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MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE

PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS

LI-QUN CAO, LEI ZHANG, WALTER ALLEGRETTO, AND YANPING LIN

Abstract. In this paper we consider the multiscale computation of a Steklov

eigenvalue problem with rapidly oscillating coefficients. The new contribution

obtained in this paper is a superapproximation estimate for solving the ho-

mogenized Steklov eigenvalue problem and to present a multiscale numerical

method. Numerical simulations are then carried out to validate the theoretical

results reported in the present paper.
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1. Introduction

In this paper we discuss the multiscale computation of a Steklov eigenvalue
problem with rapidly oscillating coefficients given by

(1)





Lεu
ε = 0, in Ω,

uε = 0, on Γ0,
σε(u

ε) = λεuε, on Γ1,

where Ω is a bounded Lipschitz polygonal convex domain or a smooth domain
in Rn, n ≥ 2 with a periodic microstructure, and whose boundary is denoted by
Γ = ∂Ω = Γ0 ∪ Γ1, with Γ0 ∩ Γ1 = ∅. Here Lε denotes a second-order partial
differential operator with rapidly oscillating coefficients given by

Lεφ ≡ −
∂

∂xi

(
aij(

x

ε
)
∂φ

∂xj

)
+ a0(

x

ε
)φ,

and

σε(φ) ≡ νiaij(
x

ε
)
∂φ

∂xj
,

where ~ν = (ν1, · · · , νn) is the outward unit normal to Γ1, and ε > 0 is a small
period parameter. Here and below we use the Einstein summation convention on
repeated indices.

We make the following assumptions:
(A1) Let ξ = ε−1x, and assume that aij(ξ), a0(ξ) are 1-periodic functions in ξ.
(A2) There is a positive constant γ0 which is independent of ε such that

aij(
x

ε
)ηiηj ≥ γ0|η|

2
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for all (η1, · · · , ηn) ∈ Rn, |η|2 =
n∑

i=1

η2i and all x ∈ Ω, a0(
x
ε ) ≥ 0.

(A3) aij(
x
ε ) = aji(

x
ε ) for almost every x ∈ Ω.

(A4) a
ε
ij , a

ε
0 ∈ L∞(Ω).

Problems with an eigenvalue parameter on the boundary appear in many physi-
cal situations(see, e.g.[1, 10, 26, 3]). Courant and Hilbert [16] presented early results
on the Steklov eigenvalue problems. Osborn [36]developed a general approximation
theory for compact operators. Bramble and Osborn [7] presented a Galerkin method
for the approximation of the Steklov problem for a non self-adjoint second order d-
ifferential operator. Andreev and Todorov [2] gave the isoparametric finite element
approximation of Steklov eigenvalue problems for second-order, self-adjoint, elliptic
differential operators. Several eigenvalue problems arising in physics and engineer-
ing, as well as their approximations, are presented in Weinberger [42],Babuska and
Osborn [5]. On the other hand, a Steklov eigenvalue problem with constant coef-
ficients can be easily converted into the eigenvalue problem of a boundary integral
equation, so the boundary element method is more advantageous in such a case.
Han, Guan and He [24] developed the boundary element method for a Steklov
eigenvalue problem by means of a boundary integral equation. Huang and Lü [29]
used the mechanical quadrature method to obtain the extrapolation formulae for
solving the boundary integral equation arising from Steklov eigenvalue problems.

This paper involves Steklov eigenvalue problems arising from structures made
of composite materials. In such cases, the direct accurate numerical computation
of the solution becomes difficult because of the very fine mesh required. We recall
that the homogenization method gives the overall solution behavior by incorpo-
rating the fluctuations due to the heterogeneities. Vanninathan [40] obtained a
homogenization result for a spectral problem with Steklov boundary conditions on
periodically distributed holes inside the domain Ω. There are many other results
(see, e.g. [33, 21, 23, 30, 9]). Simulation results (cf. [11], [12] ) have shown that
the numerical accuracy of the homogenization method may not be satisfactory if
ε is not sufficiently small. We also refer to the numerical results presented in Sec-
tion 5. This is the main motivation for the multiscale asymptotic methods and the
associated numerical algorithms.

Sarkis and Versieux [41] presented the numerical boundary corrector for elliptic
equations with rapidly oscillating periodic coefficients and derived the convergence
results of their method in [39]. Hou and Wu[27] and Hou, Wu and Cai [28] provided
an interesting multiscale finite element method (MsFEM) based on the first order
asymptotic expansion. The basic idea of MsFEM is to find new finite element
space; i.e., the set of basis functions consists of two parts, the first part being
the set of piecewise polynomials and the second part the set of some oscillatory
functions obtained by simultaneously solving locally partial differential equations
in subdomains. Efendiev and Hou [19] gave a comprehensive survey of MsFEM. E
and Engquist [17] proposed the overall framework of an important heterogeneous
multi-scale method (HMM). A review of HMM was presented in [18]. In [13],
authors presented recently the multiscale asymptotic method for a Steklov problem
with rapidly oscillating coefficients.

The new contribution obtained in the present paper is a superapproximation
estimate for solving the homogenized Steklov eigenvalue problem and to present
a multiscale finite element method on the basis of the theoretical results of [13].
The key steps in this approach are the application of an adaptive finite element
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method to solve the cell problems and considerations of the boundary layer equa-
tion, followed by a numerical algorithm for solving the algebraic eigenvalue problem.
Numerical simulations are carried out at the end to validate the theoretical results
reported earlier in the paper.

The paper is organized as follows. In Section 2, we present the multiscale asymp-
totic expansions for the eigenvalues and the eigenfunctions of the Steklov eigenvalue
problem (1) and define the boundary layer solution. Section 3 is devoted to the
finite element computations of the related problems. In particular, we obtain a
superapproximation estimate for solving the homogenized Steklov eigenvalue prob-
lem. In Section 4, we present the multiscale finite element method for problem
(1) based on multiscale asymptotic expansions. Finally, in Section 5, we give some
numerical case studies as validation for the numerical results.

2. Multiscale Asymptotic Method

In this section, we introduce the multiscale asymptotic method for problem (1),
also see [13].

Let V be the closed subspace of H1(Ω) given by

V = H1(Ω,Γ0) = {v ∈ H1(Ω), | v = 0 on Γ0}.

Obviously H1
0 (Ω) ⊂ V ⊂ H1(Ω).

Assume that the space L2(Γ1) is equipped with the scalar product

〈φ, ψ〉 =

∫

Γ1

φψdσ.

The bilinear form on V × V associated with Lε is given by

aε(φ, ψ) =

∫

Ω

(
aij(

x

ε
)
∂φ

∂xi

∂ψ

∂xj
+ a0(

x

ε
)φψ

)
dx.

Let (λε, uε) be the exact Steklov eigenpair of problem (1) as given in the weak
formulation:

(2) aε(u
ε, v) = λε〈uε, v〉, ∀v ∈ V.

From assumptions (A2)− (A4), we can easily infer that

β0‖v‖21,Ω ≤ aε(v, v),

|aε(u, v)| ≤ β1‖u‖1,Ω‖v‖1,Ω, ∀u, v ∈ V

where β0, β1 are positive constants independent of ε.
Then from the classical theory of abstract elliptic eigenvalue problems (see, e.g.

[5], [36]), we obtain
Lemma 2.1 ([42, 5]) Problem (2) has a countably infinite set of eigenvalues, all

of finite multiplicity, without finite accumulation point. If Γ0 = ∅, then it follows
that

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞.

If Γ0 6= ∅, then

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞,

where each eigenvalue occurs as many times as given by its multiplicity. Further-
more, the orthonormal eigenfunctions uεk, k ≥ 1 form a basis of the Hilbert space

L2(Ω) with respect to the inner product 〈u, v〉 given in (2.1).
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Remark 2.1 Throughout the paper we assume that all eigenfunctions u(x) for
the Steklov eigenvalue problem are canonical, i.e. ‖u‖0,Γ1

= 1, where ‖u‖20,Γ1
=

〈u, u〉 without loss of generality. Otherwise, we replace u by u/‖u‖0,Γ1
.

In [13], we presented the multiscale asymptotic expansions of the eigenvalues and
the eigenfunctions of problem (1). Setting ξ = ε−1x and following the terminology
of [6], x, ξ are called as “slow” and “fast” variables, respectively. We define the
function uεs,k(x) by

(3) uεs,k(x) = u0k(x) +
s∑

l=1

εl
n∑

α1,··· ,αl=1

Nα1···αl
(ξ)

∂lu0k(x)

∂xα1
· · · ∂xαl

, s = 1, 2.

The cell functions Nα1
(ξ), Nα1α2

(ξ), α1, α2 = 1, 2, · · · , n are defined as follows

(4)





∂

∂ξi

(
aij(ξ)

∂Nα1
(ξ)

∂ξj

)
= −

∂

∂ξi

(
aiα1

(ξ)
)
, ξ ∈ Q,

Nα1
(ξ) is 1-periodic in ξ,∫

Q

Nα1
(ξ)dξ = 0,

and

(5)





∂

∂ξi
(aij(ξ)

∂Nα1α2
(ξ)

∂ξj
) = −

∂

∂ξi
(aiα1

(ξ)Nα2
(ξ))

−aα1j(ξ)
∂Nα2

(ξ)

∂ξj
− aα1α2

(ξ) + âα1α2
, ξ ∈ Q,

Nα1α2
(ξ) is 1-periodic in ξ,∫

Q

Nα1α2
(ξ)dξ = 0,

where âij =
∫
Q

(aij(ξ) + aip(ξ)
∂Nj(ξ)
∂ξp

)dξ, and the reference cell Q = (0, 1)n.

The homogenized Steklov eigenvalue problem associated with problem (1) is then
given by

(6)





Lu0k ≡ − ∂
∂xi

(âij
∂u0k(x)
∂xj

) + 〈a0〉u0k(x) = 0, in Ω,

u0k(x) = 0, on Γ0,

νiâij
∂u0k(x)
∂xj

= λ
(0)
k u0k(x) on Γ1, k ≥ 1,

where ~ν = (ν1, · · · , νn) is the outward unit normal to the boundary Γ1, (âij) is the
homogenized coefficients matrix and 〈a0〉 =

∫
Q a0(ξ)dξ.

If Ω is a bounded domain in Rn with Lipschitz-continuous piecewise Cs+2 bound-
ary ∂Ω, then we can prove that the k-th eigenfunction u0k ∈ Hs+2(Ω) of the ho-
mogenized Steklov eigenvalue problem. However, generally speaking, for a general
bounded Lipschitz polygonal domain, the condition u0k ∈ Hs+2(Ω), s = 1, 2, is
invalid. To overcome this difficulty, we need to define the boundary layer solu-
tion. To begin, let us introduce the notation: We construct an interior subdomain
Ω0 =

⋃
z∈T̂ε

ε(z + Q) ⊂ Ω as illustrated in Figure 1 such that dist(∂Ω0, ∂Ω) ≥
ε
2,

where the index set T̂ε = {z = (z1, · · · , zn) ∈ Zn, ε(z + Q) ⊂ Ω}, and the unit
cube Q = (0, 1)n. The boundary layer Ω1 = Ω \Ω0, Γ

∗ = ∂Ω0 ∩ ∂Ω1 is as shown in
Figure 2.
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Ω 0

Figure

1. Interior
subdomain
Ω0

Ω 0

Ω 1
Ω

Figure

2. The
boundary
layer Ω1

We define the boundary layer solution uε,bs,k(x), k ≥ 1 given by

(7)





Lεu
ε,b
s,k = 0, in Ω1,

uε,bs,k = 0, on Γ0,

uε,bs,k = uεs,k, on Γ∗,

σε(u
ε,b
s,k) = λ

(0)
k uε,bs,k(x), on Γ1,

where λ
(0)
k , uεs,k(x) are given in (6) and (3).

We define the multiscale asymptotic solution by

(8) ũεs,k(x) =





u0k(x) +
s∑

l=1

εl
n∑

α1,··· ,αl=1
Nα1···αl

(ξ)
∂lu0k(x)

∂xα1
· · · ∂xαl

, x ∈ Ω0

uε,bs,k(x), x ∈ Ω1, s = 1, 2.

Lemma 2.2 (see [13], Theorem 2.2) Suppose that Ω is a bounded Lipschitz
polygonal domain or a smooth domain in Rn, n ≥ 2 with boundary ∂Ω, Ω0 ⊂⊂
Ω, Ω1 = Ω \ Ω0. Let (λεk, u

ε
k) be the k-th eigenpair of problem (1), and let ũεs,k(x)

be the multiscale solutions as defined in (8) associated with uεk. Then we have the
following estimates:

(9) |λεk − λ
(0)
k | ≤ C(k)ε1/2, k ≥ 1.

If the multiplicity of the eigenvalues λ
(0)
k is equal to t, then

(10) ‖ūεk − ũεs,k‖1,Ω ≤ Cs(k)ε
1/2, s = 1, 2, k ≥ 1,

where ūεk is a linear combination of the eigenfunctions of problem (1) corresponding

to λεk, · · · , λ
ε
k+t−1. In particular, if the eigenvalue λ

(0)
k is simple, then

(11) ‖uεk − ũεs,k‖1,Ω ≤ Cs(k)ε
1/2, s = 1, 2, k ≥ 1,

where Cs(k) is a constant independent of ε.

3. Finite Element Computations

In this section, we present the finite element numerical algorithms for the related
problems. In particular, we obtain a superapproximation estimate for solving the
homogenized Steklov eigenvalue problem.
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3.1. Adaptive finite elements for calculating cell functions Nα1
(ξ) and

Nα1α2
(ξ), α1,

α2 = 1, 2, · · · , n. Since the elements aij(ξ) of the coefficients matrix A(ξ) of (4)
and (5) are discontinuous, we employ an adaptive finite element method (see [14,
43]). For convenience, we present the a posteriori error estimates for solving the
cell problems (4). In solving (5), we use the same mesh as in solving (4). We
first introduce the following notation: Let Tp be a sequence of tetrahedrons of
the reference cell Q, and let Fp be the set of faces not lying on ∂Q , p ≥ 0, i.e.
Fp ∩ ∂Q = ∅. Note that the tetrahedrons must be aligned with the boundary of
Q to employ the periodic boundary conditions on the boundary ∂Q. The finite
element space Up over Tp is defined by

(12)
Up(Q) = {v ∈ C(Q)| v|T ∈ P1(T ), v takes the same

value on the opposite faces of Q, ∀T ∈ Tp}.

For any T ∈ Tp and F ∈ Fp, we denote the diameters of T and F by hT and hF ,
respectively.

Let Nh0

α1,p(ξ) denote the approximate solution of Nα1
(ξ) in the finite element

space Up(Q), respectively, where h0 is the final mesh parameter ofQ for the adaptive
finite element method.

Following the lines of Theorems 5.2.1 of [43], also see [14], a posteriori error
estimates for Nα1

(ξ) are given by

(13) ‖Nα1
−Nh0

α1,p‖
2
1,Q ≤ C

( ∑

T∈Tp

ζ2T +
∑

F∈Fp

ζ2F

)
,

where

ζ2T = h2T
∫
T

(∂aiα1
(ξ)

∂ξi
+

∂

∂ξi
(aij(ξ)

∂Nh0

α1,p(ξ)

∂ξj
)
)2
dξ,

ζ2F = hF
∫
F

(
νi(aiα1

(ξ) + aij(ξ)
∂Nh0

α1,p(ξ)

∂ξj
)
)2
dΓξ,

where ν = (ν1, · · · , νn) is the outward unit normal to the element edge F ∈ Fp.
We then obtain the following proposition.
Proposition 3.1 LetNα1

(ξ) andNα1α2
(ξ) be the weak solutions of problems (4)

and (5), respectively, and let Nh0

α1
(ξ), Nh0

α1α2
(ξ) be the corresponding finite element

solutions, where h0 is the final mesh parameter of Q for the adaptive finite element
method. If Nα1

, Nα1α2
∈ H2(Q), then it holds

(14) ‖Nα1
−Nh0

α1
‖σ,Q ≤ Ch2−σ

0 ‖Nα1
‖2,Q, σ = 0, 1,

and

(15) ‖Nα1α2
−Nh0

α1α2
‖σ,Q ≤ Ch2−σ

0

(
‖Nα1

‖2,Q + ‖Nα1α2
‖2,Q

)
, σ = 0, 1,

where C is a constant independent of ε, h0.

3.2. FEM for computing the eigenvalues and the eigenfunctions of the

homogenized Steklov eigenvalue problem. In the numerical computation, we
actually solve the modified homogenized Steklov eigenvalue problem

(16)





Lh0
ũ0k ≡ − ∂

∂xi
(âh0

ij
∂ũ0k(x)
∂xj

) + 〈a0〉ũ0k(x) = 0 in Ω

ũ0k(x) = 0, on Γ0

νiâ
h0

ij
∂ũ0k(x)
∂xj

= λ̃
(0)
k ũ0k(x) on Γ1,
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where

âh0

ij =

∫

Q

(
aij(ξ) + aip(ξ)

∂Nh0

j (ξ)

∂ξp

)
dξ,

and Nh0

j (ξ) is the finite element solution of Nj(ξ).

Remark 3.1 It follows from (A1)−(A3) and Proposition 3.1 that the coefficients

matrix (âh0

ij ) is symmetric and positive-definite, and

(17) µ̄1|η|
2 ≤ âh0

ij ηiηj ≤ µ̄2|η|
2,

where µ̄1, µ̄2 are constants independent of h0, and η = (η1, · · · , ηn) ∈ Rn, |η|2 =
n∑

i=1

η2i .

Next we compare (6) with (16), and estimate the difference between the eigenpair

(λ
(0)
k , u0k) of problem (6) and (λ̃

(0)
k , ũ0k) of problem (16).

Proposition 3.2 Let (λ
(0)
k , u0k) and (λ̃

(0)
k , ũ0k), k = 1, 2, · · · be the eigenvalues

and the eigenfunctions of the Steklov eigenvalue problems (6) and (16), respectively.
Under assumptions (A1)− (A4), then it holds

(18) |λ̃
(0)
k − λ

(0)
k | ≤ C(k)h20.

Moreover, if the multiplicity of the eigenvalue λ
(0)
k is equal to t, i.e.

λ
(0)
k−1 < λ

(0)
k = · · · = λ

(0)
k+t−1 < λ

(0)
k+t,

then

(19) ‖u0k − ¯̃u0k‖1,Ω ≤ C(k)h20,

where ¯̃u0k is a linear combination of the eigenfunctions of problem (16) corresponding

to the eigenvalues λ̃
(0)
k , · · · , λ̃

(0)
k+t−1. In particular, if λ

(0)
k is simple, then

(20) ‖u0k − ũ0k‖1,Ω ≤ C(k)h20,

where C(k) is a constant independent of ε, h0.
Proof. The proof of Proposition 3.2 follows along the lines of the proof of

Theorem 4.1 of [11].
Since equations (6) and (16) are Steklov eigenvalue problems with constant co-

efficients, we can take higher-order derivatives on both sides of (6) and (16) in the
interior subdomain Ω0, respectively. Subtracting Eq.(16) from Eq.(6), using the
interior regularity estimates for elliptic equations (see, e.g. [20]) and Proposition
3.2, we obtain

Proposition 3.3 Suppose that Ω0 ⊂⊂ Ω′ ⊂⊂ Ω. Under assumptions (A1) −
(A4), if u

0
k ∈ Hr+2(Ω′), 0 ≤ r ≤ s, then the following estimate holds:

(21) ‖u0k − ũ0k‖r,Ω0
≤ C(k)h20‖u

0
k‖r+2,Ω′ ,

where r = 0, · · · , s, s = 1, 2, k ≥ 1, and C(k) is a constant independent of ε, h0.
For simplicity, we assume that Ω ⊂ R2 is a bounded Lipschitz convex domain,

the higher dimensional cases can be discussed similarly. Let J h = {e} be a regular
family of subdivision of Ω, and satisfy the following properties:

(F1). The elements are uniform triangles (or rectangles) in the interior domain
Ω0 ⊂⊂ Ω.

(F2). The elements are regular triangles in region Ω1 = Ω\Ω0, and the elements
are (curved) triangles near the boundary ∂Ω.

(F3). Any face of any element e1 is either a subset of the boundary ∂Ω, or a
face of another element e2 in the subdivision.
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We define a finite element space as follows: For m ≥ 1, let

(22) Vh(Ω) = {v ∈ C(Ω) : v|e ∈ Pm(e), v|Γ0
= 0} ⊂ H1(Ω,Γ0),

whereH1(Ω,Γ0) = {v ∈ H1(Ω), v|Γ0
= 0}, and Pm =

{
Qm, e is a rectangle
Pm, e is a triangle

.

We follow Ciarlet’s notation of finite element spaces (see [15]).
The discrete variational formulation of the modified homogenized Steklov eigen-

value problem (16) is then given by

(23) A(ũ0k,h, vh) = λ̃
(0)
k,h〈ũ

0
k,h, vh〉, ∀vh ∈ Vh(Ω), k = 1, 2, · · · ,

where

(24) A(u, v) =

∫

Ω

(
âh0

ij

∂u

∂xj

∂v

∂xi
+ 〈a0〉uv

)
dx, 〈u, v〉 =

∫

Γ1

uvdσ.

For the error estimates of the finite element solutions for problem (23), we have
the following known convergence results.

Lemma 3.1 ([2], Theorem 1) If ũ0k ∈ Hm+1(Ω), k ≥ 1, then

(25) 0 ≤ λ̃
(0)
k,h − λ̃

(0)
k ≤ C(k)h2m, ‖ũ0k − ũ0k,h‖0,Ω ≤ C(k)hm+ 1

2 ,

where C(k) is a constant independent of ε.
Lemma 3.2 ([4]) If ũ0k ∈ Hm+1(Ω), k ≥ 1, then it follows that

(26) ‖ũ0k − ũ0k,h‖1,Ω ≤ C(k)hm,

where C(k) is a constant independent of ε.
Armentano [4] gave a priori estimates for the finite element method applied to

the Steklov eigenvalue problem. Andreev and Todorov [2] obtained error estimates
for the isoparametric finite element approximation of a Steklov eigenvalue problem.
Armentano and Padra [3] presented a posteriori error estimates for this problem. As
mentioned earlier, a goal of this paper is to obtain a superapproximation estimate
for solving the Steklov eigenvalue problem (16). To the best of our knowledge, there
are no other results of this type in the literature. We remark that our technique for
superapproximation is valid only in two dimensional cases. However, superapproxi-
mation error estimates for other types eigenvalue problems have been the subject of
a considerable number of theoretical and numerical results. We refer the interested
reader to some classical books (see, e.g. [32], [44]).

To begin, we introduce the notation: Set ‖w‖2A = A(w,w) and define a Ritz-

Galerkin projection operator R
(k)
h : Vk ⊂ H1(Ω,Γ0) → Vh(Ω) such that

(27) A(u−R
(k)
h u, vh) = 0, u ∈ Vk, ∀vh ∈ Vh(Ω).

where Vk ⊂ V denotes the orthogonal complement of the first k − 1 eigenspaces,
k ≥ 1 with respect to the inner product A(u, v) defined in (24), i.e.
Vk = {v ∈ V, A(v, ui) = 0, i = 1, · · · , k − 1}. In particular, for k = 1, we have

Vk = V1 = V = H1(Ω,Γ0). For simplicity, we write R
(1)
h = Rh in the sequel.

For convenience, we set λ = λ̃
(0)
k , λh = λ̃

(0)
k,h, and assume that Hλ(Γ1) is the

restriction of the eigenspace of the operator Lh0
with respect to the eigenvalue

λ = λ̃
(0)
k , k ≥ 1 on the boundary Γ1. Define a projection operator Pλ : L2(Γ1) →

Hλ(Γ1) such that

(28) Pλv =
∑

λi=λ

〈v, ui〉ui,
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where 〈ϕ, g〉 =
∫
Γ1

ϕgdσ , and {ui} form a set of orthonormal basis of Hλ(Γ1) with

respect to the inner product 〈ϕ, g〉.
To derive the superapproximation estimate for the finite element method of

problem (23), see Theorem 3.1, we have to present Propositions 3.4, 3.5 and 3.6.
We would like to emphasize that these propositions are proved only for the first

eigenpair (λ̃
(0)
1 , ũ

(0)
1 ) of the modified homogenized Steklov eigenvalue problem (16),

and they are actually valid for other cases k > 1.
Proposition 3.4 Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain

or a smooth domain. Let (λ̃
(0)
k , ũ0k) and (λ̃

(0)
k,h, ũ

0
k,h), k ≥ 1 be k-th eigenvalues and

eigenfunctions of problems (16) and (23), respectively. Then the following relations
hold

(29) 0 ≤
A(w,w)

〈w,w〉
− λ̃

(0)
k ≤

‖w − ũ0k‖
2
A

〈w,w〉
, ∀w ∈ Vk,

(30) 0 < λ̃
(0)
k ≤

A(ũ0k,h, ũ
0
k,h)

〈ũ0k,h, ũ
0
k,h〉

= λ̃
(0)
k,h ≤

A(v, v)

〈v, v〉
, ∀v ∈ Vh(Ω),

and

(31) 0 ≤ λ̃
(0)
k,h − λ̃

(0)
k ≤

A(R
(k)
h ũ0k, R

(k)
h ũ0k)

〈R
(k)
h ũ0k, R

(k)
h ũ0k〉

− λ̃
(0)
k ≤

‖R
(k)
h ũ0k − ũ0k‖

2
A

〈R
(k)
h ũ0k, R

(k)
h ũ0k〉

, k ≥ 1,

where R
(k)
h is defined in (27), in particular, R

(1)
h = Rh. A(w,w), 〈w,w〉 are given

in (24).
Proof. We prove Proposition 3.4 only for the first eigenvalue and the first eigen-

function, i.e. k = 1.
Estimate (30) is a straightforward consequence of the relation Vh(Ω) ⊂ V =

H1(Ω,Γ0). It remains to give the proofs of (29) and (31).

For any fixed w ∈ V, w 6= 0, since ‖w‖2A = λ̃
(0)
1 〈w, ũ01〉

2 + ‖w − 〈w, ũ01〉ũ
0
1‖

2
A, we

have

(32) λ̃
(0)
1 = min

v∈V, v 6=0

‖v‖2A
‖v‖20,Γ1

≤
‖w‖2A
‖w‖20,Γ1

≤ λ̃
(0)
1 +

‖w − (w, ũ01)ũ
0
1‖

2
A

‖w‖20,Γ1

.

On the other hand, since ‖ũ01‖0,Γ1
= 1 (see Remark 2.1), for any fixed w ∈

V, w 6= 0, one can directly verify that

(33) A(w − 〈w, ũ01〉ũ
0
1, αũ

0
1) = 0, ∀α ∈ R,

and consequently

(34) ‖w − ũ01‖
2
A = ‖w − 〈w, ũ01〉ũ

0
1‖

2
A + ‖〈w, ũ01〉ũ

0
1 − ũ01‖

2
A ≥ ‖w − 〈w, ũ01〉ũ

0
1‖

2
A.

Combining (32) and (34) gives

(35) 0 ≤
A(w,w)

〈w,w〉
− λ̃

(0)
1 ≤

‖w − 〈w, ũ01〉ũ
0
1‖

2
A

‖w‖20,Γ1

≤
‖w − ũ01‖

2
A

‖w‖20,Γ1

.

(35) actually proves (29). Putting w = Rhũ
0
1 into (29), and recalling (30) , we

get

(36) 0 ≤ λ̃
(0)
1,h − λ̃

(0)
1 ≤

‖Rhũ
0
1 − ũ01‖

2
A

〈Rhũ
0
1, Rhũ

0
1〉
.

The proof of Proposition 3.4 is complete.



MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM 51

In order to obtain Propositions 3.5 and 3.6, we first consider the mixed boundary
value problem given by

(37)





Lh0
w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ Γ0,

νiâ
h0

ij
∂w(x)
∂xj

= g(x), x ∈ Γ1.

where the operator Lh0
is defined in (16).

The variational form of (37) is to find w ∈ V = H1(Ω,Γ0) such that

(38) A(w, v) = 〈g, v〉, g ∈ L2(Γ1), ∀v ∈ V.

It follows from (17) that problem (38) is uniquely solvable. For g ∈ L2(Γ1) the
solution w is in V . We define the operator B : L2(Γ1) → V by Bg = w. Now let
us consider the operator T : L2(Γ1) → L2(Γ1) as the restriction of B on Γ1, i.e.
T g = (Bg)|Γ1

. We can check that T : L2(Γ1) → L2(Γ1) is a linear self-adjoint
compact operator in a Hilbert space L2(Γ1), see [7] and [2].

Proposition 3.5 Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain

or a smooth domain. Let R
(k)
h : Vk → Vh(Ω), k ≥ 1 be the Ritz-Galerkin projection

operator defined in (27), in particular, R
(1)
h = Rh. Under assumptions (A1) −

(A4), (F2)− (F3), we have

(39) ‖λhR
(k)
h B − λB‖b ≤ C(k)h1/2,

and

(40) ‖R
(k)
h B‖b ≤ C(k),

where ‖K‖b = ‖K‖L2(Γ1)→L2(Γ1) is the norm of an operator K: L2(Γ1) → L2(Γ1),
and C(k) is a constant independent of ε, h, h0.

Proof. We only prove Proposition 3.5 for the case k = 1. If Ω is a bounded
Lipschitz convex domain or a smooth domain, for g ∈ L2(Γ1), then we can infer
that Bg ∈ H3/2(Ω) and ‖Bg‖3/2,Ω ≤ C‖g‖0,Γ1

(see [2, 7]). On the other hand, it
follows from Theorem 4.4.4 of ([8], p.104) and the interpolation error estimates of
Sobolev spaces that

‖(RhB − B)g‖1,Ω ≤ Ch1/2‖Bg‖3/2,Ω.

By using the trace theorem, we get

‖(RhB − B)g‖0,Γ1
≤ C‖(RhB − B)g‖1,Ω
≤ Ch1/2‖Bg‖3/2,Ω ≤ Ch1/2‖g‖0,Γ1

,

and consequently

(41) ‖(RhB − B)‖b ≤ Ch1/2.

It follows from Lemma 3.1 and (41) that

‖λhRhB − λB‖b ≤ ‖λhRhB − λhB + λhB − λB‖b
≤ λh‖(RhB − B)‖b + |λh − λ|‖B‖b
≤ Ch1/2 + Ch2 ≤ Ch1/2.

Since ‖λhRhB‖b ≤ ‖λhRhB − λB‖b + ‖λB‖b, using (39) and ‖B‖b ≤ C, we get
‖RhB‖b ≤ C.

Therefore the proof of Proposition 3.5 is complete.
Proposition 3.6 Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain

or a smooth domain. Let R
(k)
h : Vk → Vh(Ω), k ≥ 1 be the Ritz-Galerkin projection
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operator defined in (27), in particular, R
(1)
h = Rh. If u ∈ Wm+1,q(Ω), q > 2, then

we have the following estimate:

(42) ‖R
(k)
h B(I −R

(k)
h )u‖0,Γ1

≤ C(k)hm+ 1

2 ‖u‖m+1,q,Ω, m ≥ 1,

where I is an identity operator, 1
p + 1

q = 1, 4
3 < p < 2, q > 2 , and C(k) is a

constant independent of ε, h, h0.
Proof. We only prove Proposition 3.6 for the case k = 1. We define a solution

w̃ ∈ V = H1(Ω,Γ0) such that

(43) A(w̃, v) = 〈RhB(I −Rh)u, v〉, ∀v ∈ V.

Using a priori estimates for elliptic equations (cf.[20]), it is obvious that ‖w̃‖1,Ω ≤
C‖RhB(I −Rh)u‖0,Γ1

.
Let B∗ be the adjoint operator of B with respect to the inner product 〈ϕ, g〉, in

such a way that for all ϕ ∈ H1(Ω), A(ϕ,B∗) = 〈ϕ, g〉. Using (3.3) of [2], we have

(44) ‖B∗g‖3/2,Ω ≤ C∗‖g‖0,Γ1
, ∀g ∈ L2(Γ1),

where C∗ is a constant independent of ε, h0, h.
Let us introduce an interpolation operator Im : V → Vh(Ω). It follows from

Theorem 4.4.4 of ([8], p.104) and the interpolation error estimates of Sobolev spaces
that

(45) ‖B∗Rhw̃ − ImB∗Rhw̃‖1,p,Ω ≤ Ch1/2‖B∗Rhw̃‖3/2,p,Ω, m ≥ 1,

where C is a constant independent of ε, h0, h.
Using (27) and the interpolation error estimates, it is not difficult to check that

(46) ‖u−Rhu‖1,q,Ω ≤ Chm‖u‖m+1,q,Ω, m ≥ 1,

where C is a constant independent of ε, h0, h.
Using (43)-(46), Hölder inequality and the trace theorem, we obtain

‖RhB(I −Rh)u‖20,Γ1
= A(w̃, RhB(I −Rh)u)

= A(B∗Rhw̃, (I −Rh)u)
= A(B∗Rhw̃ − ImB∗Rhw̃, (I −Rh)u) (see (3.14), k = 1)
≤ C‖B∗Rhw̃ − ImB∗Rhw̃‖1,p,Ω‖u−Rhu‖1,q,Ω
≤ Chm+ 1

2 ‖B∗Rhw̃‖3/2,p,Ω‖u‖m+1,q,Ω

≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖Rhw̃‖0,p,Γ1

≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖Rhw̃‖0,Γ1
(since 4/3 < p < 2)

≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖Rhw̃‖1,Ω
≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖w̃‖1,Ω (see (40))

≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖RhB(I −Rh)u‖0,Γ1
,

and consequently

‖RhB(I −Rh)u‖0,Γ1
≤ Chm+ 1

2 ‖u‖m+1,q,Ω.

The proof of Proposition 3.6 is complete.
Theorem 3.1 Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain

or a smooth domain. Let Hλ be the eigenspace of the k-th eigenvalue λ = λ̃
(0)
k

for problem (16), and Vλh
⊂ Vh be the eigenspace of λh = λ̃

(0)
k,h for problem (23).

Assume that Hλ ⊂ Wm+1,q(Ω), q > 2, m ≥ 1. For ∀uh ∈ Vλh
, then there exists

u ∈ Hλ such that

(47) ‖R
(k)
h u− uh‖1,Ω ≤ C(k)hm+ 1

2 ‖u‖m+1,q,Ω,
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where R
(k)
h : Vk → Vh(Ω), k ≥ 1 are the Ritz-Galerkin projection operators defined

in (27), in particular, R
(1)
h = Rh and C(k) is a constant independent of ε, h0, h.

Proof. We prove Theorem 3.1 only for the case k = 1. Other cases can be

discussed similarly. Let λ = λ̃
(0)
1 , λh = λ̃

(0)
1,h and have λ > 0, λh > 0. Set

M = {ϕ ∈ L2(Γ1), 〈ϕ, v〉 = 0, ∀v ∈ Hλ}.

We recall T : L2(Γ1) → L2(Γ1) is a self-adjoint compact operator. For ∀ϕ ∈ M,

since 〈T ϕ, v〉 = 〈ϕ, T v〉 = 1
λ
〈ϕ, v〉 = 0, we infer that T M ⊂ M. Denote by T |M

the restriction of T on M. It follows from Fredholm’s alternative theorem that the
operator (I−λT |M) has a bounded inverse operator. Hence there exists a constant
γ > 0 such that

(48) γ‖v‖0,Γ1
≤ ‖(I − λT |M)v‖0,Γ1

, ∀v ∈ M.

We know Pλ : L2(Γ1) → Hλ is a projection operator and Pλv =
∑

λi=λ

〈v, ui〉ui, v ∈

L2(Γ1). For ∀uh ∈ Vλh
⊂ Vh, we set u = Pλuh ∈ Hλ. It remains to prove that u

satisfies (47).

Setting ū = Rhu−uh−Pλ(Rhu−uh), where Rh = R
(1)
h : V1 = V → Vh(Ω) is the

Ritz-Galerkin projection operator defined in (27), it is easy to check that ū ∈ M.
On the other hand, we have

λBu = λBPλuh = λB
∑

λi=λ

〈uh, ui〉ui

= λ
∑

λi=λ

〈uh, ui〉Bui = λ
∑

λi=λ

〈uh, ui〉
1
λ
ui

= Pλuh = u.

Since
A(λhRhBuh, vh) = λhA(RhBuh, vh) = λhA(Buh, vh)

= λhA(
1
λh
uh, vh) = A(uh, vh), ∀vh ∈ Vh(Ω),

we thus get A(λhRhBuh − uh, vh) = 0, ∀vh ∈ Vh and λhRhBuh = uh.
Given ū ∈ M, we have (I − λT |M)ū = (I − λT )ū. We recall the operator

T : L2(Γ1) → L2(Γ1) as the restriction of B on Γ1 and obtain

(I − λT )Pλ(Rhu− uh) = 0,

‖(I − λT )ū‖0,Γ1
= ‖(I − λT )(Rhu− uh)‖0,Γ1

= ‖(I − λB)(Rhu− uh)‖0,Γ1
.

Hence we derive

(49)

γ‖ū‖0,Γ1
≤ ‖(I − λT |M)ū‖0,Γ1

(since (48))
= ‖(I − λT )ū‖0,Γ1

= ‖(I − λB)(Rhu− uh)‖0,Γ1

= ‖λRhB(I −Rh)u+ (λhRhB − λB)(Rhu− uh)
+ (λ− λh)RhBRhu‖0,Γ1

≤ λ‖RhB(I −Rh)u‖0,Γ1

+ ‖(λhRhB − λB)(Rhu− uh)‖0,Γ1
+ ‖(λ− λh)RhBRhu‖0,Γ1

≤ λ‖RhB(I −Rh)u‖0,Γ1
+ ‖λhRhB − λB‖b‖Rhu− uh‖0,Γ1

+ Ch2m‖RhB‖b‖Rhu‖0,Γ1
.

Given

Pλu = Pλ(Pλuh) = Pλ

∑
λi=λ

〈uh, ui〉ui =
∑

λi=λ

〈uh, ui〉Pλui

=
∑

λi=λ

〈uh, ui〉ui = Pλuh,
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here we have used 〈uj , ui〉 = δij , where δij is the Kronecker symbol. By using
standard error interpolation, we thus obtain

(50)

‖Pλ(Rhu− uh)‖0,Γ1
= ‖Pλ(Rhu− u)‖0,Γ1

= ‖
∑

λi=λ

〈Rhu− u, ui〉ui‖0,Γ1

≤
∑

λi=λ

|〈Rhu− u, ui〉|‖ui‖0,Γ1

=
∑

λi=λ

1
λ
|A(Rhu− u, ui)|

=
∑

λi=λ

1
λ |A(Rhu− u, ui − Imui)| (since (27))

≤ Ch2m.

We recall ū = Rhu− uh − Pλ(Rhu− uh), and derive

(51) ‖ū‖0,Γ1
≥ ‖Rhu− uh‖0,Γ1

− ‖Pλ(Rhu− uh)‖0,Γ1
.

Substituting (51) into (49), we obtain

(52)

(
1− 1

γ ‖λhRhB − λB‖b
)
‖Rhu− uh‖0,Γ1

≤ λ
γ ‖RhB(I −Rh)u‖0,Γ1

+ Ch2m(C + ‖RhB‖b‖Rhu‖0,Γ1
).

Combining (39), (40) and (42) yields

(53) ‖Rhu− uh‖0,Γ1
≤ Chm+ 1

2 ‖u‖m+1,q,Ω.

Here we have used the estimate: ‖Rhu‖0,Γ1
≤ C‖u‖1,Ω.

On the other hand, since A(u−Rhu, vh) = 0, ∀vh ∈ Vh, we have

(54)

A(uh −Rhu, vh) = A(uh − u, vh)
= λh〈uh, vh〉 − λ〈u, vh〉
= (λh − λ)〈uh, vh〉+ λ〈uh − u, vh〉
= (λh − λ)〈uh, vh〉+ λ〈uh −Rhu, vh〉
+ λ〈Rhu− u, vh〉, ∀vh ∈ Vh.

We recall (38) and the operator B : L2(Γ1) → V by Bg = w. For any fixed
vh ∈ Vh, if we set g = vh, then we have w = Bvh and

A(w,Rhu− u) = 〈vh, Rhu− u〉.

Using (27), Hölder inequality, the interpolation error estimates and the trace
theorem, we obtain

(55)

〈Rhu− u, vh〉 = A(Rhu− u,w − Imw)
≤ ‖Rhu− u‖1,q,Ω‖w − Imw‖1,p,Ω
≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖w‖3/2,p,Ω
≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖vh‖0,p,Γ1

≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖vh‖1,p,Ω
≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖vh‖1,Ω,

where 1
p + 1

q = 1, q > 2, 4/3 < p < 2. Substituting (55) into (54), we get

|A(uh −Rhu, vh)| ≤ Chm+ 1

2 ‖u‖m+1,q,Ω‖vh‖1,Ω, ∀vh ∈ Vh.

Furthermore, we have

‖uh −Rhu‖1,Ω ≤ Chm+ 1

2 ‖u‖m+1,q,Ω.

where C is a constant independent of ε, h0, h. Therefore, the proof of Theorem 3.1
is complete.
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Remark 3.2 The basic idea of the proof of Theorem 3.1 originates from the
proof of Proposition 4.5 of [11]. However, there is the essential difference between
them. In (38), we defined the operator B : L2(Γ1) → H1(Ω,Γ0) by Bg = w. In [11],
the corresponding operator K was defined as L2(Ω) → H1

0 (Ω). Since we cannot use
the embedding theorems in the former case, the proof of Theorem 3.1 is much more
complicated than that of Proposition 4.5 of [11].

Now we use the superconvergence results of Theorem 3.1 to implement the post-

processing technique for calculating the higher-order derivatives
∂lũ0k

∂xα1
· · · ∂xαl

, l =

1, 2, α1, α2 = 1, 2, where ũ0k is the k-th eigenfunction of problem (16).
Following the terminology of [32], we define the novel bi-2m-th ( 2m-th) order

interpolation operator and denote by I
(2m)
2h the operator. The crucial idea of the

interpolated finite element method is the following: If we know the nodal values
of the bi-m-th (or m-th ) finite element solution in a fine mesh, then we use these
nodal values to define a bi-2m-th (or 2m-th) interpolation function at a new larger
element with respect to a coarse mesh as shown as in Figs.3 and 4. It should be
emphasized that the mesh must be uniform, i.e. the condition (F1). We refer the
interested reader to Lin’s book [32].

e

e

e

e
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Figure

3. Triangular
mesh.

e

ee

e
1

23

4

Figure

4. Rectangular
mesh.

In order to obtain the global superapproximation estimate for the postprocessing
operator (see Theorem 3.2), we need to employ the following lemmas.

Lemma 3.3 [32] Let Im : V → Vh(Ω) be a Lagrange’s interpolation operator.

Then the interpolation operators Im and I
(2m)
2h satisfy the following properties:

(56) ‖I
(2m)
2h vh‖σ,p ≤ C‖vh‖σ,p, 1 ≤ p ≤ ∞, σ = 0, 1, ∀ vh ∈ Vh(Ω),

(57) (I
(2m)
2h )2 = I

(2m)
2h , I

(2m)
2h Im = I

(2m)
2h , ImI

(2m)
2h = Im,

∀ zi ∈ Nh, I
(2m)
2h v(zi) = Imv(zi) = v(zi), v ∈ C(Ω),

where Nh is the set of nodal points of J h = {e}.

(58) ‖v − I
(2m)
2h v‖σ,p,E ≤ Ch2m+1−σ‖v‖2m+1,p,E,

where

∀v ∈ W 2m+1,p(E), σ = 0, 1, 1 ≤ p ≤ +∞, ∀E ∈ J 2h.

To prove Theorem 3.1, we introduce the following lemma:
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Lemma 3.4 [45] Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain
or a smooth domain. Under the assumptions of (F1)− (F3), we have the following
estimate:
(59)

|A(u− Imu, vh)| ≤

{
Chm+1‖u‖m+2,q,Ω‖vh‖1,p,Ω, m = 1, 2, e is a triangle;
Chm+1‖u‖m+2,q,Ω‖vh‖1,p,Ω, m ≥ 1, e is a rectangle,

for ∀vh ∈ Vh(Ω), Im : C(Ω) → Vh(Ω) is a Lagrange’s interpolation operator, and
1
p + 1

q = 1, 1 < q <∞.

Next we give the global superapproximation estimate for the postprocessing op-
erator.

Theorem 3.2 Suppose that Ω ⊂ R2 is a bounded Lipschitz convex domain or

a smooth domain. Let (λ̃
(0)
k , ũ0k(x)) be the k-th eigenpair of problem (16), and let

(λ̃
(0)
k,h, ũ

0
k,h(x)) be the corresponding finite element solution of (λ̃

(0)
k , ũ0k(x)) in Vh(Ω).

Under assumptions (A1)− (A4), (F1)− (F3), if ũ
0
k ∈ Hm+2(Ω), then we obtain the

following superapproximation estimate:
(60)

‖ũ0k(x)− I
(2m)
2h ũ0k,h(x)‖1,Ω ≤

{
C(k)hm+ 1

2 ‖ũ0k‖m+2,Ω, m = 1, 2, e is a triangle;

C(k)hm+ 1

2 ‖ũ0k‖m+2,Ω, m ≥ 1, e is a rectangle,

where C(k) > 0 is a constant independent of ε, h0, h; k ≥ 1.
Proof. As mentioned above, we prove Theorem 3.2 only for the first eigenpair of

problem (16) and for the rectangular mesh. Other cases can be discussed similarly.
It follows from Lemma 3.4 that

µ̄1‖Imũ01 −Rhũ
0
1‖

2
1,Ω ≤ A(Imũ

0
1 −Rhũ

0
1, Imũ

0
1 −Rhũ

0
1)

= A(Imũ
0
1 − ũ01, Imũ

0
1 −Rhũ

0
1)

≤ Chm+1‖ũ01‖m+2,Ω‖Imũ01 −Rhũ
0
1‖1,Ω,

and

(61) ‖Imũ
0
1 −Rhũ

0
1‖1,Ω ≤ Chm+1‖ũ01‖m+2,Ω,

where C is a constant independent of ε, h0, h.
It follows from Lemma 3.3, Theorem 3.1, and (61) that

(62)

‖I
(2m)
2h ũ01 − I

(2m)
2h ũ01,h‖1,Ω = ‖I

(2m)
2h (Imũ

0
1 − ũ01,h)‖1,Ω

≤ C‖Imũ01 − ũ01,h‖1,Ω ≤ C‖Imũ01 −Rhũ
0
1‖1,Ω

+ C‖Rhũ
0
1 − ũ01,h‖1,Ω ≤ Chm+1‖ũ01‖m+2,Ω

+ C‖Rhũ
0
1 − ũ01,h‖1,Ω ≤ Chm+ 1

2 ‖ũ01‖m+2,Ω,

and consequently

(63)

‖ũ01 − I
(2m)
2h ũ01,h‖1,Ω ≤ ‖ũ01 − I

(2m)
2h ũ01‖1,Ω

+ ‖I
(2m)
2h ũ01 − I

(2m)
2h ũ01,h‖1,Ω

≤ Chm+ 1

2 ‖ũ01‖m+2,Ω.

Therefore the proof of Theorem 3.2 is complete.
We define

(64) λ̃
(2m)
k,2h =

A(I
(2m)
2h ũ0k,h, I

(2m)
2h ũ0k,h)

〈I
(2m)
2h ũ0k,h, I

(2m)
2h ũ0k,h〉

,

where the operator I
(2m)
2h is given in Lemma 3.3, and ũ0k,h(x) is the finite element

solution of the k-th eigenfunction ũ0k(x) of problem (16). A(u, v), 〈u, v〉 are defined
in (24).
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To get Corollary 3.1, we need to introduce the following lemma:
Lemma 3.5 (see [44]) Let (λ, u) be the eigenpair of the Steklov eigenvalue

problem (16). Then, for ∀w ∈ V, ‖w‖0,Γ1
6= 0, we have

(65)
A(w,w)

〈w,w〉
− λ =

‖w − u‖2A
‖w‖20,Γ1

− λ
‖w − u‖20,Γ1

‖w‖20,Γ1

,

and consequently

(66) |
A(w,w)

〈w,w〉
− λ| ≤ C

‖w − u‖2A
‖w‖20,Γ1

,

where C is a constant, ‖w‖A = A(w,w), ‖w‖20,Γ1
= 〈w,w〉, A(u, v), 〈u, v〉 are de-

fined in (24).
Proof. We directly check that

‖w − u‖2A − λ‖w − u‖20,Γ1
= A(w,w) − λ〈w,w〉.

Since ‖w‖20,Γ1
6= 0, we thus get

A(w,w)

〈w,w〉
− λ =

‖w − u‖2A
‖w‖20,Γ1

− λ
‖w − u‖20,Γ1

‖w‖20,Γ1

.

Therefore, (65) holds. From Lemma 2.1, we know λ ≥ 0. Furthermore, using the
trace theorem, we complete the proof of (66).

Corollary 3.1 Under the assumptions of Theorem 3.2, we have

(67) |λ̃0k − λ̃
(2m)
k,2h | ≤

{
C(k)h2m+1, m = 1, 2, triangles;
C(k)h2m+1, m ≥ 1, rectangles,

where C(k) is a constant independent of h, h0.
Proof. When the mesh parameter h is sufficiently small, using Theorem 3.2,

we have

‖I
(2m)
2h ũ0k,h‖

2
0,Γ1

= ‖I
(2m)
2h ũ0k,h − ũ0k + ũ0k‖

2
0,Γ1

≥ ‖ũ0k‖
2
0,Γ1

− ‖I
(2m)
2h ũ0k,h − ũ0k‖

2
0,Γ1

≥ 1− Chm+1/2 ≥ 1/2.

In (66), if we set w = I
(2m)
2h ũ0k,h, u = ũ0k, then we obtain

|λ̃0k − λ̃
(2m)
k,2h | ≤ C‖I

(2m)
2h ũ0k,h − ũ0k‖

2
1,Ω.

Theorem 3.2 implies that (67) holds.
Remark 3.3 It should be emphasized that we can obtain the superapproxi-

mation estimate of the k-th eigenvalue and the k-th eigenfunction, k ≥ 1, for the
Steklov eigenvalue problem with constant coefficients only in two dimensional cases
(see, Theorem 3.2 and Corollary 3.1). An interesting question is: The numerical
results presented in Section 5 (e.g. Example 5.2) clearly show that there are not
the usual superapproximation estimates for the eigenvalues and the eigenfunctions
of the Steklov eigenvalue problems with constant coefficients in three dimensional
cases.
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3.3. Adaptive finite elements for solving the boundary layer equation.

We recall the boundary layer equation (7). In practice, we solve the modified
boundary layer equation given by

(68)





Lεũ
ε,b
s,k = 0, in Ω1,

ũε,bs,k = 0, on Γ0,

ũε,bs,k = uε,h0,h
s,k (x), on Γ∗,

σε(ũ
ε,b
s,k) = λ̃

(0)
k,hũ

ε,b
s,k(x), on Γ1,

where λ̃
(0)
k,h is the finite element solution of the k−th eigenfunction λ̃

(0)
k for the mod-

ified homogenized Steklov eigenvalue problem (16). The function uε,h0,h
s,k denotes

the multiscale approximate solutions as given in (75).
Similarly to the computations of cell functions Nα1

(ξ), we employ an adaptive
finite element method to solve the boundary layer equation (68). The details of
the procedure are omitted. Let Fh1 = {τ} be a family of regular triangulations of

subdomain Ω1 = Ω \ Ω0 as shown in Figure 2 . Let h1 = max
τ∈Fh1

{hτ},
h1
ε2

<< 1.

Define a piecewise linear finite element space

(69) W ε
h1
(Ω1) =

{
v ∈ C(Ω1) : v|τ ∈ P1(τ), v|Γ0

= 0, v|Γ∗ = uε,h0,h
s,k

}
.

Denote by ũε,bs,k,h1
(x) the finite element solution of ũε,bs,k(x), k ≥ 1 in W ε

h1
(Ω1).

Note that ũε,bs,k,h1
(x) does depend on h0, h.

3.4. The numerical algorithm for solving the algebraic eigenvalue prob-

lem. In this section, we introduce the numerical algorithm for solving the algebraic
eigenvalue problem (23). We follow Andreev’s idea, see [2]. Let Nh denote the set
of the nodes of the subdivision J h, and NBh be the set of the nodes on the bound-
ary Γh. Let NIh = Nh \ NBh and {ψi} be the nodal basis in a finite element space
Vh(Ω). We define the spaces

VBh = Span{ψi}i:zi∈NBh
, VIh = Span{ψi}i:zi∈NIh

.

It is also convenient to introduce some vectors and matrices

UIh = (uh(zi))i:zi∈NIh
, UBh = (uh(zi))i:zi∈NBh

KII = (A(ψi, ψj))i,j:zi,zj∈NIh
, KBB = (A(ψi, ψj))i,j:zi,zj∈NBh

KIB = (A(ψi, ψj))i,j:zi∈NIh,zj∈NBh
,MBB = (〈ψi, ψj〉)i,j:zi,zj∈NBh

.

We rewrite (16) in the following algebraic form:

(70) 

KII KIB

Kt
IB KBB





UIh

UBh


 = λh



0 0

0 MBB





UIh

UBh


 .

It is obvious that the matrix KII is symmetric and positive definite. We write
the complete Cholesky factorization of the matrix KII = LLt, where the matrix
L is a lower triangular matrix. Then for the corresponding Schur complement we
have

S = KBB −Kt
IBL

−tL−1KIB.

Eliminating UIh from (70), we get

(71) SUBh = λhMBBUBh.

We use the subspace iterative algorithm (see, e.g. [22]) to solve the general
algebraic eigenvalue problem (71).
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4. The Multiscale Numerical Algorithm

We recall (8), and summarize the multiscale finite element method for solving
the Steklov eigenvalue problem (1) by means of the following parts:

Part I. Compute the cell functions Nα1
(ξ), Nα1α2

(ξ), α1, α2 = 1, 2, · · · , n in a
reference cell Q = (0, 1)n.

Part II. Solve the modified homogenized Steklov eigenvalue problem (16) in a
whole domain Ω in a coarse mesh.

Part III. Calculate the higher-order derivatives
∂lũ0k(x)

∂xα1
· · · ∂xαl

, l = 1, 2, α1, α2 =

1, 2, · · · ,
n; k ≥ 1 by using the finite difference method, where ũ0k(x) is the k-th eigenfunction
of the modified homogenized Steklov eigenvalue problem (16). The key step of

our method is to replace the derivatives
∂ũ0k(x)
∂xi

,
∂2ũ0k(x)
∂xi∂xq

at the nodal point Np

by the first-order difference quotients δxi
ũ0k,h(Np) and the second-order difference

quotients δ2xixq
ũ0k,h(Np), respectively. We remark that one cannot directly compute

the higher-order derivatives from the finite element solutions.
Part IV. Solve the modified boundary layer equation (68) in a fine mesh.
We first introduce the first-order difference quotients given by

(72) δxi
ũ0k,h(Np) =

1

τ(Np)

∑

e∈σ(Np)

(
∂ũ0k,h
∂xi

)

e

(Np),

where σ(Np) is the set of elements with node Np, τ(Np) is the number of elements

of σ(Np), ũ
0
k,h(x) is the finite element solution of ũ0k(x) in Vh(Ω), and (

∂ũ0k,h
∂xi

)e(Np)

is the value of the derivative
∂ũ0k,h
∂xi

at node Np relative to element e.

Analogously, the second-order difference quotients are then given by

(73) δ2xixq
ũ0k,h(Np) =

1

τ(Np)

∑

e∈σ(Np)

d∑

j=1

δxq
ũ0k,h(Pj)

(
∂ψj

∂xi

)

e

(Np),

where d is the number of nodes in e, Pj are the nodes of e, ψj(x) are Lagrange’s
shape functions, j = 1, 2, . . . , d.

In summary, we define the multiscale finite element scheme as follows:

(74) Uε,h0,h
s,k,h1

(Np) =

{
uε,h0,h
s,k (Np), Np ∈ Ω0

ũε,bs,k,h1
(Np), Np ∈ Ω1,

where

(75) uε,h0,h
s,k (Np) = ũ0k,h(Np) +

s∑

l=1

εl
n∑

α1,··· ,αl=1

Nh0

α1···αl
(ξ(Np))δ

l
xα1

···xαl
ũ0k,h(Np),

and ũε,bs,k,h1
denotes the finite element solution of ũε,bs,k in W ε

h1
(Ω1), k ≥ 1, s =

1, 2, Np ∈ Ω is a nodal point, h0, h, h1 are the mesh parameters of Q, Ω, Ω1,
respectively.
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In order to improve the numerical accuracy, we employ the postprocessing tech-
nique given by

(76)
Puε,h0,h

s,k (x) = I
(2m)
2h ũ0k,h(x)

+
s∑

l=1

εl
n∑

α1,··· ,αl=1
Nh0

α1···αl
(ξ)δlxα1

···xαl
I
(2m)
2h ũ0k,h(x), x ∈ Ω0, s = 1, 2

where the interpolation operator I
(2m)
2h is as given in Lemma 3.3.

Finally, we state the error estimates for the multiscale finite element method.
Theorem 4.1 Suppose that Ω ⊂ Rn, n ≥ 2, is a bounded Lipschitz polygonal

convex domain or a smooth domain with the boundary ∂Ω, Ω0 ⊂⊂ Ω, Ω1 = Ω\Ω0.
Let (λεk, u

ε
k(x)) be the k-th eigenpair of the Steklov eigenvalue problem (1). Assume

that (λ
(0)
k , u0k(x)), (λ̃

(0)
k , ũ0k(x)) are the k-th eigenpairs of the homogenized Steklov

eigenvalue problems (6) and (16), respectively, (λ̃
(0)
k,h, ũ

0
k,h(x)) are the corresponding

finite element solutions of (λ̃
(0)
k , ũ0k(x)) in Vh(Ω). u

ε,h0,h
s,k (x), uε,bs,k,h1

(x) are defined

in (75). Under assumptions (A1) − (A4) and (F2) − (F3), we have the following
error estimates:

(77) |λεk − λ̃
(0)
k,h| ≤ C(k)

{
ε1/2 + h20 + h2m

}
,

(78) ‖u0k − ũ0k,h‖1,Ω ≤ C(k)
{
h20 + hm

}
,

(79)

‖uεk − uε,h0,h
s,k ‖1,Ω0

≤ C(k)
{
ε1/2 + h0 + hm + ε2hm−2

}
, m ≥ 1, s = 1, 2, k ≥ 1,

and

(80)
‖uεk − uε,bs,k,h1

‖1,p,Ω1
≤ C(k)

{
ε1/2 + h0 + hm + ε2hm−2 + (h1

ε2
)
}
,

m ≥ 1, k ≥ 1, 1 < p ≤ p0 < 2

where C(k) is a constant independent of ε, h0, h, h1; h0, h, h1 are mesh parameters
of Q, Ω and Ω1, respectively.

Proof. Given

λεk − λ̃
(0)
k,h = λεk − λ

(0)
k + λ

(0)
k − λ̃

(0)
k + λ̃

(0)
k − λ̃

(0)
k,h.

Using Lemma 2.2, Proposition 3.2 and Lemma 3.1, we complete the proof of (77).
Since u0k− ũ

0
k,h = u0k− ũ

0
k+ ũ

0
k− ũ

0
k,h, it follows from Proposition 3.2 and Lemma

3.2 that the proof of (78) is complete.
We recall that

(81) uεk − uε,h0,h
s,k = uεk − uεs,k + uεs,k − uε,h0,h

s,k .

On the other hand, we have

(82)

uεs,k(x)− uε,h0,h
s,k (x) = u0k(x) − ũ0k(x) + ũ0k(x)− ũ0k,h(x)

+
s∑

l=1

εl
n∑

α1,··· ,αl=1

[
Nα1···αl

(ξ)−Nh0

α1···αl
(ξ)
]

∂lu0k(x)
∂xα1

· · · ∂xαl

+
s∑

l=1

εl
n∑

α1,··· ,αl=1
Nh0

α1···αl
(ξ)

∂l(u0k(x) − ũ0k(x))
∂xα1

· · · ∂xαl

+
s∑

l=1

εl
n∑

α1,··· ,αl=1
Nh0

α1···αl
(ξ)
[

∂lũ0k(x)
∂xα1

· · · ∂xαl

− δlxα1
···xαl

ũ0k,h(x)
]
.

It follows from Proposition 3.2 that

(83) ‖u0k(x)− ũ0k(x)‖1,Ω0
≤ Ch20.



MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM 61

By using Lemma 3.2, we have

(84) ‖ũ0k(x)− ũ0k,h(x)‖1,Ω0
≤ Chm.

Thanks to the interior regularity estimates for elliptic equations (see [20]), taking

into account d
dxi

→ ∂
∂xi

+ ε−1 ∂
∂ξi

and using Proposition 3.1, we get

(85)

‖
s∑

l=1

εl
n∑

α1,··· ,αl=1

[
Nα1···αl

(ξ)−Nh0

α1···αl
(ξ)
] ∂lu0k(x)

∂xα1
· · · ∂xαl

‖1,Ω0
≤ Ch0, s = 1, 2.

Recalling d
dxi

→ ∂
∂xi

+ ε−1 ∂
∂ξi

, it follows from Propositions 3.1 and 3.3 that

(86) ‖
s∑

l=1

εl
n∑

α1,··· ,αl=1

Nh0

α1···αl
(ξ)

∂l(u0k(x)− ũ0k(x))

∂xα1
· · · ∂xαl

‖1,Ω0
≤ Ch20, s = 1, 2.

We observe the final terms of (82) and estimate their errors. First, taking into

account d
dxi

→ ∂
∂xi

+ ε−1 ∂
∂ξi

, we have

(87)
‖εNh0

α1
(ξ)
(
∂ũ0k(x)
∂xα1

− δxα1
ũ0k,h(x)

)
‖1,Ω0

≤ C
{
‖
∂ũ0k(x)
∂xα1

− δxα1
ũ0k,h‖0,Ω0

+ε‖
∂ũ0k(x)
∂xα1

− δxα1
ũ0k,h‖1,Ω0

}
.

Since
( ∂ũ0k
∂xα1

− δxα1
ũ0k,h

)
(Np) =

1

τ(Np)

∑

e∈σ(Np)

(∂(ũ0k − ũ0k,h)

∂xα1

)
e
(Np),

using Lemma 3.2, we have

(88) ‖
∂ũ0k(x)

∂xα1

− δxα1
ũ0k,h‖0,Ω0

≤ Chm, m ≥ 1.

On the other hand, using (72) and (73), it is obvious that

( ∂2ũ0k
∂xi∂xα1

−
∂

∂xi
δxα1

ũ0k,h

)
(Np) =

( ∂2ũ0k
∂xi∂xα1

− δ2xixα1

ũ0k,h

)
(Np).

Recalling (73) and using ‖ψj‖1,e ≤ Ch−1, we get

(89) ‖
∂ũ0k(x)

∂xα1

− δxα1
ũ0k,h(x)‖1,Ω0

≤ Chm−1, m ≥ 1.

Combining (87)-(89) gives

(90) ‖εNh0

α1
(ξ)
(∂ũ0k(x)
∂xα1

− δxα1
ũ0k,h(x)

)
‖1,Ω0

≤ C
{
hm + εhm−1

}
≤ C

{
hm + ε

}
.

Similarly, we can prove

(91)

‖ε2Nh0

α1α2
(ξ)
[
∂2ũ0k(x)
∂xα1

∂xα2

− δ2xα1
xα2

ũ0k,h(x)
]
‖1,Ω0

≤ C
{
ε‖
∂2ũ0k(x)
∂xi∂xα1

− δ2xixα1

ũ0k,h(x)‖0,Ω0

+ε2‖
∂2ũ0k(x)
∂xi∂xα1

− δ2xixα1

ũ0k,h(x)‖1,Ω0

}

≤ C
{
εhm−1 + ε2hm−2

}
≤ C

{
ε+ ε2hm−2

}
, m ≥ 1.
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Combining (81)-(91), and using Lemma 2.2, we obtain

‖uεk − uε,h0,h
s,k ‖1,Ω0

≤ C
{
ε1/2 + h0 + hm + ε2hm−2

}
, m ≥ 1, s = 1, 2.

Therefore, (79) holds.
Following the lines of the proof of Theorem 3.3 of [11], we obtain

(92) ‖ũε,bs,k‖2,p,Ω1
≤ C(k)ε−2‖ũ0s,k‖2,p,Ω ≤ C(k)ε−2,

where C(k) is a constant independent of ε; 1 < p < 2.
It is obvious that

(93)
uεk − ũε,bs,k,h1

= uεk − uε,bs,k + uε,bs,k − ũε,bs,k,h1

= uεk − uε,bs,k + uε,bs,k − ũε,bs,k + ũε,bs,k − ũε,bs,k,h1
.

We recall (7) and (68), and get

(94)
‖uε,bs,k − ũε,bs,k‖1,p,Ω1

≤ C(k)
{
‖uεs,k − uε,h0,h

s,k ‖1,Ω0

+|λ
(0)
k − λ̃

(0)
k,h|
}
.

It follows from (94),(79) and (77) that

(95) ‖uε,bs,k − ũε,bs,k‖1,p,Ω1
≤ C(k)

{
ε1/2 + h0 + hm + ε2hm−2

}
.

Using the error estimates of the finite element method and (92), we have

(96) ‖ũε,bs,k − ũε,bs,k,h1
‖1,p,Ω1

≤ C(k)h1‖ũ
ε,b
s,k‖2,p,Ω1

≤ C(k)
(h1
ε2

)
.

By using Lemma 2.2, (93)-(96) and the triangle inequality, we complete the proof
of (80). Therefore the proof of Theorem 4.1 is complete.

In conclusion, we obtain a superapproximation estimate for the multiscale finite
element method:

Theorem 4.2 Suppose that Ω ⊂ R2 is a bounded Lipschitz polygonal convex
domain or a smooth domain with the boundary ∂Ω, Ω0 ⊂⊂ Ω, Ω1 = Ω \ Ω0. Let
(λεk, u

ε
k(x)) be the k-th eigenpair of the Steklov eigenvalue problem (1). Assume

that (λ
(0)
k , u0k(x)), (λ̃

(0)
k , ũ0k(x)) are the k-th eigenpairs of the homogenized Steklov

eigenvalue problems (6) and (16), respectively, (λ̃
(0)
k,h, ũ

0
k,h(x)) are the corresponding

finite element solutions of (λ̃
(0)
k , ũ0k(x)) in Vh(Ω). Puε,h0,h

s,k , I
(2m)
2h ũ0k,h are given

in (76) and (60), respectively. Under assumptions (A1) − (A4), (F1) − (F3), if
u0k, ũ

0
k ∈ Hs+2(Ω0) ∩ Hm+1(Ω0), then we have the following superapproximation

estimates:

(97) ‖u0k − I
(2m)
2h ũ0k,h‖1,Ω ≤ C(k)

{
h20 + hm+ 1

2

}
,

and

(98)
‖uεk − Puε,h0,h

s,k ‖1,Ω0
≤ C(k)

{
ε1/2 + h0 + hm+ 1

2 + ε2hm− 3

2

}
,

m ≥ 1, s = 1, 2, k ≥ 1,

where C(k) is a constant independent of ε, h0, h; h0, h are the mesh parameters of
Q and Ω, respectively.

Following the lines of the proof of Theorem 4.1, and using Theorem 3.2, we
complete the proof of Theorem 4.2.

Remark 4.1 We would like to state that Theorem 4.1 is valid in any higher-
dimensional cases, but the superapproximation estimates in Theorem 4.2 are true
only in two dimensional cases.
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Table 1. The computational results in Example 5.1: the first eigenvalue

h 1/4 1/6 1/8 1/10 1/12
λ1,h 1.030841 1.013773 1.007768 1.004979 1.003461

λ
(2m)
1,2h 1.000344 1.000090 1.000032 1.000013 1.000005

5. Numerical Case Studies

To validate the developed multiscale algorithm and to confirm the theoretical
analysis reported in this paper, we present numerical simulations for the following
case studies.

Example 5.1 We first present the numerical example, which supports the su-
perapproximation results of Theorem 3.2. To this end, we consider the following
Steklov eigenvalue problem with constant coefficients

(99)





−∆u = 0, x ∈ Ω,
u = 0, x ∈ Γ0,
∂u
∂ν

= λu, x ∈ Γ1,

where Ω = (0, 1)2, Γ0 = {(x1, x2)| x1x2 = 0}, Γ1 = {(x1, x2)| 0 < x1 ≤ 1, x2 =
1} ∪ {(x1, x2)| x1 = 1, 0 < x2 < 1}.

It is obvious that the exact first eigenpair of problem (99) is (λ1, u1), where λ1 =
1, u1(x1, x2) = x1x2. In the standard approach, we first apply linear triangular
elements to solve problem (99). The numerical results for the first eigenvalue of
(99) are illustrated in Table 1, where λ1,h denotes the finite element solution of the
first eigenvalue λ1. It can be verified that λ1 ≤ λ1,h ≤ λ1 + C1h

β , β = 1.9909,
which is consistent with Lemma 3.1. In addition, we use the following formula to
compute the first eigenvalue of (99):

(100) λ
(2m)
1,2h =

a(I
(2m)
2h u1,h, I

(2m)
2h u1,h)

〈I
(2m)
2h u1,h, I

(2m)
2h u1,h〉

, m = 1,

where the operator I
(2m)
2h is given in Lemma 3.3, and u1,h is the finite element

solution of the first eigenfunction u1 of problem (99). The numerical results are

listed in Table 1. It can be verified that λ1 ≤ λ
(2m)
1,2h ≤ λ1 + C1h

β , β = 3.7887
Remark 5.1 We observe the computational results in Table 1, and conclude that

the formula (100) improves the numerical accuracy for computing the eigenvalues
of problem (99) in two dimensional cases.

For the first eigenfunction u1(x1, x2), we have the following numerical errors:

(101) ‖u1 − u1,h‖0,Ω ≤ C1h
1.67, ‖u1 − I

(2m)
2h u1,h‖0,Ω ≤ C2h

3.18,

and

(102) ‖u1 − u1,h‖1,Ω ≤ C3h, ‖u1 − I
(2m)
2h u1,h‖1,Ω ≤ C4h

1.54,

where Ci, i = 1, 2, 3, 4 are constants independent of h, and the higher-order in-

terpolation operator I
(2m)
2h , m = 1 has been defined in Lemma 3.3. The further

computational results are illustrated in Fig.5:(a)-(d).
Remark 5.2 The error estimates both (101) in the L2(Ω) norm and (102) in

the H1(Ω) norm demonstrate the superapproximation result of Theorem 3.2.
Example 5.2 We consider the similar Steklov eigenvalue problem to Exam-

ple 5.1, where a domain Ω = (0, 1)3, Γ0 = {(x1, x2, x3)| x1x2x3 = 0}, Γ1 =
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Figure 5. In Example 5.1: (a) The relationship between ln(‖u1−
u1,h‖0,Ω) and ln(h); (b) the relationship between ln(‖u1 −

I
(2m)
2h u1,h‖0,Ω) and ln(h); (c) the relationship between ln(‖u1 −
u1,h‖1,Ω) and ln(h); (d) the relationship between ln(‖u1 −

I
(2m)
2h u1,h‖1,Ω) and ln(h).

{(x1, x2, x3)| x3 = 1, 0 < x1 ≤ 1, 0 < x2 ≤ 1} ∪ {(x1, x2, x3)| x2 = 1, 0 <
x1 ≤ 1, 0 < x3 < 1} ∪ {(x1, x2, x3)| x1 = 1, 0 < x2 < 1, 0 < x3 < 1}.

The exact first eigenpair (λ1, u1) of the problem is λ1 = 1, u1(x1, x2, x3) =
x1x2x3. To verify that whether Theorem 3.2 is valid or not in three dimensional
cases, we do some numerical simulations. We employ linear tetrahedral elements
to solve the problem, where λ1,h denotes the finite element solution of the first
eigenvalue λ1. It can be verified that λ1 ≤ λ1,h ≤ λ1 + C1h

β , β = 1.9905, which
is consistent with Lemma 3.1. Also we use the formula (100) to compute the

first eigenvalue λ1 and obtain the following numerical error: λ1 ≤ λ
(2m)
1,2h ≤ λ1 +

C1h
β , β = 2.1533. The further computational results are illustrated in Table 2.

For the first eigenfunction u1(x1, x2, x3), we have the following numerical errors:

(103) ‖u1 − u1,h‖0,Ω ≤ C1h
1.99, ‖u1 − I

(2m)
2h u1,h‖0,Ω ≤ C2h

2.12,

and

(104) ‖u1 − u1,h‖1,Ω ≤ C3h, ‖u1 − I
(2m)
2h u1,h‖1,Ω ≤ C4h

1.14,
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Table 2. The computational results in Example 5.2: the first eigenvalue

h 1/4 1/8 1/10 1/20
λ1,h 1.031391 1.007933 1.005085 1.001275

λ
(2m)
1,2h 1.010156 1.002103 1.001374 1.000315

where Ci, i = 1, 2, 3, 4 are constants independent of h. The further computational
results are shown in Fig.6:(a)-(d).
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Figure 6. In Example 5.2: (a) The relationship between ln(‖u1−
u1,h‖0,Ω) and ln(h); (b) the relationship between ln(‖u1 −

I
(2m)
2h u1,h‖0,Ω) and ln(h); (c) the relationship between ln(‖u1 −
u1,h‖1,Ω) and ln(h); (d) the relationship between ln(‖u1 −

I
(2m)
2h u1,h‖1,Ω) and ln(h).

Remark 5.3 Observing the computational results listed in Table 2, (103)-(104)
and Fig.6:(a)-(d), we conclude that we can not obtain the similar superapproxima-
tion estimates for the eigenvalues and the eigenfunctions to Theorem 3.2 in three
dimensional cases.
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Example 5.3 We consider the Steklov eigenvalue problem

(105)





− ∂
∂xi

(
aij(

x
ε )
∂uεk(x)
∂xj

)
+ a0(

x
ε )u

ε
k(x) = 0, x ∈ Ω,

νiaij(
x
ε )
∂uεk(x)
∂xj

= λεku
ε
k(x), x ∈ ∂Ω.

where Ω = (0, 1)2 is a periodic structure as illustrated in Figure 7, and the reference
cell Q is shown as in Figure 8, Γ0 = {(x1, x2)| 0 < x1 < 0.2, x2 = 0.2 − x1} ∪
{(x1, x2)| 0 < x1 < 0.2, x2 = 0.8 + x1} ∪ {(x1, x2)| 0.8 < x1 < 1, x2 = 1.8 −
x1} ∪ {(x1, x2)| 0.8 < x1 < 1, x2 = x1 − 0.8}, Γ1 = {(x1, x2)| 0.2 ≤ x1 ≤
0.8, x2 = 0}∪{(x1, x2)| x1 = 1, 0.2 ≤ x2 ≤ 0.8}∪{(x1, x2)| 0.2 ≤ x1 ≤ 0.8, x2 =
1} ∪ {(x1, x2)| x1 = 0, 0.2 ≤ x2 ≤ 0.8}, ν = (ν1, · · · , νn) is the outward unit

normal to Γ1. We take ε = 1
5.

Figure

7. Domain
Ω.

O 1

1

1

5

4

5

1

5

4

5

aij0

aij1

Figure

8. The
reference
cell Q.

In (105), let a0(
x
ε ) = 0 and δij be a Kronecker symbol.

Case 2.1: aij0 = δij , aij1 = 0.1δij ;
Case 2.2: aij0 = δij , aij1 = 0.01δij.
Case 2.3: aij0 = δij , aij1 = 0.001δij.
In order to show the numerical accuracy of the method presented in this paper,

we need to know the exact solution of the original problem (105). Since this is
extremely difficult, we replace the exact solution with the finite element solution
in a fine mesh. We employ linear triangular elements to solve the original problem
(105). In real applications, this step is not necessary, and we can apply our method
to solve numerically problem (105) in more complicated structures.

Here we use the linear triangular elements to compute the cell functions Nα1
(ξ),

Nα1α2
(ξ), α1, α2 = 1, 2 defined in (4) and (5), the modified homogenized Steklov

problem (16) and the boundary layer solution (7), respectively. The numbers of
elements and nodes are listed in Table 3.

The numerical results of several eigenvalues and eigenfunctions of the relat-
ed problems in Example 5.3 are illustrated as in Tables 4-9, respectively. Here
λεk, k = 1, 2, 3, 4 are the finite element solutions of the four minimal eigenvalues

of the original problem (105) in a fine mesh, and λ
(0)
k , k = 1, 2, 3, 4 are the finite

element solutions of the corresponding eigenvalues of the modified homogenized
Steklov eigenvalue problem (16) in a coarse mesh. The functions uεk(x), k = 1, 2, 3, 4
are the finite element solutions of the eigenfunctions associated with four minimal
eigenvalues of problem (105) in a fine mesh, while u0k(x), k = 1, 2, 3, 4 denote the
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finite element solutions of the corresponding eigenfunctions for the modified homog-
enized Steklov eigenvalue problem (16) in a coarse mesh. Finally, it should be noted
that the functions Uε

1,k(x), U
ε
2,k(x), k = 1, 2, 3, 4 are respectively the first-order and

the second-order multiscale finite element solutions based on the expansion (74).
We set e0,k = uεk − u0k, e1,k = uεk − Uε

1,k, e2,k = uεk − Uε
2,k.

Table 3. Comparison of computational cost

original problem cell problem homogenized equation boundary layer

elements 18400 800 1150 11200

nodes 9361 441 616 5880

The numerical results for the second eigenfunction in Case 2.1, the second eigen-
function in Case 2.2 and the second eigenfunction in Case 2.3 are illustrated in
Figs.9-14, respectively.

Remark 5.4 The numerical results as shown as in Tables 4, 6 and 8, show that
the eigenvalues of the modified homogenized Steklov eigenvalue problem (16) in a
coarse mesh are close to those of the original Steklov eigenvalue problem (105) in
a fine mesh. This implies that, in order to calculate the eigenvalues for the Steklov
eigenvalue problem (105) with rapidly oscillating coefficients, we only need to com-
pute the associated eigenvalues for the homogenized Steklov eigenvalue problem
(16) in a coarse mesh.

Remark 5.5 The computational results that are illustrated in Tables 5, 7 and
9, show that the error estimates of Theorem 4.1 are correct. Figs.9-14 support

Table 4. Comparison of computational results in Case 2.1: four
minimal eigenvalues

original problem (λεk) homogenized equation (λ
(0)
k ) relative error

k=1 1.989091 2.016775 0.013726
k=2 2.726728 2.777857 0.018405
k=3 2.726728 2.777857 0.018405
k=4 3.018254 3.077715 0.019319

Table 5. Comparison of computational results in Case 2.1: eigenfunctions

‖e0,k‖L2

‖u0

k
‖
L2

‖e1,k‖L2

‖Uε
1,k

‖
L2

‖e2,k‖L2

‖Uε
2,k

‖
L2

‖e0,k‖H1

‖u0

k
‖
H1

‖e1,k‖H1

‖Uε
1,k

‖
H1

‖e2,k‖H1

‖Uε
2,k

‖
H1

k=1 0.046642 0.010421 0.010569 0.503885 0.096686 0.096983
k=2 0.077027 0.017251 0.017247 0.447108 0.058885 0.056487
k=3 0.077011 0.017289 0.017283 0.447112 0.058889 0.056483
k=4 0.093801 0.028623 0.028950 0.490832 0.092353 0.095392

Table 6. Comparison of computational results in Case 2.2: four
minimal eigenvalues

original problem homogenized solutions relative error
1 1.778715 1.740666 0.021858
2 2.410815 2.397551 0.005532
3 2.410815 2.397551 0.005532
4 2.649853 2.656357 0.002448
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Table 7. Comparison of computational results in Case 2.2: eigenfunctions

‖e0,k‖L2

‖u0

k
‖
L2

‖e1,k‖L2

‖Uε
1,k

‖
L2

‖e2,k‖L2

‖Uε
2,k

‖
L2

‖e0,k‖H1

‖u0

k
‖
H1

‖e1,k‖H1

‖Uε
1,k

‖
H1

‖e2,k‖H1

‖Uε
2,k

‖
H1

k=1 0.053723 0.017170 0.017380 0.547313 0.110316 0.111782
k=2 0.077907 0.017476 0.017273 0.478182 0.058563 0.058872
k=3 0.078021 0.017343 0.017435 0.471127 0.059898 0.059838
k=4 0.107685 0.023138 0.024143 0.543290 0.100363 0.107822

Table 8. Comparison of computational results in Case 2.3: four
minimal eigenvalues

original problem homogenized solutions relative error
1 1.755958 1.711058 0.026241
2 2.376704 2.356769 0.008458
3 2.376704 2.356769 0.008458
4 2.610057 2.611173 0.000427

Table 9. Comparison of computational results in Case 2.3: eigenfunctions

‖e0,k‖L2

‖u0

k
‖
L2

‖e1,k‖L2

‖Uε
1,k

‖
L2

‖e2,k‖L2

‖Uε
2,k

‖
L2

‖e0,k‖H1

‖u0

k
‖
H1

‖e1,k‖H1

‖Uε
1,k

‖
H1

‖e2,k‖H1

‖Uε
2,k

‖
H1

k=1 0.054601 0.018881 0.019093 0.552150 0.113700 0.115508
k=2 0.078702 0.018135 0.018724 0.480898 0.058798 0.058327
k=3 0.078931 0.018219 0.018385 0.481236 0.058901 0.058433
k=4 0.109257 0.024977 0.023893 0.548967 0.110832 0.102708

the results of Theorem 4.1. They show that the multiscale finite element method
has better numerical accuracy compared with the homogenization method. Finally,
we observe that the multiscale correctors presented this paper are essential for the
improvement of the numerical accuracy.

Remark 5.6 We observe the numerical results presented in Tables 5, 7 and
9, and conclude that the first-order multiscale method should be a better choice
compared with the homogenization method and is sufficient to describe the detail
of solutions compared with the second-order multiscale method for the Steklov
eigenvalue problem (1), which is different from other eigenvalue problems, see [11,
12, 13].

To support the convergence results of Lemma 2.2, we present the following nu-
merical example:

Example 5.4 We consider the following Steklov eigenvalue problem

(106)





− ∂
∂xi

(
aij(

x
ε )
∂uεk(x)
∂xj

)
= 0, x ∈ Ω,

uεk(x) = 0, x ∈ Γ0

νiaij(
x
ε )
∂uεk(x)
∂xj

= λεku
ε
k(x), x ∈ Γ1.

where Ω = (0, 1)2, Γ0 = {(x1, x2)| x1x2 = 0}, Γ1 = {(x1, x2)| 0 < x1 ≤ 1, x2 =
1} ∪ {(x1, x2)| x1 = 1, 0 < x2 < 1}.

We respectively use the homogenization method, the first-order and the second-
order multiscale methods to compute the first eigenfunctions of problem (106) with
respect to different small periodic parameters ε. Without confusion uε1(x) denotes
the finite element solution of the first eigenfunction in a fine mesh and replace
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Figure 9. Case 2.1: uε2.
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Figure 10. Case 2.1: Uε
1,2.

Table 10. Comparison of the computational results for different ε

ε 1
2

1
4

1
8

1
16

1
32

‖e0,1‖0/‖u
ε
1‖0 0.029457 0.015057 0.007578 0.003791 0.001856

‖e1,1‖0/‖u
ε
1‖0 0.005226 0.002192 0.001091 0.000542 0.000272

‖e2,1‖0/‖uε1‖0 0.004835 0.002171 0.001091 0.000542 0.000272
‖e0,1‖1/‖uε1‖1 0.174892 0.176840 0.175498 0.175572 0.170115
‖e1,1‖1/‖uε1‖1 0.035144 0.029460 0.027802 0.026155 0.024534
‖e2,1‖1/‖uε1‖1 0.030461 0.025159 0.023484 0.023074 0.022518

the exact solution of problem (106) by the approximate solution. u01(x) is the
finite element solution of the first eigenfunction for the corresponding homogenized
Steklov problem (16) in a coarse mesh. uε1,1(x), u

ε
2,1(x) denote the first-order and

the second-order multiscale solutions for the first eigenfunction of problem (106),
respectively. The numbers of elements and nodes are listed in Table 3. We set
e0,1 = uε1−u

0
1, e1,1 = uε1−u

ε
1,1, e2,1 = uε1−u

ε
2,1. The numerical results for different

ε are illustrated in Table 10 and Fig.15, where ‖v‖0 = ‖v‖L2(Ω), ‖v‖1 = ‖v‖H1(Ω).
Observing the numerical results for the first eigenfunction uε1, we can obtain the

following error estimates:
(107)
‖uε1−u

0
1‖0,Ω ≤ C0ε

0.9966, ‖uε1−u
ε
1,1‖0,Ω ≤ C1ε

1.0544, ‖uε1−u
ε
2,1‖0,Ω ≤ C2ε

1.0306,
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Figure 11. Case 2.1: Uε
2,2.
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Figure 12. Case 2.1: u02.
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Figure 13. In Case
2.2, comparison of
the numerical errors
es,2, s = 0, 1, 2 of the
second eigenfunction
along the diagonal
line x2 = x1.
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Figure 14. In Case
2.3, comparison of
the numerical errors
es,2, s = 0, 1, 2 of the
second eigenfunction
along the line x2 =
0.5.

where Ci, i = 0, 1, 2 are constants independent of ε.
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Figure 15. Homogenization: The relationship between ln(‖uε1 −
u01‖0,Ω) and ln(ε). The first-order multiscale method: The rela-
tionship between ln(‖uε1 − uε1,1‖0,Ω) and ln(ε). The second-order
multiscale method: The relationship between ln(‖uε1 − uε2,1‖0,Ω)
and ln(ε).

Conclusions.

This paper discussed the multiscale finite element computation of a Steklov eigen-
value problem with rapidly oscillating coefficients. The new contributions obtained
in this paper were to present the multiscale finite element method and to derive the
convergence result (see Theorems 4.1 and 4.2). In particular, a superapproximation
estimate for solving the homogenized Steklov eigenvalue problem was obtained. To
our knowledge, there are no other results in the literature on this problem. The nu-
merical results given in Section 5 validated the theoretical results presented earlier
in the paper.
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