(1+|ξ|)−ǫ .

Proof of Theorem 1.1. Now we begin to prove Theorem 1.1. Using the inverse of Fourier
transform we have

TΩ,γ,α,β f (x)=
∫

Rn
ei|y|−β

Ω( y
|y|
)

|y|n+α
f (x−y,t−γ(|y|))dy

=
∫

Rn

∫

Rn+1
ei[(x−y)ξ+(t−γ(|y|))η] f̂ (ξ,η)dξdηei|y|−β

Ω( y
|y|
)

|y|n+α
dy

=
∫

Rn+1
ei(xξ+tη)

∫

Rn
ei(|y|−β−y·ξ−γ(|y|)η)

Ω( y
|y|
)

|y|n+α
dy f̂ (ξ,η)dξdη

=
∫

Rn+1
ei(xξ+tη)

∫ ∞

0

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr f̂ (ξ,η)dξdη,

which implies that
̂TΩ,γ,α,β f (ξ,η)=m(ξ,η) f̂ (ξ,η), (2.1)

where

m(ξ,η)=
∫ ∞

0

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr

=
∫ 1

0

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr+

∫ ∞

1

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr

=m̄(ξ,η)+m0(ξ,η). (2.2)

To prove the L2 boundedness of TΩ,γ,α,β, by Plancherel equality, we only need to show
that m(ξ,η) is a bounded function.

It is easy to check that when α>0,

|m0(ξ,η)|=
∣∣∣
∫ ∞

1

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr

∣∣∣

≤
∫ ∞

1

∫

Sn−1

|Ω(θ)|

r1+α
dθdr

≤C‖Ω‖L1(Sn−1). (2.3)
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Set ψ(r)=r−β−rθ·ξ−γ(r)η. For any (ξ,η)∈Rn×R, we estimate the bounds of m̄(ξ,η)
in two case.

Case 1: η≤0. As γ′′(r)≥0 on (0,∞), there holds

ψ′′(r)=β(β+1)r−β−2−γ′′(r)η≥β(β+1)r−β−2.

If β>2α, by Van der Corput’s Lemma, we can get that

∣∣∣
∫ 1

0
eiψ(r) dr

r1+α

∣∣∣≤∑
j≥1

∣∣∣
∫ 21−j

2−j
eiψ(r) dr

r1+α

∣∣∣

≤C ∑
j≥1

2−
j(β+2)

2

(
2j(1+α)+

∫ 21−j

2−j

dr

r2+α

)

≤C ∑
j≥1

2j(α−
β
2 )

≤C,

which implies that

|m̄(ξ,η)|=
∣∣∣
∫ 1

0

∫

Sn−1
eiψ(r) Ω(θ)

r1+α
dθdr

∣∣∣

=
∣∣∣
∫

Sn−1
Ω(θ)

∫ 1

0
eiψ(r) dr

r1+α
dθ

∣∣∣

≤C
∫

Sn−1
|Ω(θ)|dθ

=C‖Ω‖L1(Sn−1), (2.4)

where C does not depend on ξ, η and γ.

Case 2: η>0. In this case we divide m̄(ξ,η) into two parts. Set

t(ξ)=
( 2

β
(1+|ξ|)

)− 1
β+1

.

Then one have

m̄(ξ,η)=
∫ 1

0

∫

Sn−1
eiψ(r) Ω(θ)

r1+α
dθdr

=
∫ 1

t(ξ)

∫

Sn−1
eiψ(r) Ω(θ)

r1+α
dθdr+

∫ t(ξ)

0

∫

Sn−1
eiψ(r) Ω(θ)

r1+α
dθdr

=m1(ξ,η)+m2(ξ,η). (2.5)
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Set dµ=Ω(θ)dθ. For the term m1(ξ,η), by Lemma 2.3 we can obtain that

|m1(ξ,η)|=
∣∣∣
∫ 1

t(ξ)

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr

∣∣∣

=
∣∣∣
∫ 1

t(ξ)

∫

Sn−1
eirθ·ξΩ(θ)dθei(r−β−γ(r)η)r−1−αdr

∣∣∣

≤
∫ 1

t(ξ)
|d̂µ(rξ)|r−1−αdr

≤
(∫ 1

0
|d̂µ(rξ)|2dr

) 1
2
(∫ 1

t(ξ)
r−2−2αdr

) 1
2

≤C(1+|ξ|)−
ǫ
2 t(ξ)−

1
2−α

≤C(1+|ξ|)
1
2 +α

β+1 −
ǫ
2 . (2.6)

If β≥ 2
ǫ (α+1), then

1
2 +α

β+1
−

ǫ

2
<

ǫ

2

( 1
2+α

α+2
−1

)
<0.

So (2.6) yields that

|m1(ξ,η)|≤C(1+|ξ|)
1
2 +α

β+1 −
ǫ
2 ≤C. (2.7)

On the other hand, for the term m2(ξ,η), as

t(ξ)=
( 2

β
(1+|ξ|)

)− 1
β+1

> r,

we get that

|ξ|<
β

2
r−β−1.

So for the derivative of ψ(r) when r< t(ξ) we have

|ψ′(r)|=|−βr−β−1−θ ·ξ−γ′(r)η|≥βr−β−1+γ′(r)η−|ξ|

≥
β

2
r−β−1+γ′(r)η≥

β

2
r−β−1. (2.8)

Now, by Lemma 2.1, (2.8) and the convexity of γ one can obtain that

∣∣∣
∫ t(ξ)

0
eiψ(r) dr

r1+α

∣∣∣≤∑
j>0

∣∣∣
∫ 21−jt(ξ)

2−jt(ξ)
eiψ(r) dr

r1+α

∣∣∣

≤C ∑
j>0

(2−jt(ξ))β+1
(
(2−jt(ξ))−α−1+

∫ 21−jt(ξ)

2−jt(ξ)

|ψ′′(r)|

r1+αψ′(r)2
dr
)
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≤C ∑
j>0

(2−jt(ξ))β−α
(

1+
∫ 21−jt(ξ)

2−jt(ξ)

|β(β+1)r−β−2−γ′′(r)η|

( β
2 r−β−1+γ′(r)η)2

dr
)

≤C ∑
j>0

(2−jt(ξ))β−α
(

1+
∫ 21−jt(ξ)

2−jt(ξ)

( β(β+1)r−β−2

( β
2 r−β−1+γ′(r)η)2

+
γ′′(r)η

( β
2 r−β−1+γ′(r)η)2

)
dr
)

≤C ∑
j>0

(2−jt(ξ))β−α
(

1+
∫ 21−jt(ξ)

2−jt(ξ)

(
rβ+

γ′′(r)η

(1+γ′(r)η)2

)
dr
)

≤C ∑
j>0

(2−jt(ξ))β−α
(

1+
1

1+γ′(2−jt(ξ))η
−

1

1+γ′(21−jt(ξ))η

)

≤C ∑
j>0

(2−jt(ξ))β−α=Ct(ξ)β−α≤C. (2.9)

So we have

|m2(ξ,η)|=
∣∣∣
∫ t(ξ)

0

∫

Sn−1
eiψ(r) dr

r1+α
Ω(θ)dθdr

∣∣∣

≤
∣∣∣
∫

Sn−1
Ω(θ)

∫ t(ξ)

0
eiψ(r) dr

r1+α
drdθ

∣∣∣

≤C‖Ω‖L1(Sn−1). (2.10)

(2.5), (2.7) and (2.10) yield that when η>0, there holds

|m̄(ξ,η)|≤ |m1(ξ,η)|+|m2(ξ,η)|≤C. (2.11)

At last let everything together. When β> ( 2
ǫ )(α+1) and γ is convex, from (2.3), (2.4) and

(2.11) we can obtain that

|m(ξ,η)|≤ |m0(ξ,η)|+|m̄(ξ,η)|≤C,

which means that the operator TΩ,γ,α,β is bounded from L2 to itself. So we complete the
proof of Theorem 1.1. �

Proof of Theorem 1.2. Now we turn to prove Theorem 1.2. In the proof of Theorem 1.1,
it is easy to see that the estimates (2.3), (2.4) and (2.10) remain true only if β>2α. When
Ω∈C∞(Sn−1), n>1, we check that the estimate (2.7) holds only if β>2α. By Lemma 2.2
and the similar computations as in (2.6), we get that

|m1(ξ,η)|=
∣∣∣
∫ 1

t(ξ)

∫

Sn−1
ei(r−β−rθ·ξ−γ(r)η)Ω(θ)

r1+α
dθdr

∣∣∣

=
∣∣∣
∫ 1

t(ξ)

∫

Sn−1
eirθ·ξΩ(θ)dθei(r−β−γ(r)η)r−1−αdr

∣∣∣

≤
∫ 1

t(ξ)
|d̂µ(rξ)|r−1−αdr
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≤C
∫ 1

t(ξ)
(1+r|ξ|)−

n−1
2 r−1−αdr

≤C(1+|ξ|)−
n−1

2

∫ 1

t(ξ)
r−

n−1
2 r−1−αdr

≤C(1+|ξ|)−
n−1

2 t(ξ)−
n−1

2 −α

=C(1+|ξ|)
2α−(n−1)β

2(β+1)

≤C. (2.12)

At last, by the same arguments as in the proof of Theorem 1.1 we can show that the
operator TΩ,γ,α,β is bounded from L2 to itself. So we prove Theorem 1.2. �
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