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COMPARISON OF SOLVERS FOR 2D SCHRÖDINGER

PROBLEMS

F.J. GASPAR, C. RODRIGO, R. ČIEGIS, AND A. MIRINAVIČIUS

Abstract. This paper deals with the numerical solution of both linear and non-linear Schrödinger
problems, which mathematically model many physical processes in a wide range of applications
of interest. In particular, a comparison of different solvers and different approaches for these
problems is developed throughout this work. Two finite difference schemes are analyzed: the
classical Crank-Nicolson approach, and a high-order compact scheme. Solvers based on geometric
multigrid, Fast Fourier Transform and Alternating Direction Implicit methods are compared.
Finally, the efficiency of the considered solvers is tested for a linear Schrödinger problem, proving
that the computational experiments are in good agreement with the theoretical predictions. In
order to test the robustness of the MG solver two additional Schrödinger problems with a non-
constant potential and nonlinear right-hand side are solved by the MG solver, since the efficiency

of this solver depends on such data.

Key words. finite difference method, Schrödinger problem, multigrid method, Alternating Di-
rection Implicit method, Fast Fourier Transform method.

1. Introduction

It is well-known that many mathematical problems of nonlinear optics, laser
physics and quantum mechanics, for example, are described by Schrödinger prob-
lems. Therefore, the development of robust and efficient numerical algorithms for
the solution of such problems still remains a very important challenge of compu-
tational mathematics. In particular, one of the most important aspects in the
numerical solution of partial differential equations is the efficient solution of the
corresponding large system of equations arising from their discretization.

Three different strategies are very popular for this purpose. The first strategy
is based on operator splitting techniques. The main idea is to decompose the large
system of linear equations arising after the discretization of a multidimensional
problem to a sequence of simpler subproblems. Within this framework, here we only
mention Alternating Direction Implicit (ADI), Locally One-Dimensional (LOD)
and Implicit-Explicit (IMEX) methods (see [16, 20] for a good review on these
methods). Secondly, we mention Fast Fourier Transform (FFT) techniques. The
FFT algorithm was introduced in 1965 by Cooley and Tukey [12], for an overview of
Fourier Transform methods we refer e.g. to [13]. In the case of PDEs with constant
coefficients and uniform grids, these algorithms solve systems of linear equations
with complexity close to optimal. Thus, we include solvers based on the FFT
algorithm into the comparison of different solvers for 2D Schrödinger problems.
The third class of solvers corresponds to multigrid (MG) methods. Since their
development in the 70’s, MG methods [5, 25] have been proved to be among the
most efficient numerical algorithms for solving the large sparse systems of algebraic
equations arising from the discretization of elliptic PDEs, achieving asymptotically
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optimal complexity. They are mainly based on the acceleration of the convergence
of common iterative methods by using solutions obtained on coarser meshes as
corrections. We note that MG solvers are not frequently used to solve Schrödinger
type problems in industrial and academic applications.

Our aim in this paper is to investigate in detail the possibility of constructing
robust and efficient MG solvers and compare these solvers with those based on
ADI and FFT techniques. The biggest challenge is the development of robust MG
solvers for multidimensional Schrödinger problems. There are not many papers
devoted to this topic. We note, that similar challenges arise in application of MG
solvers for the Helmholtz equation [14, 18].

The rest of the paper is organized as follows. In Section 2 the mathematical
model is formulated and the main properties of the solution are given. The two-
dimensional Schrödinger equation is approximated by the classical Crank-Nicolson
method and by a high-order compact finite difference scheme in space. For the so-
lution of the high-order scheme, an ADI type decomposition algorithm, from [15],
is used. The stability and convergence analysis in the discrete L2 norm of the high-
order ADI scheme is done in Section 3, whereas the MG solver for Schrödinger prob-
lem is described and investigated in Section 4. Results of numerical experiments
are presented in Section 5. Finally, in Section 6 some conclusions are formulated.

2. Problem Formulation

2.1. Mathematical model. For many applications in nonlinear optics, laser phy-
sics, quantum mechanics and plasma physics, for instance, the mathematical models
of physical processes are described by nonlinear Schrödinger equations, see, e.g., [11,
16] and references therein. We consider the two-dimensional nonlinear Schrödinger
equation in the domain Ω = (ax, bx)× (ay, by):

(1) −i
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− q(x, y)u+ f(u), (x, y) ∈ Ω, t ∈ (0, T ],

with the following initial and boundary conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω ∪ ∂Ω,(2)

u(x, y, t) = µ(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ].(3)

Here u = u(x, y, t) is a complex-valued function, q is a given real-valued function,
f , u0 and µ are given complex-valued functions, and ∂Ω is the boundary of Ω.

It is well-known that the nonlinear Schrödinger equation (1) can have important
conservation laws. Let us assume that f(u) ≡ 0. The following invariants of
the solution of (1)–(3) are valid under the assumption of homogeneous boundary
conditions µ ≡ 0 [9, 27]:

Q =

∫

Ω

|u(x, y, t)|2 dxdy =

∫

Ω

|u0(x, y)|2 dxdy,(4)

E =

∫

Ω

(∣∣∣∣
∂u(t)

∂x

∣∣∣∣
2

+

∣∣∣∣
∂u(t)

∂y

∣∣∣∣
2

+ q(x, y)|u(t)|2
)

dxdy

=

∫

Ω

(∣∣∣∣
∂u0

∂x

∣∣∣∣
2

+

∣∣∣∣
∂u0

∂y

∣∣∣∣
2

+ q(x, y)|u0|2
)

dxdy.(5)
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2.2. Finite difference schemes. There are many numerical algorithms for the
solution of the nonlinear Schrödinger problem. They are based on finite-difference
schemes (see, e.g., [2, 9, 11, 21, 23]), finite-element and Galerkin approaches (see,
[1, 2]), or spectral and pseudo-spectral methods. In this section we restrict ourselves
to finite difference schemes, and our main goal is to compare solvers for the large
systems of linear equations obtained after the discretization step. Note that the
main properties of such systems are very similar for all mentioned methods.

The considered domain Ω̄ := Ω∪∂Ω is covered by the following discrete uniform
grid

Ω̄h =
{
(xj , yk) : xj = ax + jh, yk = ay + kh, j = 0, . . . , J, k = 0, . . . ,K

}
,

xJ = bx, yK = by, Ω̄h = Ωh ∪ ∂Ωh, with the grid points denoted by (xj , yk). Let
ωτ be a uniform time grid ωτ = {tn : tn = nτ, n = 0, . . . , N, Nτ = T }, where τ
is the time step. Although the constant time step is considered here, the following
studies can be easily extended to the case when τ varies. Adaptive time-stepping
strategies can be used. But the main aim of this paper is to compare efficiency and
robustness of the MG solver for multidimensional Schrödinger problems, when the
full approximtion algorithms are used. The robustness of the solver with respect to
time-stepping parameter is one of the important features of general solvers.

We consider numerical approximations Un
jk to the exact solution values un

jk =

u(xj , yk, t
n) at the grid points (xj , yk, t

n) ∈ Ω̄h × ωτ . The following notations for
difference and averaging in time operators are used [15]:

∂xU
n
jk = (Un

j+1,k − Un
jk)/h, ∂yU

n
jk = (Un

j,k+1 − Un
jk)/h,

∂tU
n
jk = (Un+1

jk − Un
jk)/τ, U

n+1/2
jk = (Un+1

jk + Un
jk)/2,

∂2
xU

n
jk =

Un
j+1,k − 2Un

jk + Un
j−1,k

h2
, ∂2

yU
n
jk =

Un
j,k+1 − 2Un

jk + Un
j,k−1

h2
,

and therefore, the standard Crank-Nicolson scheme is given as follows:

− i∂tU
n
jk = ∂2

xU
n+1/2
jk + ∂2

yU
n+1/2
jk − qjkU

n+1/2
jk + f(U

n+1/2
jk ),

(xj , yk) ∈ Ωh, tn ∈ ωτ ,(6)

U0
jk = u0(xj , yk), (xj , yk) ∈ Ω̄h,

Un
jk = µ(xj , yk, t

n), (xj , yk) ∈ ∂Ωh, tn ∈ ωτ .

The convergence of a discrete solution of the Crank-Nicolson scheme (6) has been
well-investigated and the second-order accuracy of this approach has been proved
in various norms, see, e.g., [1, 21] and references therein.

Instead of the finite difference method, the diffraction operator can be approx-
imated by the finite-element Galerkin type methods (see [1, 2]). But for the ap-
plication of MG and FFT solvers the obtained systems of discrete equations have
very similar properties to those systems generated by the finite difference method.



134 F. GASPAR, C. RODRIGO, R. ČIEGIS, AND A. MIRINAVIČIUS

Let H0(Ωh) denote the set of grid functions V defined on Ω̄h with V = 0 on ∂Ωh.
Now, we define some discrete inner products and norms on H0(Ωh) as follows:

(V,W )h =
J−1∑

j=1

K−1∑

k=1

VjkW̄jkh
2, ‖V ‖ =

√
(V, V )h,

(V,W )x =

J−1∑

j=0

K−1∑

k=1

VjkW̄jkh
2, (V,W )y =

J−1∑

j=1

K−1∑

k=0

VjkW̄jkh
2,

‖V ‖x =
√
(V, V )x, ‖V ‖y =

√
(V, V )y, ‖V ‖2E = ‖∂xV ‖2x + ‖∂yV ‖2y,

where W̄jk denotes the complex-conjugate of Wjk.
We consider the high-order compact finite difference scheme investigated in [15].

Let us introduce the operators

LxU
n
jk =

(
1 +

h2

12
∂2
x

)
Un
jk, LyU

n
jk =

(
1 +

h2

12
∂2
y

)
Un
jk.

By using a Taylor expansion, it is easy to get that

Lx

(∂2u

∂x2

)n
jk

= ∂2
xu

n
jk +O(h4), Ly

(∂2u

∂y2

)n
jk

= ∂2
yu

n
jk +O(h4).

The Crank-Nicolson implicit high-order compact scheme is given by the following
discrete equation, which is also called Numerov’s scheme, see [15, 17]:

−iLxLy∂tU
n
jk = Ly∂

2
xU

n+1/2
jk + Lx∂

2
yU

n+1/2
jk

− LxLy

(
qjkU

n+1/2
jk − f(U

n+1/2
jk )

)
, (xj , yk) ∈ Ωh, t

n ∈ ωτ .(7)

By using a Taylor expansion one can see that scheme (7) has a truncation error of
O(τ2 + h4).

As was stated above the main goal of this paper is to study the efficiency and
robustness of the MG and FFT solvers for the full approximation algorithms. But
we note that there are various techniques to construct time-splitting integrators for
discrete schemes used to solve multidimensional nonlinear Schrödinger problems.
The main idea is to reduce an implementation of the discrete scheme to a sequence
of simple systems with tridiagonal matrices. We are interested in the Strang type
second-order symmetrical splitting techniques. The standard operator splitting
can be used to separate the linear diffraction and reaction processes. This part
of splitting approach is well investigated in many papers and books, where the
first, second and high order approximations are constructed and investigated, see
[4, 16, 19, 22, 24]. The overview of recent results in this field is done in [10], where
also schemes for 3D problems are investigated. Another way of increasing the order
of the scheme in time is to do Richardson extrapolation [16]. This method can
be included directly into the framework of full approximation schemes considered
in our paper. We note that the analysis and a detailed comparison of different
techniques for time-stepping is out of the scope of this paper.

In order to get the benchmark for the comparison of the MG solver with the time–
splitting algorithms, we consider an ADI type algorithm, since the complexity of all
algorithms in this class is of the same order. In [15], the ADI method was applied to
split the finite difference scheme (7). Here, we adapt this method to equations with
a linear (or linearized) potential q(x, y)u. First, the discrete equation is written in
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the canonical form of two-step schemes

−i
[
LxLy − i

τ

2

(
Ly∂

2
x + Lx∂

2
y − LxLyQ

)]
∂tU

n
jk = Ly∂

2
xU

n
jk + Lx∂

2
yU

n
jk

− LxLy

(
qjkU

n
jk − f

(
U

n+1/2
jk

))
,

where operator Q is defined by QUn
jk = qjkU

n
jk. Next, we perturb the operator at

∂tU
n
jk and factorize it, thus, we get the following factorized difference scheme

−i
(
Lx − i

τ

2
∂2
x

)(
Ly − i

τ

2

[
∂2
y − LyQ

])
∂tU

n
jk = Ly∂

2
xU

n
jk + Lx∂

2
yU

n
jk

− LxLy

(
qjkU

n
jk − f

(
U

n+1/2
jk

))
.(8)

It can be efficiently implemented in two splitting steps:

−i
(
Lx − i

τ

2
∂2
x

)
Ûn
jk = Ly∂

2
xU

n
jk + Lx∂

2
yU

n
jk(9)

− LxLy

(
qjkU

n
jk − f

(
U

n+1/2
jk

))
, (xj , yk) ∈ Ωh,

(
Ly − i

τ

2

[
∂2
y − LyQ

])
∂tU

n
jk = Ûn

jk, (xj , yk) ∈ Ωh,(10)

and at each step only tridiagonal systems are solved.

3. Stability and Convergence Analysis of Fourth-order ADI Scheme

In [15], the stability analysis of nonlinear ADI compact difference scheme is
done by using energy estimates. For constant q ≡ 0, it is proved that the solution
of scheme (9)–(10) is stable if τ < h2/12 and it converges to the exact solution of
differential problem (1)–(3), the error in the L2 norm can be bounded by C(τ2+h4).
The validity of conservation laws is investigated numerically in [15], and it is shown
that the discrete versions of integrals (4) and (5) are quite well preserved for tn >
0. In this section, we apply the spectral stability analysis. Let us consider the
homogeneous problem, that is, f ≡ 0 and µ ≡ 0, and let us assume that q = q(x, t)
is constant.

Our first goal is to investigate the stability of the ADI scheme (9)–(10) with
respect to the initial condition. Let λj be eigenvalues of operators ∂2

x and ∂2
y , then

the following estimates are valid (see [20]): 8 ≤ λj ≤ 4/h2, 2/3 ≤ 1 − h2

12 λj ≤ 1,
j ≥ 1. It is easy to show that the eigenvalues γj of operators Lx and Ly are given

by γj = 1 − h2

12 λj , j ≥ 1. Following the von Neumann method for linear stability
analysis, we express the numerical solution to ADI scheme (9)–(10) by means of

a Fourier sum Un
jk =

∑J−1
l=1

∑K−1
m=1 c

n
lmYl(xj)Ym(yk), where Yl(x) =

√
2 sin(lπx)

are orthonormal eigenvectors. Substituting it into the ADI scheme, after simple
computations we get

cn+1
lm =

γlγm − τ2

4 λl(λm + qγm)− i τ2 [λlγm + γl(λm + qγm)]

γlγm − τ2

4 λl(λm + qγm) + i τ2 [λlγm + γl(λm + qγm)]
cnlm = αn

lmcnlm,

where αn
lm is the amplification factor. Since λl > 0, γl > 0, it follows that |αn

lm| = 1,

i.e. |cn+1
lm | = |cnlm|, and therefore

(11) ‖Un+1‖2 =

J−1∑

l=1

K−1∑

m=1

|cn+1
lm |2 =

J−1∑

l=1

K−1∑

m=1

|cnlm|2 = ‖Un‖2.

Thus, we have proved that a discrete version of the conservation law (4) is satisfied
for the discrete scheme (9)–(10). Moreover, the energy norm of the vector can be
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computed as ‖Un‖2E =
∑J−1

l=1

∑K−1
m=1

(
λl + λm

)
|cnlm|2, and therefore, taking into

account equalities (11) and |cn+1
lm | = |cnlm|, we get

(12) En+1
h = ‖Un+1‖2E + q‖Un+1‖2 = ‖Un‖2E + q‖Un‖2 = En

h .

Thus, a discrete version of the second conservation law (5) is also satisfied for
the linear discrete scheme (9)–(10). We note that the accuracy of both discrete
conservation laws, (11) and (12), was numerically tested in [15] even for linear test
problems. It follows from the estimates given above that, in fact, both discrete
conservation laws are exactly conserved for such examples.

In [15], the convergence of the solution of the discrete scheme (9)–(10) is proved
only if the temporal and spatial discretization steps satisfy the relation τ < h2/3.
We will prove that a conditional convergence estimate is obtained only due to the
application of the energy estimates technique, and such restrictions on grid-steps
are not necessary at least in the case of constant coefficients. Let Zn

jk = un
jk − Un

jk

be the global error. From (8) we get the following error problem

−i
(
Lx − i

τ

2
∂2
x

)(
Ly − i

τ

2

[
∂2
y − LyQ

])
∂tZ

n
jk = Ly∂

2
xZ

n
jk + Lx∂

2
yZ

n
jk

− LxLyqjkZ
n
jk +Rn

jk,(13)

Z0
jk = 0, (xj , yk) ∈ Ω̄h, Zn

jk = 0, (xj , yk) ∈ ∂Ωh,(14)

where Rn denotes the truncation error of order O(τ2 + h4).
Next, we consider the linear case of equation (1).

Theorem 1. Suppose that the exact solution u(x, y, t) to the problem (1)–(3) is
sufficiently smooth, f = f(x, y, t) is a given function and q(x, y, t) ≡ q is constant.
Then, the solution of the linear ADI discrete scheme (9)–(10) converges to u(x, y, t)
and the following estimate is valid:

(15) max
1≤n≤N

‖un − Un‖ ≤ C(τ2 + h4).

Proof. Let us represent the truncation error Rn and the global error Zn as Fourier
sums. Substituting them into equation (13), after simple computations we get the
following discrete equation zn+1

lm = αn
lmznlm + τβn

lmrnlm, where the amplification
factor αn

lm is defined above and

βn
lm = i/

(
γl + i

τ

2
λl

)(
γm + i

τ

2
(λm + q)

)
.

Since γj ≥ 2/3, we conclude that |βn
lm| ≤ 9/4. As a result, we get the estimate

|zn+1
lm | ≤ |znlm| + 9

4τ |rnlm|. Using the triangle inequality for the L2 norm of vectors
and the relation between the norms of Fourier coefficients and error functions Zn,
we prove the stability estimate

‖Zn+1‖ ≤ ‖Zn‖+ 9

4
τ ‖Rn‖.

Summing up the obtained inequalities and using the initial condition (14), we
prove the convergence of the solution of the linear ADI discrete scheme (9)–(10) to
u(x, y, t) and the estimate (15). �

It is proved in [10] that the ADI scheme can not be generalized for 3D Schrödinger
problems, since the stability of the scheme can not be guaranteed. In this case
the Strang like LOD schemes can be used to derive the second order accurate
approximations [10].
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4. MG Solver

The focus of this section is to investigate the application of multigrid to the
linear version of model problem (1).

The performance of geometric multigrid methods is strongly dependent on the
choice of adequate components to the considered problem, and in this sense, we
have to carefully choose the corresponding components for our concrete problem.
First of all, a hierarchy of grids is necessary for the implementation of geometric
multigrid. Here, it is obtained by applying standard coarsening to the considered
target grid on which our problem is discretized. Once the hierarchy of grids is
fixed, the two main components of multigrid algorithms are on the one hand the s-
moother, which has to efficiently eliminate high-frequency components of the error,
and on the other hand the coarse-grid correction operator, which has to do the rest
of the work. This latter is composed of the inter-grid transfer operators: restriction
and prolongation, and the coarse-grid operator. All these components should be
chosen so that they efficiently interplay with each other in order to obtain a good
connection between the relaxation and the coarse-grid correction parts of the al-
gorithm. In this work, the coarse-grid correction operator is chosen in a standard
way within the framework of structured rectangular grids. Bilinear interpolation
and full-weighting restriction are the considered inter-grid transfer operators, and
the problem is directly discretized on coarser grids, which are obtained by doubling
in each direction the grid-size of the finer grid.

Regarding the smoother, multicolor relaxation has been proven to be a very
efficient choice as smoother for multigrid methods. The best known example of
this kind of relaxation is the red-black Gauss-Seidel smoother. In this relaxation
process, updated values are taken into account for the computation of the approx-
imation on the current node, and the order in which grid-points are visited is in a
chessboard or red-black manner. In this way, the unknowns with the same color
have no connections among them for five-point-stencils, what makes this method to
be well-suited for parallel computation. It is also well-known the advantages of this
smoother over the classical lexicographic Gauss Seidel relaxation, since in addition
to be more parallelizable, the provided convergence is more satisfactory. The chosen
coarse grid correction components together with a red-black smoother compound an
optimal geometric multigrid method for the Laplace problem on rectangular grids,
what makes us to think that it will be a good choice for the considered problem.

4.1. Two- and three-grid local Fourier analysis. The local Fourier analy-
sis (LFA), introduced by Brandt in 1977 [5], is a quantitative analysis for MG
algorithms, in the sense that it provides accurate predictions of the asymptotic
convergence rates of such methods. This analysis is based on the Fourier transform
theory, and a good introduction can be found in the books by Trottenberg et
al. [25], and Wienands and Joppich [26]. A k-level local Fourier analysis is a very
useful tool to predict the convergence rate of a multigrid algorithm. The main
idea of this analysis is formally to extend all multigrid components to an infinite
grid, neglecting the boundary conditions, and to restrict the analysis to discrete
linear operators with constant coefficients. Despite these restrictions, if boundary
conditions are appropriately treated, in general this analysis matches the numerical
results satisfactorily.

As previously commented, to perform LFA, the discrete problem Lhuh = fh is
extended to an infinite grid:

(16) Gh = {x = (x1, x2) |xi = kihi, ki ∈ Z, i = 1, 2},
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where h = (h1, h2) is a grid spacing. Then, the basis for any of the approaches to
LFA is that a grid-function uh(x) ∈ (l2h(Gh)) can be represented as a formal linear
combination of the so-called Fourier modes ϕh(θ,x) = eiθ1x1 eiθ2x2 , with x ∈ Gh,
and θ = (θ1, θ2) ∈ Θh = (−π/h1, π/h1] × (−π/h2, π/h2], which give rise to the
Fourier space:

F(Gh) = span{ϕh(θ, ·) | θ ∈ Θh}.
Therefore, since the discrete operator Lh satisfies the corresponding assumptions

for LFA, Fourier modes ϕh(θ,x) are formal eigenfunctions of Lh, and more pre-

cisely, it is fulfilled that Lhϕh(θ,x) = L̃h(θ)ϕh(θ,x), where L̃h(θ) is the Fouri-
er symbol of Lh. Using standard coarsening, high and low frequency compo-
nents on Gh are distinguished, in the way that the subset of low frequencies is
Θ2h = (−π/2h1, π/2h1] × (−π/2h2, π/2h2], and the subset of high frequencies is
Θh \Θ2h.

Let um
h be an approximation of uh. The error emh = um

h − uh is transformed

by a two-grid cycle as em+1
h = M2h

h emh , where M2h
h = Sν2

h C2h
h Sν1

h is the two-grid

operator, C2h
h = Ih − Ih2h(L2h)

−1I2hh Lh the coarse grid correction operator and
Sh is a smoothing operator on Gh with ν1 and ν2 indicating the number of pre–
and post–smoothing steps, respectively. In the definition of C2h

h , L2h is the coarse
grid operator and Ih2h, I

2h
h are transfer operators from coarse to fine grids and vice

versa. The two–grid analysis is the basis for the classical asymptotic multigrid con-
vergence estimates, and the spectral radius ρ(M2h

h ) of the operator M2h
h indicates

the asymptotic convergence factor of the two-grid method.

In order to guarantee that nonsingular Fourier symbols L̃h(θ) and L̃2h(2θ) are

taken, we restrict our considerations to Θ̃2h = Θ2h \Ψ, with

Ψ = {θ00 ∈ Θ2h | det(L̃2h(2θ
00)) = 0, or det(L̃h(θ

ij)) = 0, i, j ∈ {0, 1}},
where

θ
10 = θ

00 − (sign(θ001 )π/h1, 0), θ
01 = θ

00 − (0, sign(θ002 )π/h2),

θ
11 = θ

00 − (sign(θ001 )π/h1, sign(θ
00
2 )π/h2),

being θ001 and θ002 the coordinates of θ00. As is well known, assuming standard coars-
ening, the coarse grid correction operator C2h

h couples four Fourier components.

Each low frequency θ
00 ∈ Θ̃2h is coupled with three high frequencies, θ10, θ01, and

θ
11, as we can see in Figure 1. These frequencies compose the four-dimensional

subspaces F4(θ00) of 2h-harmonics, which remain invariant under C2h
h . The same

invariance property holds for many well–known smoothers, such the one considered
in this work. Therefore, the two–grid operator M2h

h = Sν2
h C2h

h Sν1
h also leaves the

2h–harmonic subspaces invariant, and as a consequence it can be represented by a
block-diagonal matrix, consisting of (4× 4)–blocks, denoted by

M̂2h
h (θ00) = (Ŝh(θ

00))ν2Ĉ2h
h (θ00)(Ŝh(θ

00))ν1 ,

with θ
00 ∈ Θ̃2h, and where the Fourier representation of the relaxation method is

a (4 × 4)-matrix, Ŝh(θ
00), and the block-matrix representation of the coarse grid

correction in the subspace F4(θ00) is given by

Ĉ2h
h (θ00) = Îh − Îh2h(θ

00)(L̂2h(θ
00))−1Î2hh (θ00)L̂h(θ

00) ∈ C
4×4,

being Îh, L̂2h(θ
00), L̂h(θ

00), Î2hh (θ00) and Îh2h(θ
00) the Fourier representations in

F4(θ00) of the operators involved in the coarse grid correction. As a consequence,
the spectral radius ρ(M2h

h ) can be calculated by means of the spectral radius of
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(4×4)–matrices, so it is possible to determine the asymptotic two–grid convergence
factor as:

(17) ρ2g = ρ(M2h
h ) = max

θ00∈Θ̃2h

ρ(M̂2h
h (θ00)).
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Figure 1. Frequencies coupled by a two-grid and a three-grid
iteration, which generate the space of 2h- and 4h-harmonics.

Due to the recursivity of the definition of a k-grid method, the two-grid analysis
introduced previously can be generalized to a k-grid analysis. Here, we are interest-
ed in a three-grid analysis, which is very useful to see the different performances of
V- and W-cycles and the influence of different numbers of pre- and post-smoothing
steps.

The error transformation by a three-grid cycle is given by em+1
h = M4h

h emh , with

M4h
h = Sν2

h C4h
h Sν1

h = Sν2
h (Ih − Ih2h(I2h − (M4h

2h )
γ)(L2h)

−1I2hh Lh)S
ν1
h ,

where M4h
2h is defined as

M4h
2h = Sν2

2h(I2h − I2h4h (L4h)
−1I4h2hL2h)S

ν1
2h,

being γ the number of two-grid iterations (notice that γ = 1 corresponds to a
V-cycle, whereas γ = 2 corresponds to a W-cycle).
In order to perform a three-grid analysis we have to take into account that not only
in the transition from Gh to G2h but also in the transition from G2h to G4h (where
G2h and G4h are the coarse meshes, obtained by standard coarsening, and defined
analogously to Gh in (16)), four Fourier frequencies are coupled, see Figure 1.
Therefore, the three-grid operator couples 16 Fourier frequencies, which set up the
subspaces of 4h-harmonics (composed of four subspaces of 2h-harmonics), F16(θ00),

θ
00 ∈ Θ̃4h = Θ4h \ Ψ4h, where Θ4h = (−π/4h1, π/4h1] × (−π/4h2, π/4h2], and

Ψ4h = {θ00 ∈ Θ4h | det(L̃4h(4θ
00)) = 0, or det(L̃2h(2θ

00
ij )) = 0, or

det(L̃h(θ
ij
nm)) = 0, i, j, n,m ∈ {0, 1}}, where

θ
00
ij = θ

00 − (iπ sign(θ001 )/2h1, jπ sign(θ002 )/2h2)

θ
ij
nm = θ

00
nm − (iπ sign((θ00nm)1)/h1, jπ sign((θ00nm)2)/h2).

Hence, this operator can be represented in Fourier space by a block matrix con-
sisting of (16 × 16)−blocks, and analogously to the definition of the asymptotic
convergence factor for the two-grid analysis, we can define it for the three-grid
analysis as

(18) ρ3g = ρ(M4h
h ) = max

θ00∈Θ̃4h

ρ(M̂4h
h (θ00)).
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Next, some results of the three-level analysis for the linear Schrödinger equation
are shown.

4.2. Local Fourier analysis results. In this section, we present results from a
three-grid LFA for schemes (6) and (7), in the case of q(x, y, t) = 0, and f(u) = 0,
by using a V-cycle with one pre- and one post-smoothing steps and the previously
proposed components of the multigrid method. In the case of the high-order scheme
in space, low-order schemes (6) are chosen on coarse grids.
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Figure 2. Three-level LFA for Schrödinger and parabolic heat
equation for (a) scheme (6) and for (b) scheme (7).

For both schemes, we have performed a systematic three-grid LFA analysis for
the proposed multigrid algorithm. For this problem, the asymptotic convergence
factors are independent on τ/h2, as expected. In Figure 2 (a) the convergence
factors predicted by the three-grid analysis, ρ3g, for scheme (6) are shown for a
wide range of values of τ/h2. As it is seen, these factors are almost independent
when the parameter τ/h2 is bigger than about 10, expecting the optimal complexity
estimate of multigrid. In the opposite case, that is, when the parameter is lower
than this value, we observe that the convergence rate could vary from 0.09 to
0.17. From the practical point of view, this dependence could imply an unexpected
behavior of the classical multigrid algorithm. In the same picture, we have included
the same analysis for the well-known parabolic heat equation, discretized by the
Crank-Nicolson scheme, in order to see the difference in the behavior of multigrid.
In Figure 2 (b), we show the corresponding analysis performed for the high-order
scheme (7). We observe a similar behavior as for the low-order scheme, that is,
dependent convergence factors for small values of τ/h2, and almost independent
convergence factors when this parameter is big enough.

In order to test if the proposed MG version of the solver remains robust and
efficient for 3D problems, we also have performed a two-grid LFA analysis for the
3D version of the Crank-Nicolson scheme. In Figure 3 the convergence factors
predicted by the two-grid analysis for the 2D scheme (6) and for the 3D version
of this scheme are shown for a wide range of values of τ/h2. In the case of the 3D
scheme, we observe a monotonic behavior of the convergence factor for small values
of τ/h2, and almost independent convergence factors when this parameter is big
enough. Thus the theory predicts that the MG solver is a robust and efficient solver
for 3D Schrödinger equations.

5. Numerical Experiments

In this section, the efficiency of the three considered solvers is tested. Our main
goal is not to investigate the accuracy of the proposed finite difference schemes
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Figure 3. Two-level LFA for the 2D and 3D Crank-Nicolson
scheme (6) for the Schrödinger equation.

(such analysis is done in many papers), but to test the efficiency of the MG solver
and to compare it with the direct ADI and FFT solvers. For this purpose, we use
examples proposed in [15].

Computations were performed on Vilkas cluster of computers at Vilnius Gedim-
inas Technical University, consisting of nodes with Intel R©CoreTM processor i7-860
@ 2.80 GHz and 4 GB DDR3-1600 RAM. FFT algorithm was implemented by using
the well-known library FFTW.

Example 1. We consider the linear Schrödinger equation (1) with potential
q(x, y, t) ≡ 0 and f(u) ≡ 0. The exact solution is given by (note, that a small error
is done in [15])

u(x, y, t) =
i

i − 4t
exp

[
− i
(
(x−1)2+(y−1)2 + ik(x− 1) + ik2t

)
/(i−4t)

]
,

where (1, 1) is the initial center of a transient Gaussian wave, and k = 2.5 is the wave
number. We simulate the movement of a wave in the domain [−10, 10]× [−10, 10],
till time T = 1. The initial conditions are computed from the exact solution and
zero boundary conditions are specified.

The complexity of the considered direct algorithms, i.e. FFT and ADI methods,
do not depend on the time step τ. Thus, for these solvers, we have used a relation τ =
Ch for temporal and spatial mesh-steps. Table 1 reports CPU times in seconds for
the solution of the discrete problem with different mesh-sizes. The FFT algorithm is
applied for the symmetrical finite difference scheme (6), but very similar CPU times
are obtained for the high-order approximation compact Crank-Nicolson scheme
(7). The results of the computational experiments are in good agreement with the

Table 1. CPU times for the solution of Example 1 till T = 1,
with ADI scheme (8) and FFT implementation of the symmetrical
finite difference scheme (6). A sequence of step-sizes is used with
τ = 1/N and h = 20/J .

Algorithm J = 128 J = 256 J = 512 J = 1024
N = 50 N = 100 N = 200 N = 400

ADI 0.122 1.03 8.9 72.3
FFT 0.37 3.19 27.2 231.8
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theoretical complexity estimates O(N3) for ADI algorithm and O(N3 logN) for
FFT algorithm.

Next we have solved the same problem by using the finite difference scheme (6)
and the proposed MG solver. Table 2 presents CPU times and asymptotic con-
vergence rates predicted by LFA for different mesh-sizes. The stopping criterion
is chosen as the maximum residual to be less than ε = 10−4. The results of the

Table 2. CPU times for the solution of Example 1 till T = 1 and
asymptotic convergence rates predicted by LFA are given for the
MG implementation of the symmetrical finite difference scheme
(6). A sequence of step-sizes is used with τ = 1/N and h = 20/J,
and the stopping criterion is defined by ε = 10−4.

N = 50 N = 100 N = 200 N = 400 N = 800

J=128 0.62 (0.14) 0.98 (0.1) 1.33 (0.02) 2.56 (4E-3) 3.12 (5E-4)
J=256 2.47 (0.16) 3.81 (0.09) 8.82 (0.14) 15.1 (0.09) 21.4 (0.02)
J=512 10.2 (0.11) 16.2 (0.15) 36.8 (0.16) 49.6 (0.09) 126 (0.14)

computational experiments show that the efficiency of MG solver is quite similar
to that of FFT solver. For the chosen stopping criterion (ε = 10−4), the conver-
gence rate of MG is even better than the theoretical predictions obtained by LFA.
But, asymptotically, for small values of ε, the experimental results are in very good
agreement with the theoretical predictions. For example, we present some experi-
mental values of asymptotic convergence rates for ε = 10−8, J = 256 and different
time steps:

ρ(50) = 0.13, ρ(100) = 0.09, ρ(200) = 0.135, ρ(400) = 0.09.

These results show that the three-grid local Fourier analysis gives very accurate
predictions of the convergence rates of the MG algorithm. The dependence of the
convergence rate on time step τ is non-monotonous in the region of interest.

In Table 3, we present results of computational experiments when the same
problem is solved by using MG solver for the high-order finite difference scheme (7).
Again, the stopping criterion is chosen as the maximum residual to be less than ε =
10−4. It follows from the presented results that the MG solver is quite robust with

Table 3. CPU times for the solution of Example 1 till T = 1 and
asymptotic convergence rates predicted by LFA are given for the
MG implementation of the high–order finite difference scheme (7).
A sequence of step-sizes is used with τ = 1/N and h = 20/J, and
the stopping criterion is defined by ε = 10−4.

N = 50 N = 100 N = 200 N = 400 N = 800

J=128 0.94 (0.16) 1.54 (0.13) 2.28 (0.06) 3.88 (0.03) 7.75 (0.03)
J=256 3.64 (0.16) 5.58 (0.13) 13.9 (0.16) 22.3 (0.13) 34.2 (0.06)
J=512 14.7 (0.12) 23.4 (0.15) 52.5 (0.16) 71.9 (0.13) 185 (0.16)

respect to various difference approximations of the 2D Schrödinger equation. Again,
the experimental results are in very good agreement with theoretical predictions of
the convergence rates given by the three-grid local Fourier analysis.
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Example 2. We consider the linear Schrödinger equation

−i
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+
(
3− 2 tanh2(x)− 2 tanh2(y)

)
u

in the domain [0, 1]×[0, 1].The problem is solved till T = 1, and the exact solution is

given as u(x, y, t) = i exp(it)
cosh(x) cos(y) . The initial and boundary conditions are obtained

from the exact solution.
The main aim of this example is to study the robustness of the MG solver with

respect to non-constant potential coefficients. Some CPU times are presented in
Table 4, in which the stopping criterion is chosen as the maximum residual to be
less than ε = 10−4.

Table 4. CPU times for the solution of Example 2 till T = 1
with the MG implementation of the finite difference scheme (6). A
sequence of step-sizes is used with τ = 1/N and h = 1/J, and the
stopping criterion is defined by ε = 10−4.

N = 50 N = 100 N = 200 N = 400 N = 800

J = 128 0.92 1.63 2.98 4.69 9.52
J = 256 3.81 7.67 12.4 24.9 38.7
J = 512 18.8 31.8 63.3 105 207

It follows from the presented results that the MG solver is robust with respect
to the inclusion of the potential function, and therefore it can be recommended for
the solution of more general nonlinear 2D Schrödinger equations.
Example 3. In this example we consider the non-linear Schrödinger equation

(19) −i
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ g(u)u

in the domain [0, 2π]× [0, 2π]. This problem is approximated by the Crank-Nicolson
finite difference scheme (6) and the following iterative algorithms are used: the
explicit iterative method

− i∂tU
n,s
jk = ∂2

xU
n+ 1

2
,s

jk + ∂2
yU

n+ 1

2
,s

jk + g
(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2
,s−1

jk(20)

and the semi-implicit iterative method

− i∂tU
n,s
jk = ∂2

xU
n+ 1

2
,s

jk + ∂2
yU

n+ 1

2
,s

jk + g
(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2
,s

jk .(21)

Note that the FFT algorithm can be used only for the explicit iterative algorithm
(20), whereas the MG solver can be used for both approaches.

We assume that g is a real valued function and it satisfies estimates

|g(v)| ≤ M0, |g(v)− g(w)| ≤ M1|u− v|
for any functions v, w in some neighbourhood of the exact solution BR(u). In
order to simplify the details of the convergence analysis, we restrict to the iterative
algorithms for the split type scheme, when the nonlinear interaction and the linear
diffraction processes are treated separately. Thus instead of (20) for each (xj , yk) ∈
Ωh we consider the discrete problem

∂tU
n,s
jk = ig

(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2
,s−1

jk(22)
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Let us denote the error Zs
jk = Un+1

jk −Un+1,s
jk . We get the following error equation

Zs
jk = iτ

(
g
(
U

n+ 1

2

jk

)
U

n+ 1

2

jk − g
(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2

jk

+ g
(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2

jk − g
(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2
,s−1

jk

)

from which by using the Taylor series we prove the estimate

|Zs
jk| ≤

τ

2

(
M0 +M1|Un+ 1

2 |
)
|Zs−1

jk |.

Thus the convergence factor of the explicit iterative algorithm (20) can be estimated

as ρE = τ
2

(
M0 +M1‖Un+ 1

2 ‖∞
)
.

The convergence factor of the semi-implicit iterative algorithm (21) is derived in
a similar way by considering the discrete problem

∂tU
n,s
jk = ig

(
U

n+ 1

2
,s−1

jk

)
U

n+ 1

2
,s

jk .

Then we get the convergence factor ρSI = τ
2M1‖Un+ 1

2 ‖∞.

If M1‖Un+ 1

2 ‖∞ ≪ M0, the semi-implicit iterative algorithm (21) is much more
effective than the explicit algorithm. For example, such a situation occurs when
g = g(x) is a non-constant given function, then M1 = 0 and the semi-implicit
algorithm requires only one iteration.

Here we mention one interesting non-iterative scheme, which is proposed by
C. Besse [3]. Instead of iterations in Crank-Nicolson scheme (21) the nonlinearity
is resolved by using the staggered time grid:

(23)





Φ
n+ 1

2

jk +Φ
n− 1

2

jk

2
= g
(
Un
jk

)
,

−i∂tU
n
jk =

(
∂2
x + ∂2

y

)Un+1
jk + Un

jk

2
+ Φn+ 1

2

Un+1
jk + Un

jk

2
,

where the real valued function Φn+ 1

2 is defined on a staggered time grid {tn− 1

2 , n =

0, . . . , N} with the initial data Φ− 1

2 (x) = g
(
u0(x)

)
. Thus with respect to the MG

solver, the nonlinearity of the Schrödinger differential equation can be interpreted
as a given potential function (see Example 2).
As an example, we consider the non-linear Schrödinger equation with a nonlinear
function g(u) = |u|2:

(24) −i
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ |u|2u

in domain [0, 2π] × [0, 2π]. The exact solution describes a progressive plane wave
u(x, y, t) = exp

(
− i(x+ y+ t)

)
. A simple analysis shows that for this problem the

explicit and semi-implicit iterative algorithms converge with a similar rate. Thus,
this example gives us one more possibility to investigate the robustness of the MG
solver with respect to the perturbations of the matrix by non-constant potential
coefficients.
In Table 5 we present the results of computational experiments when problem (24)
is solved by using the MG solver for the explicit iterative algorithm (20) and the
semi-implicit iterative algorithm (21). The stopping criterion for the MG iterations
is chosen as the maximum residual to be less than ε = 10−4 and for the nonlinear
iterations ε1 = 10−3.

It follows from the presented results that the MG solver is robust with respect
to the semi-implicit iterative algorithm.
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Table 5. The global CPU times and the average numbers of non-
linear iterations per time step for the solution of Example 3 till
T = 1 with the MG implementation of the explicit iterative algo-
rithm (20) (first two rows) and the semi-implicit iterative algorithm
(21) (last two rows). A sequence of step sizes is used with τ = 1/N
and h = 2π/J, and the stopping criterion is defined by ε = 10−4.

N = 50 N = 100 N = 200 N = 400 N = 800

J = 128 1.71 (8) 3.38 (8) 5.83 (7) 12.1 (7) 24.6 (7)
J = 256 7.37 (9) 13.6 (8) 23.3 (7) 46.5 (7) 82.8 (6)

J = 128 3.36 (10) 7.38 (11) 11.6 (9) 24.7 (9) 55.0 (10)
J = 256 15.8 (11) 36.8 (12) 53.6 (9) 134.8 (11) 229.7 (9)

The parallelization of the ADI type methods can be done by using the domain
decomposition method. The main challenge is to solve in parallel systems of linear
equations with tridiagonal matrices. On the basis of theoretical and experimental
analysis done in [7] we recommend to use the Wang factorization algorithm. The
results of computational experiments for 2D diffusion problems have confirmed the
predictions of the theoretical scalability analysis. The parallel versions of the FFT
algorithm are included into the FFTW library and are based on the optimized
parallel matrix transpose operaton. The parallelization of the MG algorithm can
be done in standard way by using the domain decomposition method. The main
part of computations is done during the implementation of the smoother operator
and this part can be parallelized very efficiently, see [8].

6. Conclusions

A comparison of different solvers and different approaches for the numerical so-
lution of Schrödinger problems is dealt with in this work. Two finite difference
schemes based on the Crank-Nicolson approach have been considered to approx-
imate the problem. One of them, consists of a high-order compact scheme, for
which an ADI type decomposition is formulated. The stability and convergence of
this approach are investigated and some estimates are provided. The considered
solvers for comparison are based on the multigrid geometric methods, FFT method
and the ADI solver. These algorithms have been tested for a linear Schrödinger
problem, proving that the computational experiments are in good agreement with
the theoretical predictions. In order to test the robustness of the MG solver two
additional Schrödinger problems with a non-constant potential and nonlinear right-
hand side are solved by the MG solver, since the efficiency of this solver depends on
such data. The multigrid method results are quite robust with respect to various
difference approximations of the two-dimensional linear Schrödinger equation, and
it can be recommended as a general solver for nonlinear Schrödinger problems.
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[24] M. Thalhammer, M. Caliari, and C. Neuhauser, High-order time-splitting Hermite and Fouri-
er spectral methods, J. Comput. Phys., 228:822–832, 2009.

[25] U. Trottenberg, C.W. Oosterlee, and A. Schüller, Multigrid, Academic Press, New York,
2001.

[26] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods, Chapman
and Hall/CRC Press, 2005.
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