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Abstract In this paper, we prove the existence of solutions to anisoiropic parabolic
equations with right hand side term in the bounded Radon measure M{() and the ini-
tial condition in M (1) or in L™ space (with m “small”},
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1. Introduction and Statement of Results

The existence of solutions to nonlinear elliptic equations and parabolic equations
with measure data has been discussed in [1]-[4]. For the case of anisotropic elliptic
equations, L.Boceardo, T.Gallouét and P.Marcellini studied it in [5]. In this paper, we
will extend the analogous results of [5] for anisotropic elliptic equations to anisotropic
parabolic equations and obtain the appropriate function space for solutions. We will
consider the following anisotropic parabolic equations:

a .

% _ div(a(z,tu,Du)) = f inQ
(P) ot

sy on X

'H.Iii‘] ﬂ} = iy in {2

Here 2 is a bounded open set in RN, N > 2, with smooth boundary 8Q,Q is the
cylinder 2 x (0,T), where T is a real positive number, and Z is the “latreal surface”

N % (0,T).p; >1,i=1,2,--,N.
Let a be a Carathéodory function in Q x R x RY. We assume there exist two
real positive constants o, 8 and a nonnegative function b € L'(Q), such that for every

component a; of a, almost every (z,t) € @, and for any s € R, € RY ,n e R",

N
a(z,t,3,6)8 2 a ) |Gl (1.1)

i=1

* This work supported by NSF of Shandong province (NoY98409012, NoQ99A05).




ol Li Fengquan and Zhao Huixiy Vol.14

N S
|{11'|:"'T1 f,31§)! i:. :S ('ﬁ'{"ﬂ:! !’;I i r'ﬂ!}j Le Z |‘1=:_J'|P}) 1 1= I,E, T [12}

7 4
F=1

here 5 satisfies ~ = L - 1
whnere p satishes _EZ_'

i—=] i

3y | bt

[al2,t,5,6) —a(z, t,5,9)|[f =) > 0, € 7 (1.3)

In particular, if a doesn’t depend on z,f and s, namely a(r,t,s,£) = a(g), alf) is
the vector field whose components are a;(£) = |£Pi—2¢; i =1 2y  Nps > 1.

We will specify in the stalement of the theorems the different hypotheses on f and
ug. The general case is when f and ug are the bounded Radon measures on ¢ and

respectively, we will also consider the more regular case when f and w, belong to some
Lebesgue or Orlicz space.

Definition 1.1  We will say that u is a soluti

onof (P)ifu € L0, 7; W) (), a(z,
b, Du) € LYQ) and u satisfies the equation

(P) in the lollowing weak sense;

—f uqr}’ffzdf—I—f a(r,t, u,Du}D:ﬁiﬂﬁ:f -;.'}.:ff+f @z, 0)dug (1.4}
o o & 07

for every ¢ € C°°(@) which is zero in a ne

ighborhood of U (0 x {T1)
Set

Whirdigy = {ulu € P (), Doy & s CF 5 I SN [ (1.5)

Define
“EHwi.fp,-J.:m = || Dsue| i gy + [ullzeegny,  Wu € Whird(g) (1.6)

WHP(0) becomes reflexive Banach space. We will denote by W, "i?":'{ﬁ}l the closure
of C§°(£2) relative to the norm (1.6) in WLPi(()). Suppose

1

B{
2 — i
N+ < Py <

BV + L 2 TR0 (1.7)

i
We now state the main results of this paper.

"llll?'
Theorem 1.1  Assume (1.1)-(1.3) and (1.7) f

h et gl
old, let g < N i_N-r—l

feEM(Q), we M(02) (1.8)

where M(Q) and M (£2) denote the s

pace of bounded (finite) Radon measure on & and
¥ respectively,

Then there exists a solution of the problem (P) such that

N
L%(0, T; W %)), e € [1 - (__ —_)) =1,2,--,N (19
uE:Dl ( o (), Vg e % N3} i=120 (1.9)
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: N .
In order to obtain g; = % (p‘ BT 1) {t=1,2,---,N)in (1.9}, we have to make
sironger assumptions on f and ug. This is what is stated in the following.
Theorem 1.2  Assume (1.1)-(1.3) end (1.7) hold, let § <= N + “-.FJ-|- T
f € L0, T; L. (52)), up.€ Loi8d) (1.10)

where L.(Q) is the Orlicz space generated by the function v(s) = slog(l + 5). Then
there exists a solution u of the problem (F) such that

]n,.r
_ \ s N . 2
@ E ﬂL';"I:ﬂ,_T;WD]"[m}[ﬂ:IL Q’i=%(ﬁ'_ ), T P R {1.11)
i=1 T
Now, we will improve the regularity of f and ug to obtain more summability of the
eradients of solutions of (F).
Theorem 1.3  Adssume (1.1)-(1.3) and (1.7) hold, lel § < N and p satisfy

[ S e (1.12)
P~ P= NG —N+p '
Then there exists a constant & = 7(p) satisfying
Pl
SO e o (1.13)
such that the following holds: if
N+
l <o <@, H=p+{g—1]( M'ﬂﬁ---}]) (1.14)
andl
f e L7(0, T, L)), up e L5(82) (1.15)

Then there exists a solution u of the problem (P) such that

: ; 9Ny .
u & ﬂLq‘DTWH‘[:ﬂ], qt—j;(cff:-—l—%), i=12.-- N (1.16)
=1

The content of this paper is in close relation with [1], [3], [5]. Our results extend
those contained in [1] and [3]. This is obtained by means of a technique which is inspired
by that used in [3] for anisotropic elliptic equations. Moreover, our theorems extend
the anologous results of [5] to anisotropic parabolic equations.

This paper is organized as follows: In Section 2, a priori estimates for solutions to
the problem (P) are given; Section 3 is devoted to the proof of Theorem 1.1-1.3.

—
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2. A Prior: Estimates

In this section, we state and prove a prior: estimates for the solutions u of the
problem (P). Throughout the paper, we will denote by ¢, the positive constants
depending only on the data of the problem, but not on w.

""i'r
Lemma 2.1 Assume (1.1)-(1.3) and (1.7) hold, et FE<N 4

N+1’
FEL®(), wuge L2 (2.1)

- N :
Then, for every q; € [11 % (,?3 G 1)) b =1,2,.-- N, there erists q posilive con-

stant ¢ depending on Q, o, N,p;—,q,-_.llf,l,lf_lmj, ol iy, such that

1Dl g gy < c (2.2)
and lllzacoy < ¢ (2.3)
N
1 1 ]
where § satisfies = = — —.

§ N E 0

Proof Tt is simply modifies the classical J.L.Lions ([6]) method, the problem (F)

N N

has a solution v € (7] L0, T; W,y t*) () [ C([0, T]; £4(R)) such that o’ e > LP(0, T

=] i=]

N 15
(W, "}"}{ﬂ}}j]‘: where > L7(0, T {Wﬁ'fp’}{ﬁ]}’) denotes the dual space of () L% (0,T;
i=1 £

Wy P(Q)) with g = p_i”" - and

T T
f < w'(t),v(t) > di +/- a(z, t, v, Du) Dudzdt =f < f(t),v(t) > dt
: “ N ; {24}
Yo € ﬂ IFi(o, T WJ’EH}{H}]

=]
and u(0) = g (2.5)
Define the function ¥; : B — R by

! S | i Py |
Vi(s)=4¢ & if ls] <1 (2.6)
-1 s« -1

For any given & (0, T), taking v(z, t) = W1 (u(z, £))x(0,7)(t) in (2.4) (here x(0,7) is
the characteristic function of the interval (0, 7)), we obtain :

Lﬂ'l{ﬂiﬂ}dx—_/ﬂﬁl[uu{lejd:r:EL[IH*I’ﬂu}]d::di (2.7)
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where 1 is a primitive of ¥;; that is

sr
() = [ Ti(s)ds, VyeR (28)
i
: ]
Since we have |s| — = < n(s) < |s| for every s € R, we obtain for every 7 € (0,1,

fﬂ fule, 7)lde < 1fl g + 3meast + fﬂ G568 s (2.9)

This implies that there exists a positive constant ¢; such that

llull poego,rnrinn = € (2.10)

For given A > 1, let us define the function
Ua(s) = [ 1+l dy (211)
Suppose 1y is a primitive of ¥y(s); that is
o ﬁ " Wy(s)ds (2.12)
For any given r € (0,T), taking v(z,t) = Tg(u(z,?))x(0,7)(t) in (2.4), we obtain
fn a(ulz, ))dz — fn 2 (o)) diz + J} : fﬂ a(z, £, u, D) D( ¥ (w))ddt
- [] fﬂ FUo(u)dzdt (2.13)

Using (1.1), (2.11) and (2.12), we obtain

| DyufPs
ZL Ot —————dgdl < -—-—~——-—~{IH (f |f|d$df+ “HDHLl[ﬂj) (2.14)

(2.14) implies that there exists a positive constant ¢z such that

| Diuf™
—————dxdt < o 215
> [, o 215)
By the Holder's inequality, this implies that

|Diul
o (T+ul) ¥/

a0 |5 qi fpi 1—gifpi
< ( f E%dﬂ:dtj ( L (1+ |uj}"?-'f'i~”i—?-'3'dzdt)
Q

1-gi/pi
< chifP (L{l + jui]’*ﬁ-'f’(ﬁ-'—‘?ﬂ'd;a:dt) (2.16)

fq | Dyu| ¥ dxdt = (1 + |u]) /P dzdt
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The assumption of g; implies that § < N and 1 < g with §* = w_h gy
=
Use the following interpolation argument
el ey < ||T¢FEL;-[m||uff£Tme (2.17)
with i :
SEer 2 R gy (2.18)
T qJ 1
If r satisfies §*(r — 1)/(§* — 1) = §, then
N+1
By the nonisotropic Sobolev inequality (cf. [7]), we have
N 5
”u{ﬂ“.ﬂ‘i‘{ﬂ} < ¢3 H ”Djufi”fﬂj[m (2.20)
i=1
(2.10), (2.17), (2.19) and (2.20) yield
¥ i T (1 ':r}!
[ @it < [ 1ol o le@i
= c,;f [lu(2) “Lq {n}
TN
< Eg.c,if H]JD ut) ”L‘h{m dt (2.21)
Since
N 7
7 1
e = © ]. = :
30 Na, =1 ang ﬁ i <1 (2.22)
=1
G
=1 T
Hélder’s inequality implies that
N i
“u”m{qj = '5531:]; ”ﬂj““gzj{m (2.23)
Let i
i
=y 2.24
Di = q { )
(2.19) and (2.24) imply that
i — @ ) gLV
POl €L ) RS (2.25)

N
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=S

For every ¢, with 1 €4 < N, (2.16) and (2.23) imply that

N
V0gi—=17m 0V ¢
I1Dsull i gy < s + e7 TT 11Dl iy 7 (2.26)
: =1
Set "
d-= H ||.D_-|;’It-||fjj () I:EET:]
=1
Then there exist two positive constants such that
=N oy
SHIER
d<egtcgd =t M B (2.28)
Since ”
3 (———):1—@& (2.29)
NS\e p P

(2.28) implies that there exists a positive constant cg such that
d < cio (2.30)

Hence it follows from (2.30), (2.27) and (2.26) that (2.2) holds. (2.2} and (2.20) yield
(2.3). This finishes the proof of Lemma 2.1.

i
Lemma 2.2 Assume (1.1)-(1.3), (1.7) and (2.1) hold. Let§ < N + TRk
+
) N , . i
for g = 31__1 (ﬁ T 1) i=1,2,---,N, there erists a positive constant ¢ depending
ot Q1&'>*’H\Fri}?‘= §i, EEIHLWU.T:LT{QJ} and ”uﬂ”L.r{ﬂ}.- such that

then

| Diull Lo < € (2.31)

and
lullzagy = ¢ (2.32)

Proof We work in exactly the same way as that of Lemma 2.2 in [3], we can prove
that there exists a positive constant ¢1; such that

lell oo o, msrr gy < €11 (2.33)
and "
c [P
5 | Deulfe oo diosoad (2.34)
=1 Q i |u'|

The remainder proof is similar to the latter half part of the proof in Lemma 2.1. We
only take A = 1 here. So Lemma 2.2 is proved.




28 Li Fengguan and Zhao Huixiu Vol.14

Lemma 2.3 Assume (1.1)-(1.3), (1.7) and (2.1) hold. Let § < N. Then for

t -2 *ﬁir . . im .
! ('?;5— {L“i) 0 =1,2,.-- N, there exists a positive constant ¢ depending

Lo E N+ p
on Q,a, N, p;.p, ]|f||L€r|:|:|1:{‘;L_F|:ﬂ:]}, ol prpay, such thal
| Dsull g0y < ¢ (2.35)
and
lellcagy < ¢ (2.36)

Proof In order to prove (2.35) and (2.36), we modify the proof of Lemma 2.3 in

N
[3]. We replace ¢, and g* with q, L

(7 — ) and §* respectively, and combine it
with nonisotropic Sobolev inequality (cf. [7]). Thus Lemma 2.3 can be proved.

3. The Proof of Theorems 1.1-1.3

Proof of Theorem 1.1
Let us consider the following approximate problems:

d
%— Sdwifale, t,u., Dun)) = f, in'Q
(Fn) Un(2, 1) =0 on ¥
tn(x, 0) = ugs(z) for a.e. z €0

Since f and ug are thé bounded Radon measures, we may choose two sequences { f,} C
L%(Q), {uon} C L(Q), such that

fn — f in the weak® topology of measures (3.1)
Upn — U%p In the weak*® topology of measures (3.2}

and
Ifnllzi@) < B = Ifllmiq) and [lug, || < € = luoll p(ay (3.3)
By Lemma 2.1 and {3,_3}, there exists a positive constant ¢ independent of n such that
| Dsuql <c ‘F’-E[lpi(‘ 4 )) = B N (3.4)

1T1L‘?I|:Q:'—1 if: !P_ r _Nr_[_l v =1, 4, E 3

and

lunllzag) < ¢ (3.3)

By (3.4) and (3.5), there exists a subsequence of {un} (still denoted by {u,}) such that
Diun — Dyu weakly in LE(Q), i=1,2,... IV (3.6)

and
un — u weakly in LI(Q) (3.7)
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F
By (1.2), (3.4) and (3.5), we have that div (a(z, t, un, Dus)) is bounded in EL”[&T;
t=1

WLm{(Q)),

Pi N : .
i ] - —rou], i=12,- N 3.8
T p.z-—l( ﬁtwﬂ:l) i M N
Let rp = lgqgh r;, then we have that {u),} is bounded in L}(Q) + L™(0,T; W~170(02)).
Sig e
So {u!} is bounded in L*(0,T; W-1s(Q)), for all s < 111111{N+ 1,7"[,}. Let gy =

min {g;}, then {u.} is bounded in L%(0,T; W,y (), {ul} is bounded in L'(0, T}

12 ¥

W), Using Corollary 4 in [8], we obtain that

u, — u strongly in LY(Q) (3.9)

This implies that
Up —+ % a & In G (3.10)

We work in exactly the same way as that in [4], we obtain that
Dy, — D in measure (3.11)
By (3.11), there exists a subsequence of {Dun} (still denoted by {Du.}) such that
D, — Du ae. in @ (3.12)

By the assumptions of a, from (3.4), (3.5), (3.10), (3.12) and the Vitali's theorem, we
obtain that for every i with 1 <4 < N,
ailx, b, U, Duy) — a;(x, ¢, u, Du) strongly in L7(Q),¥r; € [1 i (1 — L)) :
Gl i B T A RS
(3.13)
So we can pass to the limit in the approximate problem (F,). Therefore we get that u
is a solution of the problem (P).
Remark 3.1 We can choose f, and wug, as follows. Define the C§°-function 7 :

RN — R as follows )

. if |z <1
i = ce:cp|$|_g_l if ||
0 if || > 1

Here, ¢ is 50 chosen that [ow n{x)dz = 1. Next, set
m(z) =nVn(nz) (n=1,2, -,z € RY)

Let
Ugn = _[ Ml — y)duo(y)
RA

similar to the definition of ug,, we can define f.
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Proof of Theorem 1.2 We only replace (3.1) and (3.2) with the following (3.14)
and (3.15),
fr = f strongly in L'{(0,T; L..(2)) (3.14)

and Uom — g strongly in L.(}) (3.15)

It 1s similar to (3.13), we have that for every ¢ with 1 < ¢ < N,

ai(2, b, un, Dun) = ai(z, 1, u, Du) weakly in L5 (Q),7; = —2° (1 — ;_r?:f—)

o —1 N + 1}
(3.16)
Proof of Theorem 1.3
Suppose that
fn — f strongly in L°(0, T; L*(2)) (3.17)
and tgn — ug strongly in L*(0}) (3.18)
We also obtain that for every i with 1 <i{ < N,
s i (p—20)N
@i (T, £, U, Dug ) — ai(z, 8w, Du) weakly in L7 (0). r; = 22— (.::r-l— —— —u—)
( ) ( ¥ (£ ] BN + p)
(3.19)
1 d
Remark 3.2 We note 2 - T < pi(i=1,2,---, N) implies that § — v =1
P(N + 1)

and the condition 7 < N+
o= N

1,2,---,N) implies that r; > 1(i = 1,2,---,N) in (3.13), (3.16) and (3.19). These
bounds are due to technical reason. (See the proofs of Lemmas 2.1-2.3 and Theorems
1.1-1.3).

inplies that § < V. The condition p; < T{z ==
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