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Abstract We study the asymptotic hehavior of solutions to an evolutionary
Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vor-
tices of this equation under the Neuman boundary conditions. Away from the vortices,
we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong
convergence of solutions. This is a continuation of our earlier work [2].
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1. Introduction

We consider the following problem:

%ii = Au, + éfﬁz{m] — fue P, (=) €% B (11)
U, 0) = gul(z), z€0 (1.2)
%§u¢}=m redf, tz0 (1.3)

where € is a smooth bounded domain in R%, v the exterior unit normal vector along
a0, Blz) : @ — Risa smooth funetion (say C°) with positive lower bound. e :
Q x By — R

The initial datum fu?(z) is smooth and satisfies (1.3). In addition, it also satisfies
the following assumptions: ]

lug ()l om < & (1.4)
[ @IV + 6% i) ld < K (15)
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for a constant K and some m distint points by, - - - b 10 {2, where p(z) = min{|z — b;| :
i= 112,"‘,1“?'1}.

B() = 5 [ 192 + 282 @) (2@ - 1)?)ds
< K||lne| + 1] - (L.6)

The system (1.1)-(1.3) can be viewed as a simplified evolutionary Ginzburg-Landau
equation in the theory superconductivity of inhomonogence ([3]).

The aim of this article is to understand the dynamics of vortices, or zeros, of solu-
tions u of (1.1)-(1.3). Its importance to the theory of superconductivity and applica-
tions is addressed in many earlier work ([3-71).

Now we briefly describe some mathematical advances concerning this problem. In
B =1, the dynamical law for vortices was formally derived in [4,8]. The first rigorous

mathematical proof of this dynamical law, which is of form ﬂ—u(i] = —Vuw(a(t)), was

given by F.H.Lin in [5,9]. See also [10, Lecture 3]. In [5,9], one allows the vortices of
degree +1 and assumes that they have the same sign. For the vortices of degree +1
(possibly of different signs), the same dynamical law was shown later in [11]. We refer to
[1] for vortex dynamics under the Neumann boundary conditions or pinning conditions,
In the 3-dimensional case, § = 1, a similar dynamical law was also established in [1] for
nearly paralled filaments. The short-time dynamical law for codimension 2 interfaces
in higher dimensions was shown in [1]. When g8 # 1, in the 2-dimensional case, the
dynamical law was established in [12] under the first boundary condition. But, here
one proves only that u. conveges weakly to the limit function in H li-.: as £ — 0F,
- The main goal of the present paper is to examine the vortex dynamics without
topological constraints, and proves that u, converges strongly to the limit function in
B}, as ¢ - 0%,

To understand the behavior of u of (1.1)-(1.3) as t — oo, one has to look at steady
state solutions wu,., that is, the minimizer of the energy functional

B = [, [V + 536" - ]

A complete characterizaton of asymptotic behavier (as € — 07) of vortices of u. is
given in the recent work [2].

Now we claim our main theorem.

Theorem 1.1 Assume that 8 € C3(Q) and By = mﬁiu B(x) > 0. Under the

assumptions (1.4)-(1.6), one has, for any 0 < ¢ < T, that
ue (2, ) — wa(z, t) (1.7)

strongly in HL (Q2x[0, T\ {(a;(t).t) : t€ [0,7],i =1,2,-, m}). Here the convergence is
understood in the sense thal for any sequence of &' going to zero, there is a subsequence
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for which (1.7) is true. Moreover, u. salisfies
L,

T Au, = 372 ([vu,.r* -4 Gﬁﬁ)) s (1.8)
in % (0,T)\{(e;(t),t) : t € [0,T]), 5 =1,---,m} U{m;{t 1 = (0,T).

The functions a;(t) € ,7=1,---,m satisfy fh.:s following equation:

i P/ C10)
{‘ﬁ v ﬁ{ﬂj{ﬂ} (1.9)
aij(0) = b;

forj=1,---,m, and 0 <t <T. Here T is chosen so that a;(t) will stay inside {1 and
ai(t) # a;(t), for all0 <t <T and forl,y=1,---,m

Under some additional technical hypothesis on 3, one may take T' = oo in the above
theorem ([12]).

The rest of this paper is organized as follows. In Section 2, we prove the weak
convergence. In Section 3, we study strong convergence.

2. Weak Convergence

Let u = (v, then u satisfies

v = Av+ %?’ﬂ?v + %v + El-iﬁzil — P, (z,t)€QxRY (2.1)
u{m 0)=u), TN (2.2)
—[m ]I—I—(;gﬁ)v“ﬂ z€df, t>0 (2.3)

Lemma 2.1 Let M = max|3(x)|, then
i

|u,_~(:::, ) < M(1+K), in x[0,7]

Proof Let i =u./M, then
%% —Awi -—( (B/M)? - [a])s, in @ xR*
;ﬂ(m)_u s E3E>0
i(z,0) = —*u.s %z), x € ()

Set w = |@|*> — (1 + K)?, one has

i oM2e2a)Pw <0, in QxR

w(z,0) <0, z €
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Thus, by maximun principle, we have
w<0 in £ % [0,7T]
Hence
Define ., : B2 — Ry be a smooth monotone function such that

r2, r<o0>0

Lemma 2.2 Suppese that, for 0 < ¢t < T,min{|e;(t) — a;(t)], dist(a;(t), ), for
Li=1,--,mand j # I} > 4o, min(5/(2|VG| + 1)) > o. Then, with the above
notations, one has

”'T},E ” Hli:ﬂ}c:[{l,T]".lqu-"'=1 l-.i] t S{g? T, IIEI'II

where T4 = {(z,1) : |z — aj(t)| £ 0,0 £t < T}. a;(t) is the solution of (1.9).
Proof Using integration by parts, one gets

%[iﬁmmmﬁhmﬁ+§ﬁ%fwﬁﬂﬁ
d"?f'cr 2 p i 21 _ L2 A% 2 d_ﬂ

2

Af dy g3 du dv

?_ R = ik .?2 ? L

¥ ﬂ»._:f:.g.-ﬂ 5 — | beBg 0 — [ BV

On the other hand,

.51,3 du /
2 2 21,12
e P 4 o
[ 485705 | < 5 [ 82|52 +C [ 6ephl
Now we calculate the expression ,'32?%?1:% We shall use the summation convention,

and simplify notation. We shall also set d, = ¢, v, = v, e.(v) = _'52 [|"G"L.l|J + @ﬁz{l —
[]?)?].

2 dv : 2 .3‘1 1 |
B3V, - ?ﬂE =({Viy - Vo) |div (F°Ve) + (FAS)v + --[1 — |v] }1:]

Els
_fﬁ’i{ﬁ vvi); + (BAf)d; ( )

(1 —[v*)?

4 = Ef}i-

- |8 g - WP o+ (8%

2|'1f"|;'I 2 |v;]?
"'(."3 ;) {ﬁ}i‘;ﬁt(?)
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du 2 ,5-ﬁﬂ

where :;'a_qﬁmui_a , (8%); -
: dv
2‘ o n ——
fﬂ:ﬁ Vi ‘F:Lr_ =

! o A
= Jy e+ [ 0658 190 + 350% — Y|
2 i
+ E?-ﬁﬁ ,{32 |‘E"r;|ﬁ_r|2 =i 'ﬁ_[l 555 |,{J|2)1
e

2
+fﬂ;3?,fj‘*~:?¢~ ;?,5?[1 — |v)?)* + f[ﬁaﬁ]v{.!: v ('1’2' )

MNote that

12
90 (53,) & =2 | LML _ 22 [ popop
&

o Ov di
f %-—,ﬁﬁ
<[ (%E-Eg ) Lg [1? 24 Z{l—wlﬂ
-;-fﬁ{,ﬂ’*.:;hiju,-vj = ﬂ‘-f.i‘lﬁﬁ [I‘?"’-b'l2 + leil — I*-t:IEJE”
+ [ 896965 R MU RN o

"y ) |dv d [ .88
+GL¢-;5' Iv| fﬂcﬁd.ﬂ 20?8 B hP

One observes that on each B,(a(t)),l = 1,--,m,Ap = 4,¢y; = 26;;. By the above
observation, one has

Hence

2
|Vu|? + ﬁ—{l . |u|2}2] dx

&

B2 dijuiv; — A - ﬁ Vol <0 if we U Bo(a(t))
=1

Moreover, if ¢ < min(5/(2|V 3|+ 1)), one also has
[ﬁ‘?ﬁ?qﬁ £ —ﬂuﬁ,ﬁ' ] : E{1 _pP)E <0 i ze U B (ai(t)
=1

On the other hand, if p{z,{) > o, then we have

B desusvg — 'l'ﬂ'iJﬁEWUF < Cylo)de:(v)

[-—a.emﬁ +ﬁvﬁ¢] L 520 - Py

< Colo)des(v) 1



E ; Liu Zuhan Vol.14
Similarly,
2
P — I.F-'ﬁ Vol < Colo)e if plzt) =0
Finally,
V5 d V3
b1 = 5 V| (2:1) =2l - a5(6) Fos(8) = 2e - () T
Vi (x)  VB(a;(t)
<Nt — ot . g
- |J: ﬂ_‘i'{ :]| Iﬁj{zj ﬁiiﬂj{t}}
<Cele — a;(1)” < Cog?
for j =1,---,m and for all x € B;(e;(t)). Hence
d 24 8/ o |dv |
dt j;z Poeelv)dz < Co ji‘l mellir—de o dt it ﬂﬁ'yJ | jg;qﬂcrﬁ dt i
50 : :
/ﬂ bocelv)| de <G, fﬂ fﬂ Soee(v)dzdt + Ct+ C (2.4)

where we have used the fact that |v] < 1 + K in @ x [0,T]. Finally we have, by
Gronwall’s inequality, that

f:] prec(v)dedt < Clo,T,8), forall 0<t<T (2.5)
ﬂi?p f trec(v) < Clo, T, 3) (2.6)

On the other hand, by calculating the expressions of form:

1d 9 :
rupd) ec(v) 2 di ‘f}ﬁ‘_“| } +C

L L [ 309|dv]?
7 | F@ew <5 [ 96|

here ¢(z) is a smooth cut-off function which is supported in ©\ | ] B,(a;(t)), one

=1
T
f /1:11 U Bg(a;(t))

3=1

deduces that
d'ug

—| (@ t)dzdt < C(o,T, B) (2.7)

Combining (2.4) with (2.7), and noting v = Bu, we get the conclusion of Lemma
2.2
It is then easy to see that, for any sequence of £,, — 0, there is a subsequence {ug“}
of {u._} so that
e (x,1) — ua(z, t)
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weakly in Hﬂncl.'_f! x (0, T]\{(a;i(t),t) : t € (0,7),i=1,---,m}), and lwa (2, 8)] = |B(=)],

% _ 57 (7l - 2 (56°) ) 28)

in © x (0, T\{(a;(£),1) : € (0,T],j =1,--,m}.

3. Strong Convergence

In order to prove that 1. converges strongly, we only need to prove that v, converges
strongly. The proof of this conclusion is based on the fact that the solutions v to (3.1}
satisfy a monotonicity inequality from which the e-regularity can be proved. Then, it
implies the strong convergence of the sequence of {v.}. Theorem 3.1 is an extension
of Theorem 2.1 in [13]. The main task is to find a monotonicity formula and a small
energy regularity theorem.

Theorem 3.1 Let v. be a solution of

au 2% 3 A

E — .":Eht-',g' =+ -'ﬁ_?ﬂ,g + —'E"'U,E

»[—ﬂle: EE{ﬂ}dEdt+ﬁD] fH

for 0 < g << 1. Here v. € C,

b L - e i Bux-L0 B

unth

St Ry =

By = {z € R%|x| < 1}, ec(ve) = -11; li?vd? + %ﬁz{l - ]1:512]21 :

Suppose also that {ve} converges weakly to @ map v, as € — 0+ in HY (). Then
{v.} converges strongly to v, in HL (1), where Q1 = By X (—1,0].

In order to prove the above theorem, we need several lemmas.

Lemma 3.2 Suppose v satisfies

% = ?vv 4 %Ev t ;-;’—E{ﬁ&,ﬁ _ Vet in Qi (3.2)
with ;
du
2 et < |
fi 1:!‘5?1:[ 15 ]{i:r:dt <M

Then, for 0 < o < 1, one has
D ter, 1+ 5
vECo H(Q)

Proof Let v =e¥. Then v € H(Q,) and

f |Vap|*dzdt < C
th

w¢=aw+%’ﬁ-w it
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One has
e W@,

So, by a bootstrap argument, we have

2+r:t ]+
Tp'-r" € C loc {':EL}

Hence
Ern1+“

“loc ; {Ql]

In the sequel, for convenience, we denote v, by .
Lemma 3.3 (Energy inequality)

v e

sup LE fﬂ [ |* + E(-u(-,t]ljl] < ClEy+1) (3.3)

DL
1 ), B* 242
where Elv(., 1)) = E.{'z [Vu|* 4+ EEI — |[v]*)*| dz, By = E{v(., Ujj,(ﬁ_‘ depends only on

3, 8.
Proof First

2

| = ﬁzdw (¥ u)y, + %‘qwﬁ + —ﬁ—[l — |v|*)vuy

Hence
fﬂ o = Tﬁdw (5*Vu)ve + ‘-?..5'_& (*ﬁ‘ﬁ| 12) = Eﬂt_ Lﬁz (1- |'”I!2}1
[ = [ famoon (o 1 [ |50 de-w
= —fﬂ fﬂ;ﬂlwﬁ + Fr VoV (S_)
+./ﬂija;ph%%§ f / dt[ [v]* - R 2;31(1 o] }]

By Lemma 2.1, one has

f;LIvzlﬂf; [F%I"* + gil - pujijﬂ]

t=#
2 t
<c [ (VP + L1 - popry? +c | /Jw%c (3.4)
L 2e° t=0 070

where ' depends only on #, 2. From (3.4), one has

t
fﬂ VolPldz < C [ fﬁ |Vo|2dzxdt + C(Ep + 1)
]
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By Gronwall’s inequality, one has
L
f L (Vol’dedt < C(Ep +1) (3.5)
0

From (3.4), (3.5), we have

sup U‘:[H ] + E(v{ajt]}] < C(Eg + 1)

p<t<T

The proof of Lemma 3.3 is completed.
Define

2
(v) = 5 [w + 250~ 1u11}?]

|z — fﬂuﬁ]

Gz, t) = [4m(to — £)] " exp {‘ i(to — 1)

where t < ig, 20 = {Iusfl:i]:

G(z,t) = Golzo, to)

Splz)={z=(zt):t=1p— RE}

Prlz) ={z=(z,t) : |z - zo| < R, [t —to| < Rz}
Tr(zo) = {z = (z,1) : € B*, o — 4R* <t < to —- R}
Ty = T1(0)

¥(R) = f e.(v)G, F*dzdt
Tr(zo)

3(R) = R fs e ()G ¢°dedt

rlzo)
where
b€ CP(Bplze)), 0S¢ <1,¢=1, forlz—m| £ %”—
and
|Weh| < Cﬂ;‘rpq.l,i‘[p e, 0< po < {Iist{:a:;., 1)
Lemma 3.4 (Monotonicity formula)
B(R) < exp(C(Ry — R))®(Ro) + C(Eo + 1)(Ro — B) (.6)
¥(R) < exp(C(Ry — R))¥(Bo) + C(Eo +1)(Bo — B) (3.7)

where Eg = E(v(-,0}).
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Proof Let
w(r, t) = v(z + z0.t + 1p)
alzr) = Bz + xo)
w(x) = d(z + xg)
vr(z,t) = w(Re, B2
EEH_{.TJ = Q{RJ}
wrlz) = p(Rz)
then
2% o Aoy

= Aw +

= Vi +—1u—|——|f1—|w| 17

f 4 |Vw|® + E{f—(l — |w|®)?| Gp?
Tr(0) 2 22

ol

} _
2 122 2
5 Jrage ||V + 220~ 1) Gunt

1 R '
U(R) =3 fr [wmﬁ + Q@ﬂ — lvg)®)? | Gehdzdt
i

= U(R) et = [T {[- 56 Vo) = av = 2L = Py (- Tou + 2t000)
1
2

il
+ 3= [l) + (e Vea)(1 - ") } Gy}
- zf G101 V(- Ty + 248e0;)

i

=l+II+11I

|V |3+ (1 |v113jﬁ] Giy(z - Viop)

where we have used the fact that %ﬂg = EG We also denote —,ﬁ?:,::'ﬁ}]_q_l by

&, Vioy, respectively, etc.
The first term may be estimated

1 1 v’
I> 5 /s {EI?I{J: Wy + 2t801)° + -—é‘(l -~ iul|2}2} Gt — CT(1) -
1
1
17 < 5 |ﬂj:r: Vo, + 2600, PGt + C f Vo1 2G|V |?

= Elfl + CT(1) + C{Ey + 1)
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i 1 (re
[ III| < E=In[1‘,1 +fT 3 {l?vll“ g 2_51?(1 = i'?31'|3:|2 Glx - ?Eﬁ*ll?
1
1
< Ellu;l} + C(Ep + 1)

where Ep = E(v(-,0)). From the differential inequality

d 1 |z - Wy + 28|, »
— o — Gy — C¥(R) — C(E

now (3.7} follows.

The proof of (3.6) is similar to (3.7).

Lemma 3.5 (Small energy regularity theorem) There exists a constant 8y €
(0,1/2) depending only on 3, such that if for some 0 < R < &tof2, 20 = (zo, to), v = e
satisfies

1 4 b 2 z]
= — ] —_ j i, :
¥r=z [ [iw + o1~ Y| Grgdtads < b (3.8)
then |
sup {Wvﬁ + —f%(1 - |v|2‘ﬁ} < C(6R) 2 (3.9)
Fsrizo) 2g

with o constant § € (0,1/2) depending only on Ey and inf{R, 1} and an absolute con-
stant O,

Proof The proof of Lemma 3.5 is identical to [Lemma 2.1, 14]. For convenience
of readers, we sketch it here. Without loss of generality, one considers the case that
zo = (0,0). Set ry = §R,0 < § < 1/2 to be determined later. For r,c € (0,r1),r+o <
r1, and zg = (zg,t0) € Pr, let e-(v) = e(v) in the proof of Lemma 3.5, by using
monotonicity inequality, we get ([14])

ot < f c)=EC f e(v)(G + OR™?)dzdt + CR(Ep + 1)
Pﬂr{iﬂj Tr

for any given # > 0, if § > 0 is small enough (For small R, § = O] log R|~1/%)).
Therefore, from (3.8) it follows that

o2 [p{ e(v)dzdt < COy + C(8 + 60) Ey (3.10)
o Jﬂ:l
Since v is regular, there exists op € (0,71), such that

<

gu =

(r1 — o) supe(v) = max (r; — o)®supe(v)
0Zosn Fs

and there exists (xp,fg) € Ps, such that

sup e(v) = e(v)(zo, to) = €0
P"'IJ
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Set py = (r1 — o9)/2 and ry = py #eg. By the choice of gy, we have
sup  e(v) = sup e(v) < deg

Faglzg.g) Fag#eg

We introduce
T £
MJ{:EJ] = 1 (— + &g, — + tn)

Feo €0
Thus
(1) |
1 -2 x 1 fAS T
Tl — e SR— S, W s - LY e
e — S - Ef’t’-—n(ﬁ ,ﬁ) (ﬁ Flu) w + (ﬁ)(ﬁ—k:ﬁﬂ)w
1 2f % VO .
+ EqEE'S (Eﬁﬁ) (1—|wl*lw=0 in B,
(11} '
e(wi{z,t) = li?wﬁ + _1_g2 = (1—|w]*)? for (x,f) e P
o 2 dege?” \ geg i a* =
(1ii)

e(w)(0,0) =1

Now we claim that there exists a constant € > 0, such that vy < . In fact, if the
constant €' does not exist, then we may assume that there is a sequence of solutions
{w;} of (i) in P} with the following properties:

(iv)
d 2 57 o ) .
pricii Sy bV + 8 bywy + <81 —jwi|*)w =0 in P
£
with é; — 0 (as i — o0)
(v)
1 2 5:!-E ¥4 242 .
e(w;) = o |[Vwil* + S0/ (1 - |wi]*)* <4 in P
2 "g:E::
(vi)

e(w;}{0,0) =1
2 A
where a; = (—-EE) (fix+20), b; = Tﬁiﬁ{éi:{: +xp), |as| < O, )b < €. Moreover, we have
that

1 2 :
2 K) (Elvw’:]") =V(dw; — Aw;) - Vg — |1"FE“J-'U;'|°E

1|67 : !
E[ B2(1 |mt|}] [wil? + |V

2 1 Fo
+ E—;ﬁf{l = [ ) Vesl® + S| VPl + 8 i ~ |V’
t
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Om the other hand,

Y. 5
452{3: — AY(FE(1 — w:]*)*)

6y selien osgt ; ;
- —gﬁg (1 — |wil*)| [wil® - E—gﬁ-i (1 — || huws - [Bra: Vw; + 67 bawy]
52 7
sz 1 [ B (1 = |wi }.l i'i'-“-zl =1 {j|1"~._-'"wz_§£ —de 2.51 || ]?’“‘at?

'!-

&2
- 2821 =~ lwif”) Vi
So,
2
(8 — A)e(ws) + —w%=1 + = [ g1 - Lml*} g
;50Wwﬁ+ﬁﬂwﬁ+2ﬁﬁﬂL%WfH?mﬁ
_*51:2 R A __52'1 2L 1 Lo 12 e 2
Egﬁi (1 !“*-a| Jwibia; Vo “E-T_:_n.ai !};[1 s ]l"”t| (3.11)
Mote that
elw;) <4 in Py
one has
L < Jwy] £ oy
AR TE 2
once £;/8; is small enough. Hence
‘55? 9 2 2 "5:? 2 2 W“’:‘P
E"E?ﬁ:' (1= |ws|*)|Vws|*| = E—g.ﬂe (1= |un] Hw-ilw

2
% [ =6 (1 - iWIIEJ] lwi|? + C|Va|* (3.12)

By Young's inequality, one has

52 1 [ 62 E
ﬁﬁf(l — || )wabi(as - Vw;| < 3 [;ﬁ?{l -~ lmlg,'l] wi|2 + C|Vwi|* (3.13)

5 1 [ :
=5 801 = i) < 3 E—;.ﬂfu—mfli}} jwil® + C& il (3.14)

Combining (3.11), (3.12), (3.13), with (3.14), we have

(8, — A)e(w;) < Celw;) + Ce*(wi) + C(8} + 54
< Ce(uy) + O (3.15)
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where we have used the fact that Jw;| € 3/2,6 << 1. Let € = e(w;) + Cé;, then (3.15)
implies that
08 — Ag < Ce in B

Thus the Moser's estimate for the linear heat equations implies that

supE<C | ESC [ e(w)+Cé (3.16)
P:I_,t'i Py M

Again, by (3.10), one has

2
f elw; ) dodt = (l) f elv:) = Cfg + C(0 + 6p) Ey
FI: 'PE

b il=g.tg)
Hence
sup € < Cfy + C(8 + 8y) + CF; (3.17)

P2

(3.17} is an obvious contradiction to {vi) if 8y and @ are small enough, and 7 is large
enough. Thus we complete the proof of Lemma 3.5.

Proof of Theorem 3.1 The proof of [1; Theorem 5.2] carries over almost literally.
For the sake of completeness, we sketch it here. We suppose v. weakly converges as
g — 0% to v in HY(Q;). Hence v is smooth inside Q; by Lemma 3.2.

Denote by X the set of points (xg, #p) such that |zg] < 1,45 € (—1, 0], and such that

ee(v: )z, t)dxdt does not .converge weakly to E}?H[E(Lt}dmrﬁ as Radon measures on
Pr(xo, to) for any v € (0,7). Here rg = min {1 — |zg|, &T + £y} and

Pr(zo,t0) = {(z,) : |z — o] < mp,tp — 1§ < £ < 1g)

Suppose £ # @, and let (zg,tp) € . After a translation and a scaling, we may assume
ro = 1, (&g, to) = (0, 0). For the scaled sequence

2
T T
Welx, ) = v (—ﬂﬂ: + 20, 2t + fn)

2 4
one has
I 1 2
cc(we) = 31Vl + 3-8 (2w = 00) ) (1~ )

sl 2 (70 1 o2 242

= 51v0 (2) + 558 (2 —m0) (1 ueP?)
2

3¢TU£=T—EELEE
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[ eatuyan BT %
Eel W it = _[ / = s
f—l jHL Eifs ~Lr2+tp I::I:'.D -?ﬂ} 2 €

Eg{l _i EE :]
2(rpe/2)?

: - a T% 0 %
[ f |{ilw£l dxdt :I-[ f lﬂg'ﬂd drdi < C'{'Tg}
=1 HI =145 -

So 1w, (x, t) satisfies the same hypothesis as v. on @y with £ replaced by 2¢ frg.
Since

4

]ri:r:dt < C(rg)

: 9
T T
we(z, 1) — v (:cn -+ —;:r;,fu + —2{' t) =wlx:t)

and w(z,t): Q) — 5 satisfies

PAY) A
dw = Aw + —&-?w ?ﬂw + —E{cr&r:r o | Vw|*)w

with
f [|‘le? + 15¢w|2]diﬂd‘ﬁ < Cn
th
T 1 1 E
where a(z) = 5| zp + TR we have, for any pp € E’E e < Ty = —p5 =0,
that

[, IVuf(e Tz < Cip}
B2, (0)

for some constant depending only on Cy.
We shall choose pg so small that 1f

f e (we)(z, Tp)dr < ECPE
B2 (0)

then 1
ee (W )dzdt — §|?w|2{:r:7tjdmdt in P, 1,(0,0)

The last statement follows from the small energy regularity theorem and Lemma 3.5.
Since (0,0) € I, we see that for a.e. p € (0, po), ec(we)(z, —p*)dzx does not converge
weakly to

%W’WIE{% —p*)dz

as Radon measures on Byy(0). Since [, |Byw,|2dzdt < Cy, we may find a p € (0, po)

such that
207

Ao

Now we look at the sequence w,(z, —p®) that satisfies all the hypotheses of the following
lemma ([1, Lemma 5.4]).

fB 1Bswe|2(z, —p?)dz < =2
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Lemma 3.6 Let {v.} be the solutions of

ﬁﬂ

E{I - |1'E|2}13£ = f

M. +
with || Vel peergy < t—"r, [, eclve)de < M, || fell p2pp,y < M. Suppose ve — v, converges
weakly in H(B)), then

v, — v, strongly in Hy (B)

: 1 :
Since e (w, )z, —p*)dz does not converge weakly to Eﬁ?w[z[z, —p?)dz, we obtain
a contradiction. This proves the theorem,
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