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Abstract. The Gauge-Uzawa method [GUM], which is a projection type algorithm

to solve the time depend Navier-Stokes equations, has been constructed in [14] and

enhanced in [15, 17] to apply to more complicated problems. Even though GUM pos-

sesses many advantages theoretically and numerically, the studies on GUM have been

limited on the first order backward Euler scheme except normal mode error estimate

in [16]. The goal of this paper is to research the 2nd order GUM. Because the classical

2nd order GUM which is studied in [16] needs rather strong stability condition, we

modify GUM to be unconditionally stable method using BDF2 time marching. The

stabilized GUM is equivalent to the rotational form of pressure correction method and

the errors are already estimated in [8] for the Stokes equations. In this paper, we will

evaluate errors of the stabilized GUM for the Navier-Stokes equations. We also prove

that the stabilized GUM is an unconditionally stable method for the Naiver-Stokes

equations. So we conclude that the rotational form of pressure correction method in

[8] is also unconditionally stable scheme and that the accuracy results in [8] are valid

for the Navier-Stokes equations.

Key Words. Projection method, Gauge-Uzawa method, the rotational form of pres-

sure correction method, Navier-Stokes equations, incompressible fluids

1. Introduction

Given an open bounded polyhedral domain Ω in R
d, with d = 2 or 3, we consider the

time-dependent Navier-Stokes equations of incompressible fluids:

(1.1)

ut + (u · ∇)u+∇p− µ△u = f , in Ω,

∇· u = 0, in Ω,

u(0,x) = u0, in Ω,

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-value∫
Ω
p = 0. The primitive variables are the (vector) velocity u and the (scalar) pressure p.

The viscosity µ = Re−1 is the reciprocal of the Reynolds number Re. Hereafter, vectors
are denoted in boldface.

Pressure p can be viewed in (1.1) as a Lagrange multiplier corresponding to the incom-
pressibility condition ∇· u = 0. This coupling is responsible for compatibility conditions
between the spaces for u and p, characterized by the celebrated inf-sup condition, and
associated numerical difficulties [5, 20]. On the other hand, projection methods were
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introduced independently by Chorin [1] and Temam [19] in the late 60’s to decouple u

and p and thus reduce the computational cost. And the methods quickly gained popu-
larity in the computational fluid dynamics community, and over the years, an enormous
amount of efforts have been devoted to develop more accurate and efficient projection
type schemes, we refer to [16, 7] for comprehensive and up-to-date review on this subject.

Because most engineers prefer higher order methods, many projection methods have
been built using 2nd order time discrete schemes which are the Crank-Nicolson scheme
and 2nd order backward difference formulation [BDF2]. In general, both of them have
same accuracy, but BDF2 displays better numerical behaviors on stability than the
Crank-Nicolson scheme. So most of new methods, the pressure-correction in [6], the
velocity-correction in [10, 3], and the consistent splitting method in [9] have been studied
with respect to BDF2 for time. In addition, the rotational form of pressure-correction
method has been introduced in [21] with embarking BDF2 and then the errors have been
evaluated via energy estimate in [8] and via normal mode analysis in [16] for the Stokes
equations. We also study the method in Algorithm 2 below and discuss about the diffi-
culty to control non-linear term in Remark 1 below. One of the goal of this paper is to
extend the accuracy results to the Navier-Stokes equations.

On the other direction, the Gauge-Uzawa method [GUM] has been constructed in [14]
to solve (1.1) and enhanced to solve more complicated problems which are the Boussinesq
equations in [15] and the non-constant density fluid problems in [17]. However, GUM has
been studied only for the 1st order backward Euler scheme for time except normal mode
error analysis in [16]. The goal of this paper is to research for the BDF2 GUM to solve
Navier-Stokes equations. The classical GUM in [16] displays superior numerical behavior
on accuracy, but the method requires rather strong stability condition. In [16, 7], it is
known that the classical GUM is a equivalent to the consistent splitting scheme in [9]. So
both methods request high computational cost due to tiny τ to make hold the stability
constraint. In this paper, we newly construct the stabilized BDF2 GUM and prove
optimal error estimates for the Navier-Stokes equations. We will also prove that the
method is unconditionally stable scheme for any time step τ . In addition, we discover
that the stabilized BDF2 GUM is equivalent to the rotational form of pressure correction
method in [8]. So we conclude that the rotational form of pressure correction method is
also unconditionally stable for any τ and that the error decay results in [8] are extended
to the Navier-Stokes equations.

In this paper, we will use standard notations. Let Hs(Ω) be the Sobolev space with

s derivatives in L2(Ω), L2(Ω) =
(
L2(Ω)

)d
and Hs(Ω) = (Hs(Ω))d, where d = 2, 3. Let

‖·‖0 denote the L2(Ω) norm, and 〈· , ·〉 the corresponding inner product. Let ‖·‖s denote
the norm of Hs(Ω) for s ∈ R. In addition, we will denote τ as the time marching size.
Also we will use δ as difference of 2 consecutive functions, for example, for any sequence
function zn+1,

δzn+1 = zn+1 − zn, δδzn+1 = δ(δzn+1) = zn+1 − 2zn + zn−1, · · · .
This paper is organized as follows. In §2, we will derive the 2nd order stabilized GUMs

and the rotational form of pressure correction method in [8]. And then we state main
theorems for stability and accuracy. We introduce some well-known lemma in §3 to use
in theoretical proofs. We then prove stability of the stabilized GUM in §4 and estimate
errors of the stabilized GUM in §5. We finally conclude in §6 with numerical tests to
compare with theoretical results.

2. The stabilized Gauge-Uzawa method

In this section. we will derive the stabilized BDF2 time discrete GUM and the ro-
tational form of projection method in [8, 16]. We will conclude that both of them are



26 J.-H. PYO

equivalent algorithms and state theoretical results for stability in Theorem 1 and for
error estimates in Theorem 2 for the Navier-Stokes equations.

Because the standard 2nd order GUM has been precisely derived in [16] from the gauge
method in [4, 13] via changing variables, we here introduce GUM briefly and directly from
BDF2 time discrete Stokes equations:

(2.1)
3un+1 − 4un + un−1

2τ
+∇pn+1 − µ△un+1 = f(tn+1).

GUM hires artificial variables ûn+1 and φn+1 satisfying

(2.2) ûn+1 = un+1 −∇
(
φn+1 − 2φn + φn−1

)
.

The main strategy of GUM is to compute ûn+1 and φn+1, and then calculate un+1 by
addition of the 2 functions. In the view of (2.2), ûn+1 and φn+1 depend each other, so
the role of ûn+1 will be decided automatically, provided that of φn+1 is given. We will
define φn+1 soon. If we insert (2.2) into (2.1), then we obtain

(2.3)

3ûn+1 − 4un + un−1

2τ
+∇

(
pn+1 +

3φn+1 − 6φn + 3φn−1

2τ

)

−µ△
(
ûn+1 +∇

(
φn+1 − 2φn + φn−1

))
= f(tn+1).

We now contemplate to define φn+1 to split (2.3) into uncoupled 2 equations. The
classical GUM in [13, 14, 16] impose φn+1 as a solution of time discrete heat equation,
like

(2.4)
3φn+1 − 4φn + φn−1

2τ
− µ△φn+1 = −pn+1.

Then (2.3) becomes

(2.5)

3ûn+1 − 4un + un−1

2τ
− µ△ûn+1

−∇
(
φn − φn−1

τ
− µ△

(
2φn − φn−1

))
= f(tn+1).

Combining 3 equations (2.2), (2.4) and (2.5) lead the classical GUM. Because this GUM
performs superior numerical behavior for accuracy, we have concentrated to study this
GUM. But the method requires rather strong stability constraint for τ and the theoretical
proof is still open problem. So, in this paper, we modify the role of φn+1 as a solution of

(2.6)
3φn+1 − 3φn

2τ
− µ△

(
φn+1 − φn

)
= −pn+1.

Then we can rewrite (2.3) by

(2.7)

3ûn+1 − 4un + un−1

2τ
−∇

(
3(φn − φn−1)

2τ
− µ△

(
φn − φn−1

))

−µ△ûn+1 = f(tn+1).

We note that (2.6) is not a time discrete scheme of heat equation or other PDEs. So φ has
no physical meaning and is only a parameter to construct GUM. Because the functions of
φ in (2.2), (2.6) and (2.7) are represented by the subtraction of 2 consecutive functions, we
use simple notation ψn+1 := φn+1−φn. Owing to divergence free condition ∇· un+1 = 0,
(2.2) gives

(2.8)
−△ψn+1 = −△

(
φn+1 − φn

)

= −△
(
φn − φn−1

)
+∇· ûn+1 = −△ψn +∇· ûn+1.
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To deal with the third order term ∇△φn, which is a source of trouble due to lack
of commutativity of the differential operators at the discrete level, we denote qn+1 :=
△ψn+1. So (2.8) can be rewritten by

qn+1 = qn −∇· ûn+1,

which is connected with the Uzawa iteration. If we added up convection term in (2.7)
with a suitable approximation un+1 ≈ 2un − un−1, then we end up the second order
GUM via gathering above equations.

Algorithm 1 (The stabilized Gauge-Uzawa Method). Compute u1 and p1 via any first

order projection method and set ψ1 = −2τ
3 p1 and q1 = 0. Repeat for 1 ≤ n ≤ N = [Tτ −1].

Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of

(2.9)

3ûn+1 − 4un + un−1

2τ
+∇pn + (u∗ · ∇)ûn+1 − µ△ûn+1 = f(tn+1),

ûn+1|Γ = 0.

Step 2: Find ψn+1 as the solution of

−△ψn+1 = −△ψn +∇ · ûn+1,

∂νννψ
n+1|Γ = 0.

Step 3: Update un+1 and qn+1 by

(2.10)
un+1 = ûn+1 +∇

(
ψn+1 − ψn

)

qn+1 = qn −∇ · ûn+1.

Step 4: Update pressure pn+1 by

(2.11) pn+1 = −3ψn+1

2τ
+ µqn+1.

We remark that Algorithm 1 consists with (1.1), like the classical GUM. In order to
derive the rotational form of pressure correction projection method which is studied in
[8, 16], we denote

ξn+1 := −3
(
ψn+1 − ψn

)

2τ
and we subtract 2 consecutive equations of (2.11) to get

pn+1 = pn + ξn+1 − µ∇ · ûn+1.

Then we arrive at the rotational form of pressure correction projection method in [8, 16].

Algorithm 2 (The rotational form of pressure correction projection method). Repeat for

1 ≤ n ≤ N = [Tτ − 1].

Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of (2.9)
Step 2: Find ξn+1 as the solution of

△ξn+1 =
3

2τ
∇ · ûn+1,

∂νννξ
n+1|Γ = 0.

Step 3: Update un+1 and pn+1 by

un+1 = ûn+1 − 2τ

3
∇ξn+1,

(2.12) pn+1 = ξn+1 + pn − µ∇ · ûn+1.
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Remark 2.1 (Difference between Algorithms 1 and 2). Algorithms 1 and 2 are basically

equivalent in semi-discrete level. Only difference is the represent ion of pressure between

(2.11) and (2.12). The pressure pn+1 in (2.11) is designed by addition of 2 functions of

ψ and q. And both of them can be expressed by ∇· û, so we can replace pn in momentum

equation (2.9) to terms of ∇ · û. This is very crucial fact to prove Lemma 5.3 in §5. On

the other hand, the pressure in (2.12) is formed by pn+1 − pn which is not matched with

the pressure term in the momentum equation (2.9). Thus, in [8], they carried out error

estimate with subtracting of 2 consecutive momentum equations to get pn − pn−1 term

and to replace to terms of ∇ · û by using (2.12) without result of Lemma 5.3. So they

could prove optimal order accuracy only for the Stokes equations. We also use the same

technique in Lemma 5.5, but we can handle convection terms by applying the sub-optimal

result of Lemma 5.3. So we could prove the extended result of [8] to the Navier Stokes

equations.

We will prove that the following stability lemma in §4. Because Algorithms 1 and 2
are equivalent, we conclude that Algorithm 2 is also unconditionally stable.

Theorem 1 (Stability). The Algorithm 1 is unconditionally stable in the sense that for

all τ > 0 the following a priori bound holds:

(2.13)

∥∥ûN+1
∥∥2

0
+
∥∥uN+1

∥∥2

0
+
∥∥2uN+1 − uN

∥∥2

0
+ 3

∥∥∇ψN+1
∥∥2
0

+ 2τµ
∥∥qN+1

∥∥2
0
+

N∑

n=1

(∥∥δδuN+1
∥∥2
0
+ 3

∥∥∇δψn+1
∥∥2
0
+ τµ

∥∥∇ûn+1
∥∥2
0

)

≤
∥∥2u1 − u0

∥∥2
0
+
∥∥u0

∥∥2
0
+ 3

∥∥∇ψ1
∥∥2
0
+ 2τµ

∥∥q1
∥∥2
0
+ C

τ

µ

∥∥f(tn+1)
∥∥2

−1
.

In the error estimate, we resort to a duality argument via the following Stokes equa-
tions:

(2.14)

−△v+∇r = w, in Ω,

∇· v = 0, in Ω,

v = 0, on ∂Ω.

We now state a basic assumption about Ω.

Assumption 1 (Regularity of Ω). The unique solution {v, r} of the steady Stokes equa-

tions (2.14) satisfies

‖v‖2 + ‖r‖1 ≤ C‖w‖0.

We remark that the validity of Assumption 1 is known if ∂Ω is of class C2 [2, 11], or if ∂Ω
is a two-dimensional convex polygon [12], and is generally believed for convex polyhedral
[11].

In order to launch Algorithm 1, we need to set (u1, p1) via any first order projection
method. The following assumption is used to control initial error.

Assumption 2 (Initial setting). Let (u(t1), p(t1)) be the exact solution of (1.1) at t = t1.
The initial value (u1, p1) satisfies

∥∥u(t1)− u1
∥∥
0
≤ Cτ2 and

∥∥u(t1)− u1
∥∥
1
+
∥∥p(t1)− p1

∥∥
0
≤ Cτ.

We will prove the following main theorem through several lemmas in §5.
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Theorem 2 (Error estimates). Suppose the exact solution of (1.1) is smooth enough. If

Assumptions 1 and 2 hold, then the errors of Algorithms 1 and 2 will be bounded by

τ

N∑

n=1

(∥∥u(tn+1)− un+1
∥∥2
0
+
∥∥u(tn+1)− ûn+1

∥∥2
0

)
≤ Cτ4,

τ

N∑

n=1

(∥∥u(tn+1)− ûn+1
∥∥2

1
+
∥∥p(tn+1)− pn+1

∥∥2

0

)
≤ Cτ2.

Furthermore, if assumption 2 hold, then we have

(2.15)
∥∥∇ · ûn+1

∥∥
0
≤ Cτ

3
2 .

3. Preliminaries

This section is mainly devoted to reviewing some well-known lemmas. The basic
mathematical theories summarized in here can be found in [5, 20]. We first define the
trilinear form N associated with the convection term in (1.1)

N (u , v , w) :=

∫

Ω

(u · ∇)v ·wdx,

for which the following properties are well known [5, 20].

Lemma 3.1 (Properties of N ). Let u,v,w ∈ H1(Ω) and ∇ · u = 0. If

u · ννν = 0 or v = 0 on ∂Ω,

then

N (u , v , w) = −N (u , w , v) and N (u , v , v) = 0.

The Sobolev imbedding lemma yields the following results, which will be used later in
dealing with the convection term in (1.1).

Lemma 3.2 (Bounds on Trilinear Form). If d ≤ 4, then

(3.1)

∫

Ω

u · v ·wdx ≤
{
C‖u‖0‖v‖1‖w‖1
C‖u‖2‖v‖0‖w‖0,

and if d ≤ 3, then ∫

Ω

u · v ·wdx ≤ C‖u‖1‖v‖
1/2
0 ‖v‖1/21 ‖w‖0.

The following elementary but crucial relation is derived in [20].

Lemma 3.3 (div-grad relation). If v ∈ H1
0(Ω), then

‖∇ · v‖0 ≤ ‖∇v‖0.

We now introduce a well known lemma.

Lemma 3.4 (Orthogonality between divergence free and curl free functions). Let v ∈
H1(Ω) and q ∈ L2(Ω). If ∇· u = 0 and u · ννν = 0 on ∂Ω, then

〈u , ∇q〉 = 0.

We will use the following algebraic identities frequently to treat time derivative terms.
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Lemma 3.5 (Inner product of time derivative terms). For any sequence {zn}Nn=0, we have

(3.2)
2
〈
3zn+1 − 4zn + zn−1 , zn+1

〉
=

∥∥zn+1
∥∥2
0
+
∥∥2zn+1 − zn

∥∥2

0

+
∥∥δδzn+1

∥∥2
0
− ‖zn‖20 −

∥∥2zn − zn−1
∥∥2

0
,

(3.3) 2
〈
zn+1 − zn , zn+1

〉
=

∥∥zn+1
∥∥2
0
− ‖zn‖20 +

∥∥zn+1 − zn
∥∥2
0
,

and

(3.4) 2
〈
zn+1 − zn , zn

〉
=

∥∥zn+1
∥∥2
0
− ‖zn‖20 −

∥∥zn+1 − zn
∥∥2
0
.

4. Proof of stability Theorem 1

The goal of this section is to prove the stability Theorem 1. We first rewrite the
momentum equation (2.9) by using (2.10) and (2.11) as follows:

3un+1 − 4un + un−1

2τ
+
(
(2un − un−1) · ∇

)
ûn+1

−∇
(
3ψn+1

2τ
− µqn

)
− µ△ûn+1 = f(tn+1).

We now multiply 4τ ûn+1 ∈ H1
0(Ω) and use (3.2) to get

(4.1)

∥∥un+1
∥∥2
0
+
∥∥2un+1 − un

∥∥2
0
+
∥∥δδun+1

∥∥2
0
− ‖un‖20

−
∥∥2un − un−1

∥∥2
0
+ 4τµ

∥∥∇ûn+1
∥∥2
0
=

3∑

i=1

Ai,

where

A1 = 6
〈
∇ψn+1 , ûn+1

〉
, A2 = 4τ

〈
f(tn+1) , ûn+1

〉
,

A3 = 4τµ
〈
qn , ∇ · ûn+1

〉
.

We note here that convection term is vanished by Lemma 3.1. In conjunction with
ûn+1 = un+1 −∇δψn+1 and Lemma 3.4, (3.3) yields

A1 = −6
〈
∇ψn+1 , ∇δψn+1

〉
= −3

(∥∥∇ψn+1
∥∥2
0
− ‖∇ψn‖20 +

∥∥∇δψn+1
∥∥2
0

)
.

Clearly, we have

A2 ≤ C
τ

µ

∥∥f(tn+1)
∥∥2

−1
+ τµ

∥∥∇ûn+1
∥∥2
0
.

In the view of (2.10) and Lemma 3.3, we have
∥∥δqn+1

∥∥2
0
=

∥∥∇ · ûn+1
∥∥2
0
≤

∥∥∇ûn+1
∥∥2
0
,

whence

A3 =− 4µτ
〈
qn , δqn+1

〉
= −2µτ

(∥∥qn+1
∥∥2
0
− ‖qn‖20 −

∥∥δqn+1
∥∥2
0

)

≤ −2µτ
(∥∥qn+1

∥∥2
0
− ‖qn‖20

)
+ 2µτ

∥∥∇ûn+1
∥∥2
0
.

Inserting A1-A3 back into (4.1) and summing over n from 1 to N lead (2.13) by help of∥∥ûn+1
∥∥2

0
=

∥∥un+1
∥∥2
0
+
∥∥∇δψn+1

∥∥2
0
.
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5. Error estimates

In this section, we will prove Theorem 2 for Algorithm 1. Because both Algorithms 1
and 2 are equivalent, we conclude that Algorithm 2 also hold Theorem 2. We first prove
that the convergence rates of velocity and of time-derivative of velocity are order 1 and
2, respectively. And then we improve the rate to order 2 and estimate pressure error.

Let
(
u(tn+1), p(tn+1)

)
be the exact solution of (1.1) at the time step tn+1.

If
(
ûn+1,un+1, pn+1, ψn+1, qn+1

)
is the solution of the Algorithms 1, then we denote the

corresponding error by

Ên+1 = u(tn+1)− ûn+1, En+1 = u(tn+1)− un+1,

en+1 = p(tn+1)− pn+1, εn+1 = p(tn+1) +
3ψn+1

2τ
.

We observe again that ûn+1 = 0 on ∂Ω and ∇· ûn+1 6= 0 in Ω, whereas ∇· un+1 = 0 in
Ω and un+1 = ∇δψn+1 6= 0 on ∂Ω. The following lemma results directly from Lemma
3.4.

Lemma 5.1 (Properties of Error Functions). For all n,m non-negative integers, we have

∇· En+1 = 0, in Ω, Ên+1 = 0, on ∂Ω,

〈En , ∇ψm〉 = 0, and
〈
Ên , Em

〉
= 〈En , Em〉 .

Lemma 5.2 (Additional Properties of Error Functions). We have

(5.1) Ên+1 = En+1 +∇δψn+1,

∥∥δqn+1
∥∥2
0
=

∥∥△δψn+1
∥∥2
0
=

∥∥∥∇· Ên+1
∥∥∥
2

0
≤

∥∥∥∇Ên+1
∥∥∥
2

0
,(5.2)

∥∥∥Ên+1
∥∥∥
2

0
=

∥∥En+1
∥∥2
0
+

∥∥∇δψn+1
∥∥2
0
,(5.3)

∥∥En+1
∥∥2
1
≤ C

(∥∥∥Ên+1
∥∥∥
2

1
+
∥∥δψn+1

∥∥2
2

)
≤ C

∥∥∥∇Ên+1
∥∥∥
2

0
.(5.4)

To examine Algorithm 1, we first show that the semi-discrete solution un+1 converge
to u(tn+1) with order 1 (see Lemma 5.3) and δun+1 converge to δu(tn+1) with order 2
in L∞(0, T ;L2(Ω)) (see Lemma 5.5). We then improve the rate of convergence of un+1

to order 2 in L2(0, T ;L2(Ω)) in Lemma 5.7. The results of Lemmas 5.3 and 5.5 are
instrumental in deriving Lemma 5.7.

Lemma 5.3 (Reduced rate of convergence for velocity). Suppose the exact solution of

(1.1) is smooth enough. If Assumption 2 hold, then the velocity error functions satisfy

(5.5)

∥∥∥ÊN+1
∥∥∥
2

0
+

∥∥EN+1
∥∥2

0
+
∥∥2EN+1 −EN

∥∥2
0
+

4τ2

3

∥∥∇εN+1
∥∥2
0
+ 2µτ

∥∥qN+1
∥∥2
0

+µτ

N∑

n=1

∥∥∥∇Ên+1
∥∥∥
2

0
+

N∑

n=1

(∥∥δδEn+1
∥∥2
0
+
∥∥∇δψn+1

∥∥2
0

)
≤ Cτ2.

Proof. By virtue of Taylor expansion for the exact velocity u(t), we get

(5.6)

3u(tn+1)− 4u(tn) + u(tn−1)

2τ
+
(
u(tn+1) · ∇

)
u(tn+1)

+∇p(tn+1)− µ△u(tn+1) = Rn+1 + f(tn+1),
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where Rn+1 := 1
4τ

∫ tn+1

tn−1 uttt(s)(t − s)2ds − 1
τ

∫ tn+1

tn
uttt(s)(t − s)2ds is the truncation

error. We replace pn in (2.9) to (2.11) and then subtract from (5.6) to get

(5.7)

3Ên+1 − 4En +En−1

2τ
+
(
u(tn+1) · ∇

)
u(tn+1)−

((
2un − un−1

)
· ∇

)
ûn+1

+∇
(
δp(tn+1) + εn − µqn

)
− µ△Ên+1 = Rn+1.

Multiplying (5.7) with 4τÊn+1 ∈ H1
0(Ω) and invoking (3.2) and (5.3), we arrive at

(5.8)

∥∥En+1
∥∥2
0
+
∥∥2En+1 −En

∥∥2
0
+
∥∥δδEn+1

∥∥2
0
+ 6

∥∥∇δψn+1
∥∥2
0

−‖En‖20 −
∥∥2En −En−1

∥∥2
0
+ 4µτ

∥∥∥∇Ên+1
∥∥∥
2

0
=

5∑

n=1

Ai,

where

A1 := −4τN
(
u(tn+1) , u(tn+1) , Ên+1

)
+ 4τN

(
2un − un−1 , ûn+1 , Ên+1

)
,

A2 := −4τ
〈
∇δp(tn+1) , Ên+1

〉
, A3 := −4τ

〈
∇εn , Ên+1

〉
,

A4 := 4µτ
〈
∇qn , Ên+1

〉
, A5 := 4τ

〈
Rn+1 , Ên+1

〉
.

We now estimate terms A1 to A5 separately. To estimate the convection term A1, we first

note N
(
2un − un−1 , Ên+1 , Ên+1

)
= 0 by Lemma 3.1. We next invoke

∥∥u(tn+1)
∥∥
2
≤

M and infer

A1 =− 4τN
(
δδu(tn+1) , u(tn+1) , Ên+1

)
− 4τN

(
2En −En−1 , u(tn+1) , Ên+1

)

− 4τN
(
2un − un−1 , Ên+1 , Ên+1

)

≤Cτ
(∥∥δδu(tn+1)

∥∥
0
+
∥∥2En −En−1

∥∥
0

) ∥∥u(tn+1)
∥∥
2

∥∥∥Ên+1
∥∥∥
1

≤µτ
2

∥∥∥∇Ên+1
∥∥∥
2

0
+
Cτ4

µ

∫ tn+1

tn−1

‖utt(t)‖20dt+
Cτ

µ

∥∥2En −En−1
∥∥2
0
.

We note again (5.1) which is Ên+1 = En+1 + ∇δψn+1. On employing Lemma 3.4, we
obtain

A2 = −4τ
〈
∇δp(tn+1) , ∇δψn+1

〉
≤

∥∥∇δψn+1
∥∥2
0
+ Cτ3

∫ tn+1

tn
‖∇pt(t)‖20dt.

In conjunction with εn+1 = p(tn+1) + 3ψn+1

2τ and (3.4), A3 becomes

A3 =− 4τ
〈
∇εn , ∇δψn+1

〉
= −8τ2

3

〈
∇εn , ∇

(
δεn+1 − δp(tn+1)

)〉

≤− 4τ2

3

(∥∥∇εn+1
∥∥2
0
− ‖∇εn‖20

)
+

4τ2

3

∥∥∇δεn+1
∥∥2
0
+ Cτ3‖∇εn‖20

+ Cτ2
∫ tn+1

tn
‖∇pt(t)‖20dt.

If we now apply inequality (a+ b)2 ≤ 4a2 + 4
3b

2, then we can get

4τ2

3

∥∥∇δεn+1
∥∥2

0
=

4τ2

3

∥∥∥∥∇δp(tn+1) +
3

2τ
∇δψn+1

∥∥∥∥
2

0

≤ Cτ2
∥∥∇δp(t)n+1

∥∥2
0
+ 4

∥∥∇δψn+1
∥∥2
0
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and arrive at

(5.9)

A3 ≤− 4τ2

3

(∥∥∇εn+1
∥∥2
0
− ‖∇εn‖20

)
+ 4

∥∥∇δψn+1
∥∥2
0

+ Cτ3‖∇εn‖20 + Cτ2
∫ tn+1

tn
‖∇pt(t)‖20dt.

We now use (5.2) and ∇ · Ên+1 = δqn+1 to lead

A4 = −4µτ
〈
qn , δqn+1

〉
= −2µτ

(∥∥qn+1
∥∥2
0
− ‖qn‖20 −

∥∥δqn+1
∥∥2

0

)

≤ −2µτ
(∥∥qn+1

∥∥2
0
− ‖qn‖20

)
+ 2µτ

∥∥∥∇Ên+1
∥∥∥
2

0
.

Using Cauchy Schwartz inequality, We readily get

A5 ≤ µτ

2

∥∥∥∇Ên+1
∥∥∥
2

0
+
Cτ

µ

∥∥Rn+1
∥∥2
−1

≤ µτ

2

∥∥∥∇Ên+1
∥∥∥
2

0
+
Cτ4

µ

∫ tn+1

tn−1

‖uttt(s)‖2−1dt.

Replacing A1-A5 back into (5.8) and summing over n from 1 to N imply

∥∥EN+1
∥∥2
0
+
∥∥2EN+1 −EN

∥∥2
0
+

N∑

n=1

(∥∥δδEn+1
∥∥2
0
+
∥∥∇δψn+1

∥∥2
0
+ µτ

∥∥∥∇Ên+1
∥∥∥
2

0

)

+
4τ2

3

∥∥∇εN+1
∥∥2
0
+ 2µτ

∥∥qN+1
∥∥2

0
≤ Cτ3

N∑

n=1

‖∇εn‖20 +
Cτ

µ

N∑

n=1

∥∥2En −En−1
∥∥
0

+
4τ2

3

∥∥∇ε1
∥∥2

0
+ 2µτ

∥∥q1
∥∥2
0
+ 5

∥∥E1
∥∥2
0
+ Cτ2

∫ tN+1

0

‖∇pt(t)‖20dt

+
Cτ4

µ

∫ tN+1

0

(
‖utt(t)‖20 + ‖uttt(s)‖2−1

)
dt.

We note E0 = 0 and q1 = 0 (see Algorithm 1) in above estimate. We also note ε1 =
p(t1) + 3

2τ ψ
1 = e1. By the discrete Grönwall lemma and Assumption 2, we finally arrive

at (5.5) according to (5.3).

Remark 5.4 (Suboptimal order). The rate of convergence of order 1 of Lemma 5.3 is

due to the presence of
∫ tN+1

0
‖∇pt(t)‖20dt. To improve upon this, We must get rid of the

term. However, this suboptimal result is essential to control convection term in proofs
of next lemmas to get optimal order.

To derive initial error of the time-derivative for velocity, we fix n = 1 in above proof.
Then the obstacle term (5.9) to get optimal estimate can be replaced by

A3 ≤− 2τ2
(∥∥∇ε2

∥∥2
0
−
∥∥∇ε1

∥∥2
0

)
+ 4

∥∥∇δψ2
∥∥2

0

+ Cτ2
∥∥∇ε1

∥∥2
0
+ Cτ3

∫ tn+1

tn
‖∇pt(t)‖20dt.

By help of Assumption 2, (5.5) becomes, for the case n = 1,

(5.10)

∥∥E2
∥∥2
0
+
∥∥2E2 −E1

∥∥2
0
+ µτ

∥∥∥∇Ê2
∥∥∥
2

0
+
∥∥δδE2

∥∥2
0

+2τ2
∥∥∇ε2

∥∥2
0
+ 2µτ

∥∥q2
∥∥2
0
+
∥∥∇δψ2

∥∥2
0
≤ Cτ4.
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Lemma 5.5 (Error estimate for time-derivative of velocity). Suppose the exact solution

of (1.1) is smooth enough. If Assumption 2 hold, then the time derivative velocity error

functions satisfy

(5.11)

∥∥δEN+1
∥∥2
0
+
∥∥2δEN+1 − δEN

∥∥2
0
+

4τ2

3

∥∥∇δεN+1
∥∥2
0
+ 2µτ

∥∥δqN+1
∥∥2

0

+
∥∥∥δÊN+1

∥∥∥
2

0
+

N∑

n=2

(∥∥δδδEN+1
∥∥2
0
+
∥∥∇δδψn+1

∥∥
0
+ µτ

∥∥∥∇δÊn+1
∥∥∥
2

0

)
≤ Cτ4.

Proof. Subtracting two consecutive formulas (5.7) and multiplying by 4τδÊn+1 yield

(5.12)

∥∥δEn+1
∥∥2
0
+
∥∥2δEn+1 − δEn

∥∥2
0
+
∥∥δδδEn+1

∥∥2
0
+ 6

∥∥∇δδψn+1
∥∥2
0

−‖δEn‖20 −
∥∥2δEn − δEn−1

∥∥2
0
+ 4µτ

∥∥∥∇δÊn+1
∥∥∥
2

0
=

5∑

i=1

Ai,

where

A1 :=− 4τN
(
u(tn+1) , u(tn+1) , δÊn+1

)
+ 4τN

(
2un − un−1 , ûn+1 , δÊn+1

)

+ 4τN
(
u(tn) , u(tn) , δÊn+1

)
− 4τN

(
2un−1 − un−2 , ûn , δÊn+1

)
,

A2 :=− 4τ
〈
∇δδp(tn+1) , δÊn+1

〉
, A3 := −4τ

〈
∇δεn , δÊn+1

〉
,

A4 :=4µτ
〈
∇δqn , δÊn+1

〉
, A5 := 4µτ

〈
δRn+1 , δÊn+1

〉
.

We now estimate each termA1 to A5 separately. The convection term A1 can be rewritten
as follows:

A1 = −4τN
(
δδu(tn+1) , u(tn+1) , δÊn+1

)
− 4τN

(
2un − un−1 , Ên+1 , δÊn+1

)

− 4τN
(
2En −En−1 , u(tn+1) , δÊn+1

)
+ 4τN

(
δδu(tn) , u(tn) , δÊn+1

)

+ 4τN
(
2En−1 −En−2 , u(tn) , δÊn+1

)
+ 4τN

(
2un−1 − un−2 , Ên , δÊn+1

)
,

and we denote by A1,i, for i = 1, 2, · · · , 6 the six terms in the right hand side. In
estimating convection terms, we will use Lemma 3.2 frequently without notice. We recall
‖u(t)‖2 ≤ C to arrive at

A1,1 + A1,4 ≤Cτ
(∥∥δδu(tn+1)

∥∥
0

∥∥u(tn+1)
∥∥
2
+ ‖δδu(tn)‖0‖u(tn)‖2

) ∥∥∥δÊn+1
∥∥∥
1

≤µτ
4

∥∥∥∇δÊn+1
∥∥∥
2

0
+
Cτ4

µ

∫ tn+1

tn−2

‖utt(t)‖20dt.

The result in Lemma 5.3,
∥∥2En −En−1

∥∥
0
+

∥∥∥Ên
∥∥∥
0
+

√
τ
∥∥∥Ên

∥∥∥
1
≤ Cτ , is essential to

treat next 2 convection terms. We have

A1,3+A1,5 = −4τN
(
2En −En−1 , δu(tn+1) , δÊn+1

)

− 4τN
(
2δEn − δEn−1 , u(tn) , δÊn+1

)

≤Cτ
(∥∥2En −En−1

∥∥
0

∥∥δu(tn+1)
∥∥
2
+
∥∥2δEn − δEn−1

∥∥
0
‖u(tn)‖2

) ∥∥∥δÊn+1
∥∥∥
1

≤Cτ2
∥∥δu(tn+1)

∥∥
2

∥∥∥δÊn+1
∥∥∥
1
+ Cτ

∥∥2δEn − δEn−1
∥∥
0

∥∥∥δÊn+1
∥∥∥
1

≤µτ
4

∥∥∥∇δÊn+1
∥∥∥
2

0
+
Cτ

µ

∥∥2δEn − δEn−1
∥∥2
0
+
Cτ4

µ

∫ tn+1

tn
‖ut‖22dt.
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We note N
(
2un − un−1 , δÊn+1 , δÊn+1

)
= 0 which comes from Lemma 3.1 and

∥∥2δEn − δEn−1
∥∥
1
≤ C

∥∥∥2∇δÊn −∇δÊn−1
∥∥∥
0
≤ C

(∥∥∥∇δÊn
∥∥∥
0
+
∥∥∥∇δÊn−1

∥∥∥
0

)

which comes from (5.4). Then we obtain

A1,2 +A1,6 = −4τN
(
2δun − δun−1 , Ên , δÊn+1

)

=4τN
(
2δEn − δEn−1 − 2δu(tn) + δu(tn−1) , Ên , δÊn+1

)

≤Cτ
(∥∥2δEn − δEn−1

∥∥
1

∥∥∥Ên
∥∥∥
1
+
∥∥2δu(tn)− δu(tn−1)

∥∥
2

∥∥∥Ên
∥∥∥
0

)∥∥∥δÊn+1
∥∥∥
1

≤Cτ√τ
∥∥2δEn − δEn−1

∥∥
1

∥∥∥δÊn+1
∥∥∥
1
+ Cτ2

∥∥2δu(tn)− δu(tn−1)
∥∥
2

∥∥∥δÊn+1
∥∥∥
1

≤Cτ
2

µ

(∥∥∥∇δÊn
∥∥∥
2

0
+
∥∥∥∇δÊn−1

∥∥∥
2

0

)
+
µτ

4

∥∥∥∇δÊn+1
∥∥∥
2

0
+
Cτ4

µ

∫ tn

tn−2

‖ut‖22dt.

Marking use of δÊn+1 = δEn+1 +∇δδψn+1, we arrive at

A2 =− 4τ
〈
∇δδp(tn+1) , ∇δδψn+1

〉
≤
∥∥∇δδψn+1

∥∥2
0
+ Cτ5

∫ tn+1

tn−1

‖∇ptt(t)‖20dt.

By the same technique (5.9), we readily get

A3 =− 4τ
〈
∇δεn , ∇δδψn+1

〉
= −8τ2

3

〈
∇δεn , ∇

(
δδεn+1 − δδp(tn+1)

)〉

≤− 4τ2

3

(∥∥∇δεn+1
∥∥2
0
− ‖∇δεn‖20 −

∥∥∇δδεn+1
∥∥2
0

)

+ Cτ3‖∇δεn‖20 + Cτ4
∫ tn+1

tn−1

‖∇ptt(t)‖20dt.

Since we have

4τ2

3

∥∥∇δδεn+1
∥∥2
0
≤ 4

∥∥∇δδψn+1
∥∥2
0
+ Cτ5

∫ tn+1

tn−2

‖∇ptt(t)‖20dt,

we conclude

A3 ≤− 4τ2

3

(∥∥∇δεn+1
∥∥2
0
− ‖∇δεn‖20

)
+ 4

∥∥∇δδψn+1
∥∥2
0

+ Cτ3‖∇δεn‖20 + Cτ4
∫ tn+1

tn−1

‖∇ptt(t)‖20dt.

We note again (5.2) and ∇ · Ên+1 = δqn+1. Then we have

A4 = −4µτ
〈
δqn , δδqn+1

〉
= −2µτ

(∥∥δqn+1
∥∥2
0
− ‖δqn‖20 −

∥∥δδqn+1
∥∥2
0

)

≤ −2µτ
(∥∥δqn+1

∥∥2
0
− ‖δqn‖20

)
+ 2µτ

∥∥∥∇δÊn+1
∥∥∥
2

0
.

On the other hand, the truncation error term can be bounded by

A5 ≤ µτ

4

∥∥∥∇δÊn+1
∥∥∥
2

0
+
Cτ4

µ

∫ tn+1

tn−2

‖uttt(t)‖2−1dt.
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Inserting above estimates into (5.12) and summing for n from 2 to N yield

∥∥δEN+1
∥∥2
0
+
∥∥2δEN+1 − δEN

∥∥2
0
+

N∑

n=2

(∥∥δδδEN+1
∥∥2
0
+
∥∥∇δδψn+1

∥∥
0

)

+ µτ

N∑

n=2

∥∥∥∇δÊn+1
∥∥∥
2

0
+

4τ2

3

∥∥∇δεN+1
∥∥2

0
+ 2µτ

∥∥δqN+1
∥∥2
0

≤
∥∥δE2

∥∥2
0
+
∥∥2δE2 − δE1

∥∥2
0
+

4τ2

3

∥∥∇δε2
∥∥2
0
+ Cτ2

N∑

n=1

∥∥∥∇δÊn
∥∥∥
2

0

+
Cτ

µ

N∑

n=2

∥∥2δEn − δEn−1
∥∥2
0
+ Cτ3

N∑

n=2

‖∇δεn‖20 + 2µτ
∥∥δq2

∥∥2
0

+
Cτ4

µ

∫ tN+1

0

(
‖utt(t)‖20 + ‖ut‖22 + ‖∇ptt(t)‖20 + ‖uttt(t)‖2−1

)
dt.

We note here that the fourth term τ2
∑N

n=2

∥∥∥∇δÊn
∥∥∥
2

0
in the right hand side can be

removed by cancellation with τ
∑N

n=2

∥∥∥∇δÊn
∥∥∥
2

0
on the left hand side, provided τ is small

enough. If we apply Grönwall inequality and then use (5.10), then we arrive at (5.11)
and complete the proof.

Remark 5.6 (Estimate of (2.15)). Because ∇· Ên+1 = δqn+1, Lemma 5.5 directly yields∥∥∥∇ · Ên+1
∥∥∥
0
≤ Cτ

3
2 which is one of the our assertion.

We will use duality argument with the Stokes equations

(5.13)
−△vn+1 +∇rn+1 = En+1, in Ω,

∇· vn+1 = 0, in Ω,

with vanishing Dirichlet boundary condition vn+1 = 0 on ∂Ω. According to Assumption
1, (vn+1, rn+1) ∈ H1

0(Ω)×H1(Ω) are strong solution of (5.13) and satisfy

(5.14)
∥∥vn+1

∥∥
2
+
∥∥rn+1

∥∥
1
≤

∥∥En+1
∥∥
0
.

Lemma 5.7 (Full rate of convergence for velocity). Let the exact solution of (1.1) is

smooth enough. If Assumptions 1 and 2 hold, then we have

(5.15)

∥∥∇vN+1
∥∥2
0
+
∥∥∇

(
2vN+1 − vN

)∥∥2

0
+

N∑

n=1

∥∥∇δδvn+1
∥∥2
0

+2µτ

N∑

n=1

∥∥En+1
∥∥2
0
≤ Cτ4.

Proof. Let (vn+1, rn+1) be the solution of (5.13). Then it satisfies

〈
Ên+1 , vn+1

〉
=

〈
−△vn+1 +∇rn+1 , vn+1

〉
=

〈
∇vn+1 , ∇vn+1

〉

as well as
〈
−△Ên+1 , vn+1

〉
=

〈
Ên+1 , −△vn+1

〉
=

∥∥En+1
∥∥2
0
−
〈
Ên+1 , ∇rn+1

〉
.
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So testing (5.7) with 4τvn+1 yields

(5.16)

∥∥∇vn+1
∥∥2

0
+
∥∥∇

(
2vn+1 − vn

)∥∥2
0
+
∥∥∇δδvn+1

∥∥2
0
− ‖∇vn‖20

−
∥∥∇

(
2vn − vn−1

)∥∥2
0
+ 4µτ

∥∥En+1
∥∥2
0
=

3∑

i=1

Ai,

where

A1 : = 4τN
(
2un − un−1 , ûn+1 , vn+1

)
− 4τN

(
u(tn+1) , u(tn+1) , vn+1

)
,

A2 : = 4µτ
〈
Ên+1 , ∇rn+1

〉
, A3 := 4τ

〈
Rn+1 , vn+1

〉
.

We now estimate A1 to A3 separately. The convection term A1 can be rewritten as
follows:

A1 =− 4τN
(
δδu(tn+1) , u(tn+1) , vn+1

)
− 4τN

(
2En −En−1 , u(tn+1) , vn+1

)

− 4τN
(
2un − un−1 , Ên+1 , vn+1

)
=

3∑

i=1

A1,i.

To estimate convection terms, we will use frequently Lemma 3.2 without notice. Using∥∥u(tn+1)
∥∥
2
≤M , we can readily get

A1,1 ≤ Cτ
∥∥δδu(tn+1)

∥∥
0

∥∥u(tn+1)
∥∥
2

∥∥vn+1
∥∥
1

≤ Cτ
∥∥∇vn+1

∥∥2
0
+ Cµτ4

∫ tn+1

tn−1

‖utt(t)‖20dt.

We use 2En −En−1 = En+1 − δδEn+1 to obtain

A1,2 ≤Cτ
(∥∥δδEn+1

∥∥
0
+
∥∥En+1

∥∥
0

) ∥∥u(tn+1)
∥∥
2

∥∥vn+1
∥∥
1

≤µτ
∥∥En+1

∥∥2
0
+
Cτ

µ

∥∥δδEn+1
∥∥2
0
+
Cτ

µ

∥∥∇vn+1
∥∥2
0
.

If we apply
∥∥2En −En−1

∥∥
1
≤ C

√
τ which derives from (5.4) and Lemma 5.3, then we

can derive, by using Lemma 3.2,

A1,3 =4τN
(
2En −En−1 − 2u(tn) + u(tn−1) , Ên+1 , vn+1

)

≤Cτ
∥∥2u(tn)− u(tn−1)

∥∥
2

∥∥∥Ên+1
∥∥∥
0

∥∥vn+1
∥∥
1

+ Cτ
∥∥2En −En−1

∥∥
1

∥∥∥Ên+1
∥∥∥

1
2

0

∥∥∥Ên+1
∥∥∥

1
2

1

∥∥vn+1
∥∥
1

≤µτ
2

∥∥∥Ên+1
∥∥∥
2

0
+
Cτ

µ

∥∥∇vn+1
∥∥2
0
+ Cτ2

∥∥∥Ên+1
∥∥∥
0

∥∥∥∇Ên+1
∥∥∥
0

≤µτ
(∥∥En+1

∥∥2
0
+
∥∥∇δψn+1

∥∥2
0

)
+
Cτ

µ

∥∥∇vn+1
∥∥2
0
+ Cτ3

∥∥∥∇Ên+1
∥∥∥
2

0
.

Because we have

(5.17)

∥∥∇δψn+1
∥∥2
0
=

4τ2

9

∥∥∇
(
δεn+1 − δp(tn+1)

)∥∥2
0

≤ Cτ2
∥∥∇δεn+1

∥∥2
0
+ Cτ3

∫ tn+1

tn
‖∇pt(t)‖20dt,
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A1,3 term can be rewritten by

A1,3 ≤µτ
∥∥En+1

∥∥2
0
+
Cτ

µ

∥∥∇vn+1
∥∥2
0
+ Cτ3

∥∥∥∇Ên+1
∥∥∥
2

0

+ Cτ3
∥∥∇δεn+1

∥∥2
0
+ Cτ4

∫ tn+1

tn
‖∇pt(t)‖20dt.

In conjunction with
∥∥∇rn+1

∥∥
0
≤ C

∥∥En+1
∥∥
0
from (5.14), Lemma 3.4 yields

A2 = 4µτ
〈
∇δψn+1 , ∇rn+1

〉
≤ µτ

∥∥En+1
∥∥2
0
+
Cτ

µ

∥∥∇δψn+1
∥∥2
0
.

If we apply (5.17) again, then we arrive at

A2 ≤ µτ
∥∥En+1

∥∥2
0
+
Cτ3

µ

∥∥∇δεn+1
∥∥2
0
+ Cτ4

∫ tn+1

tn
‖∇pt(t)‖20dt.

On the other hand, the truncation error term becomes

A3 = 4τ
〈
Rn+1 , vn+1

〉
≤ Cτ

∥∥∇vn+1
∥∥2
0
+ Cτ4

∫ tn+1

tn−1

‖uttt(s)‖20dt.

Invoking v0 = 0, inserting above estimates from A1 and A3 into (5.16) and summing
over n from 1 to N give us

∥∥∇vN+1
∥∥2
0
+
∥∥∇

(
2vN+1 − vN

)∥∥2
0
+

N∑

n=1

(∥∥∇δδvn+1
∥∥2
0
+ µτ

∥∥En+1
∥∥2
0

)

≤ Cτ
N∑

n=1

∥∥∇vn+1
∥∥2
0
+ 5

∥∥∇v1
∥∥2
0
+ Cτ3

N∑

n=1

(∥∥∥∇Ên+1
∥∥∥
2

0
+
∥∥∇δεn+1

∥∥2
0

)

+
Cτ

µ

N∑

n=1

∥∥δδEn+1
∥∥2
0
+ Cµτ4

∫ tN+1

0

(
‖utt(t)‖20 + ‖uttt(t)‖20 + ‖∇pt(t)‖20

)
dt.

We note
∥∥δδEn+1

∥∥2
0
≤ 2

∥∥2δEn+1 − δEn
∥∥2
0
+2

∥∥δEn+1
∥∥2
0
≤ Cτ4 which is result of Lemma

5.5. Applying the discrete Grönwall inequality allows us to remove the first term on the
right hand side. With the aid of Lemmas 5.3 and 5.5, we finally obtain (5.15).

We now estimate the pressure error in L2(0, T ;L2(Ω)). This hinges on the error
estimate for the time derivative of velocity of Lemma 5.5.

Lemma 5.8 (Pressure Error estimate). Let the exact solution of (1.1) is smooth enough.

If Assumptions 1 and 2 hold, then we have

(5.18) τ

N∑

n=1

∥∥en+1
∥∥2
0
≤Cτ2.

Proof. In conjunction with (2.11), we can rewrite (5.7) as

(5.19)

3En+1 − 4En +En−1

2τ
+
(
u(tn+1) · ∇

)
u(tn+1)−

((
2un − un−1

)
· ∇

)
ûn+1

+∇en+1 − µ△En+1 = Rn+1.

We recall in [5, 20] the existence of β > 0 such that (inf-sup condition)

(5.20) β‖q‖0 ≤ sup
w∈H1

0
(Ω)

〈q , ∇· w〉
‖∇w‖0

, ∀q ∈ L2
0(Ω).
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Consequently, it suffices to estimate
〈
en+1 , ∇· w

〉
in terms of ‖∇w‖0. Multiplying (5.19)

by w ∈ H1
0(Ω), and utilizing Lemma 3.4, we end up with

(5.21)

〈
en+1 , ∇· w

〉
=

1

2τ

〈
3En+1 − 4En +En−1 , w

〉
+ µ

〈
∇Ên+1 , ∇w

〉

+N
(
δδu(tn+1) , u(tn+1) , w

)
+N

(
2u(tn+1)− u(tn) , Ên+1 , w

)

+N
(
2En −En−1 , ûn+1 , w

)
−
〈
Rn+1 , w

〉
=

6∑

i=1

Ai.

We now proceed to estimate each term A1 to A6 separately. We first note that

A1 ≤ 3

2τ

(∥∥δEn+1
∥∥
0
+ ‖δEn‖0

)
‖w‖0 ≤ C

τ

(∥∥δEn+1
∥∥
0
+ ‖δEn‖0

)
‖∇w‖0

and

A2 ≤ C
∥∥∥∇Ên+1

∥∥∥
0
‖∇w‖0.

Term A3 and A4 can be dealt with the aid of (3.1) and
∥∥u(tn+1)

∥∥
2
≤M as follows:

A3 ≤ C
∥∥δδu(tn+1)

∥∥
0

∥∥u(tn+1)
∥∥
2
‖w‖1 ≤ C

∥∥δδu(tn+1)
∥∥
1
‖∇w‖1

and

A4 ≤ C
∥∥2u(tn+1)− u(tn)

∥∥
2

∥∥∥Ên+1
∥∥∥
0
‖w‖1 ≤ C

∥∥∥Ên+1
∥∥∥
0
‖∇w‖0.

In light of
∥∥ûn+1

∥∥
1
=

∥∥∥Ên+1 − u(tn+1)
∥∥∥
1
≤ C from Lemma 5.3, we readily get

A5 ≤ C
∥∥2En −En−1

∥∥
1

∥∥ûn+1
∥∥
1
‖w‖1 ≤ C

(∥∥∇En+1
∥∥
0
+ ‖∇En‖0

)
‖∇w‖0.

On the other hand, we have

A6 ≤
∥∥Rn+1

∥∥
−1

‖∇w‖0.
Inserting the estimates for A1 to A6 back into (5.21), and employing (5.20), we obtain

C
∥∥en+1

∥∥
0
≤1

τ

(∥∥δEn+1
∥∥
0
+ ‖δEn‖0

)
+
(∥∥∇En+1

∥∥
0
+ ‖∇En‖0

)

+
∥∥∥∇Ên+1

∥∥∥
0
+
∥∥δδu(tn+1)

∥∥
1
+
∥∥∥Ên+1

∥∥∥
0
+
∥∥Rn+1

∥∥
−1
.

If we now square, multiply by τ , and sum over n from 1 to N , then Lemmas 5.5 and 5.3
derives (5.18).

6. Numerical experiments

In this section, we carried out numerical experiments to compare to theoretical results.
We first perform with an known solution to test error decay order in Theorem 2 and
then compute driven cavity flows under very unstable condition to check stability result
in Theorem 1. They were both computed within the finite element toolbox ALBERTA
[18]. We note that the ALBERTA hires triangular mesh of the Union Jack shape.

In the first experiments, we choose square domain [0, 1] × [0, 1] and impose forcing
term the exact solution to become

u =cos(t)
(
x2 − 2x3 + x4

) (
2y − 6y2 + 4y3

)
,

v =− cos(t)
(
y2 − 2y3 + y4

) (
2x− 6x2 + 4x3

)
,

p =cos(t)

(
x2 + y2 − 2

3

)
.

Table 1 is the error decay for Algorithm 1. In this computation, we use Taylor-Hood
(P2-P1) finite element on the uniform mesh. We impose τ = h and µ = 1. The velocity
error in L∞(0, 1,L2(Ω)) converges order 2 which is the assertion of this paper. But error
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decays for others, except pressure in L∞(0, 1, L∞(Ω)) are around order 1.8 (less than 2),
in contrast the classical GUM in [16]. So we conclude that the classical GUM performs
more accurate than Algorithm 1. However, the main advantage of Algorithm 1 is stability
without any condition for τ and we will check the stability in the next experiment.

Table 1. Error decay for Algorithm 1

τ = h 1/16 1/32 1/64 1/128 1/256

‖E‖
0

0.000766413 0.000231018 6.42159e-05 1.70043e-05 4.38265e-06

Order 1.730117 1.847003 1.917031 1.956024

‖E‖
L∞

0.00197285 0.000618625 0.000180551 5.0349e-05 1.36219e-05

Order 1.673144 1.776659 1.842371 1.886035

‖E‖1
0.0123447 0.00406798 0.00126886 0.000382078 0.000112936

Order 1.601507 1.680780 1.731594 1.758362

‖e‖
0

0.0145993 0.0047309 0.00146086 0.000430436 0.000123065

Order 1.625713 1.695297 1.762947 1.806378

‖e‖
L∞

0.207157 0.0865286 0.0379158 0.0156967 0.00626727

Order 1.259476 1.190378 1.272338 1.324552

In order to examine the stability result in Theorem 1 via numerical test, we challenge
to compute the driven cavity flow with extremely weak stability conditions, Reynolds
numbers is 10,000 (µ = 1/10, 000), h = 1/256, and τ = 0.5. Most of projection type
methods have upper bound for τ to make hold the stability constraint, like τ ≤ Ch,
where C depends on the Reynolds numbers. So, the smaller τ has to be imposed for
the bigger Reynolds numbers problem. In this case µ = 1/10, 000 and h = 1/256, very
small τ at least τ ≤ h is essential in general. But Algorithm 1 becomes released from
the limitation of the time marching size τ by Theorem 1. To check this numerically, we
hire τ = 0.5 as big as possible.

Figure 1 is numerical result of Algorithm 1 and displays still stable even for high
viscosity flow with µ = 1/10, 000 under unstable conditions h = 1/256 and τ = 0.5. We
thus conclude that Algorithm 1 is unconditionally stable and consists to Theorem 1. We
note here that this experiment is to verify only stability for any τ , not to check accuracy.
So we impose τ = 0.5 and the big τ is the main reason of the oscillations in Figure 1.
We need to use a reasonable τ to obtain more accurate results, because stability and
accuracy do not depend each other.
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