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EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON

GENERAL MESHES

QUN LIN AND HEHU XIE

Abstract. In this paper, we consider the extrapolation method for second order elliptic prob-
lems on general meshes and derive a type of finite element expansion which is dependent of the
triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and
also validates the extrapolation method can be applied on the automatically produced meshes of
the general computing domains. Some numerical examples are given to illustrate the theoretical
analysis.
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1. Introduction

It is well known that the extrapolation method, which was established by Richard-
son in 1926, is an efficient procedure for increasing the solution accuracy of many
problems in numerical analysis. The effectiveness of this technique relies heavily
on the existence of an asymptotic expansion for the error. The application of this
approach in finite difference method can be found in the book of Marchuk and
Shaidurov [11]. This technique has been well demonstrated in the frame of the
finite element method [7, 10, 9, 5].

Usually in the finite element method, we first need to get the error expansion
for the solution approximations such as [7, 2, 10, 9, 5]

uh(x)− πhu(x) = c1(u)h
k +O(hk+δ),(1)

in some norm sense, where c1 is a function depending on u and independent of
h, δ > 0, uh and πhu are the finite element approximation and interpolation,
respectively. Then we can use the extrapolation method ([7, 2, 10, 9])

uextrah :=
2kuh/2 − uh

2k − 1
,(2)

which has higher convergence order O(hk+δ) only at the mesh nodes ([7]).
If we want to obtain globally higher order convergence, we must need to apply

the higher order interpolation postprocessing operator Qh ([7, 9, 5])

uextrah :=
2kQh/2uh/2 −Qhuh

2k − 1
,(3)

which has globally higher convergence order O(hk+δ).
So far there are two types of extrapolation schemes for the finite element method

as described above: mesh nodes extrapolation and extrapolation based on the in-
terpolation postprocessing. So, the key for the extrapolation of the finite element
method is whether we can get the expansion (1) for the finite element approxima-
tion. But, so far the expansion (1) almost need structured meshes ([7, 2, 8, 10, 9, 5]).
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So far, we always study the extrapolation situation under the structured mesh
and the mesh condition is the important restrict for the extrapolation method
extended to general meshes. In this paper, we first consider the interpolation ex-
pansion on general meshes and then derive what kind of needed properties of the
meshes to improve the accuracy of the finite element approximations by extrapo-
lation method. For this aim, we derive the definition of the mesh measurement for
the finite element extrapolation. And based on the properties of the mesh mea-
surement, we can obtain that the extrapolation method always has effectiveness on
general meshes.

For simplicity, we consider the following second order elliptic problem

B(u, v) =

∫

Ω

(A∇u · ∇v + ρuv)dxdy = f(v), ∀v ∈ V := H1
0 (Ω),(4)

where A = {aij}1≤i,j≤2 ∈ R2×2 is a symmetric positive definite matrix, ρ ≥ 0 in
Ω, f(·) a bounded linear functional in H−1(Ω), and Ω is a bounded domain in R2

with Lipschitz boundary ∂Ω. For simplicity, we assume the matrix A and function
ρ are smooth enough.

Let Th be the consistent triangulation of the domain Ω in the set of triangular
elements and satisfy the following quasi-uniform condition:

∃σ > 0 such that hK/τK > σ, ∀K ∈ Th

and
∃γ > 0, such that max{h/hK, K ∈ Th} ≤ γ,

where hK is the diameter of K; τK is maximum diameter of the inscribed circle in
K ∈ Th; and h := max{hK ,K ∈ Th}.

The linear finite element space Vh on Th is defined as follows:

Vh =
{
v ∈ H1(Ω), v|K ∈ P1(K), ∀K ∈ Th

}
∩H1

0 (Ω),

where P1 = span{1, x, y}. For our analysis, we need to define the interpolation
operator πh : H2(Ω) 7→ Vh on the mesh Th as

πhu(Zi) = u(Zi), i = 1, 2, 3,

where Zi are the three vertices of element K ∈ Th.
Based on the finite element space Vh, we define the Ritz-projection operator

Lh : V 7→ Vh as

B(Lhu, vh) = f(vh), ∀vh ∈ Vh.(5)

It is known about the convergence rate that

‖Lhu− u‖0 + h‖Lhu− u‖1 ≤ Ch2‖u‖2,(6)

where ‖ · ‖0 denotes the L2-norm.
In order to use the extrapolation method, we need to refine the mesh Th in the

regular way. Each element K ∈ Th is subdivided into 4 congruent triangles by
connecting the midpoints of its edges (see Figure 3) and we get the finer mesh Th/2.
In the similar way, we can define the finite element space Vh/2 and the corresponding
operators πh/2, Lh/2 on the finer mesh Th/2. It is obviously Vh ⊂ Vh/2.

Other notations for Sobolev spaces and norms in them (including with fractional
orders) are standard and can be found in many sources like [4].

The rest of the paper is organized in the following way. In section 2 we give
some useful preliminary lemmas. Interpolation expansions are obtained in section
3. Section 4 is devoted to deriving the asymptotic error expansion of the finite
element approximation. The extrapolation method is discussed in Section 5. In
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section 6, two numerical examples are given to illustrate the validity of our analysis.
Finally, we give some concluding remarks in the last section.

2. Some useful notations and preliminary lemmas

We first need to define some notations and give some geometric identities for
an arbitrary element K. Let K have vertices Zi = (xi, yi) (1 ≤ i ≤ 3) oriented
counterclockwise. Let ei (1 ≤ i ≤ 3) denote the edges of the element K; ni (1 ≤ i ≤
3) are the unit outward normal vectors; ti = (cos θi, sin θi) (1 ≤ i ≤ 3) are the unit
tangent vectors with the counterclockwise orientation and θi are its corresponding
angle to the x-axes; hi (1 ≤ i ≤ 3) are the edge lengths; Hi (1 ≤ i ≤ 3) are the
perpendicular heights (see Figure 1). We also need to define the following constants
of the element K:

li = hi/h, i = 1, 2, 3, α = |K|/h2.

We also use the periodic relation for the subscripts: i+ 3 = i.
Let ∂i = ∂/∂ti.
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Figure 1. The main features of an element K

Now we give some lemmas. They can been found in some papers ([2, 14]) or
book ([10, 9]), but for the convenience of readers, we provide proofs here.

Lemma 2.1.

ti · ni+1 =
2|K|

hihi+1

,(7)

ni · ti+1 = −
2|K|

hihi+1

,(8)

ni =
hihi+1

2|K|
[(ni · ni+1)ti − ti+1], i = 1, 2, 3.(9)

Proof. First, we have

1

2
hiHi = |K|, (hiti) · ni+1 = Hi+1,

then

ti·ni+1 =
1

hi
Hi+1 =

2|K|

hihi+1

.
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So, we obtain (7). Similarly we can obtain (8).
Since ti and ti+1 are two linear independent vectors, we have two constants βi

and βi+1 such that

ni = βiti + βi+1ti+1.

Using equality ti+1 · ni+1 = 0 and (7), we have

ni · ni+1 = βiti · ni+1 =
2βi|K|

hihi+1

.

So

βi =
hihi+1

2|K|
ni · ni+1.

Similarly using equality ti · ni = 0 and (8), we have βi+1 = −hihi+1/(2|K|). This
completes the proof. �

Using (9), we can have the following differential property.

Lemma 2.2.

∂v

∂ni
=

lili+1

2α

[
(ni · ni+1)∂iv − ∂i+1v

]
.(10)

Proof. From (9) we have equality

∂v

∂ni
= ∇v · ni =

lili+1

2α
∇v ·

[
(ni · ni+1)ti − ti+1

]

=
lili+1

2α

[
(ni · ni+1)∂iv − ∂i+1v

]
.

�

We also need the following integration formula.

Lemma 2.3. Assume that v ∈ C1(K̄), then we have

hi+1

∫

ei

vds− hi

∫

ei+1

vds =
h1h2h3
2|K|

∫

K

∂i+2vdxdy.(11)

Proof. With the Green formula, we have
∫

K

∂i+2vdxdy =

∫

∂K

vti+2 · nds,

where ∂K is the boundary of the element K. Using equality ti+2 · ni+2 = 0, (7),
and (8), we have

∫

K

∂i+2vdxdy =

∫

ei

vti+2 · nids+

∫

ei+1

vti+2 · ni+1ds

=
2hi+1|K|

h1h2h3

∫

ei

vds−
2hi|K|

h1h2h3

∫

ei+1

vds.

From this, (11) follows by multiplication of h1h2h3/(2|K|). �
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3. Interpolation expansions

First, we need the following one dimensional interpolation expansion which is
the application of the Bramble-Hilbert lemma and scaling argument.

Lemma 3.1. Let πhu be the linear interplant of u on K and ei be an edge of the
element K. Assume that u ∈ H3(K) and a ∈W 1,∞(K). Then we have

∫

ei

a(u− πhu)
∂vh
∂ni

ds(12)

= −
h2i
12

∫

ei

a∂2i u
∂vh
∂ni

ds+O(h2)‖u‖3,K |vh|1,K , ∀vh ∈ Vh.

Proof. Let ê = [0, 1] be the reference edge and define the affine transformation F

from ei to ê and then K to K̂. Define the functions û = u, π̂û = πhu.
Consider the following linear functional on ê

Φ(û) =

∫

ê

(û − π̂û)dŝ+
1

12

∫

ê

∂2x̂ûdŝ.

By the Sobolev imbedding theorem, we know that the functional Φ is bounded

|Φ(û)| ≤ C‖û‖
3,K̂ .

A direct computation shows that

Φ(û) = 0, ∀û ∈ P2(K̂).

Then the Bramle-Hilbert lemma gives

|Φ(û)| ≤ C|û|
3,K̂ .

With the inverse map of F , we obtain (12) by some easy calculation. �

Now, let’s consider the interpolation error expansion of B(u − πhu, vh).

Theorem 3.1. Let πhu be the piecewise linear interpolant of u. If u ∈ H4(Ω), we
have the following expansion

∫

Ω

∇(u− πhu) · A∇vhdxdy = −
h2

12
W
(
u, vh, Th

)
+
h2

12
K
(
u, vh, Th

)

+O(h2)‖u‖3‖vh‖1, ∀vh ∈ Vh,(13)

where

W (u, vh, Th)

=
∑

K∈Th

3∑

i=1

l3i
li+1(ni · ni+1)

2α

(
(Ai∂

2
i uvh)(Zi+2)− (Ai∂

2
i uvh)(Zi+1)

)

−
∑

K∈Th

3∑

i=1

l4i+2

2α

(
(Ai+2∂

2
i+2uvh)(Zi+2)− (Ai+2∂

2
i+2uvh)(Zi+1)

)
,(14)

K(u, vh, Th) =
∑

K∈Th

3∑

i=1

l3i
li+1(ni · ni+1)

2α

∫

ei

∂i(Ai∂
2
i u)vhds

−
∑

K∈Th

3∑

i=1

l4i
2α

∫

ei+1

∂i+1(Ai∂
2
i u)vhds,(15)
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and

Ai = ni · A · ni.(16)

Proof. We need the following inequality for the finite element space Vh andK ∈ Th:

|vh|1,∂K ≤ Ch−1/2‖vh‖1,K , ∀vh ∈ Vh,(17)

and the trace inequality

‖u‖0,∂K ≤ Ch−1/2‖u‖0,K + Ch1/2‖u‖1,K , for u ∈ H1(K).(18)

With Green formula we have
∫

Ω

∇(u − πhu) · A∇vhdxdy =
∑

K∈Th

3∑

i=1

∫

ei

(u− πhu)ni · (A∇vh)ds

−
∑

K∈Th

∫

K

(u− πhu)∇ · (A∇vh)dxdy

:= Π +O(h2)‖u‖2‖v‖1.(19)

Let’s compute Π as follows

Π =
∑

K∈Th

3∑

i=1

∫

ei

(u− πhu)ni · A · ni
∂vh
∂ni

ds

+
∑

K∈Th

3∑

i=1

∫

ei

(u − πhu)ni · A · ti
∂vh
∂ti

ds

=
∑

K∈Th

3∑

i=1

∫

ei

(u− πhu)Ai
∂vh
∂ni

ds

= −
∑

K∈Th

3∑

i=1

h2i
12

∫

ei

∂2i uAi
∂vh
∂ni

ds+O(h2)‖u‖3‖vh‖1

= −
h2

12

∑

K∈Th

3∑

i=1

∫

ei

l2iAi∂
2
i u
∂vh
∂ni

ds+O(h2)‖u‖3‖vh‖1

:= −
h2

12
I+O(h2)‖u‖3‖vh‖1.(20)

With Green formula and Lemma 2.2, we have

I =
∑

K∈Th

3∑

i=1

l2i
lili+1

2α

∫

ei

Ai∂
2
i u
(
(ni · ni+1)∂ivh − ∂i+1vh

)
ds.(21)

By Lemma 2.3, the following integral formula holds
∫

ei

Ai∂
2
i u∂i+1vhds =

li
li+1

∫

ei+1

Ai∂
2
i u∂i+1vhds+

lili+2

2α

∫

K

∂i+2(Ai∂
2
i u)∂i+1vhdxdy.

From (21) and integration by parts, we can obtain

I =
∑

K∈Th

3∑

i=1

[
l3i
li+1(ni · ni+1)

2α

∫

ei

Ai∂
2
i u∂ivhds−

l4i+2

2α

∫

ei

Ai+2∂
2
i+2u∂ivhds

]

−
∑

K∈Th

3∑

i=1

l3i−1

l1l2l3
(2α)2

∫

K

∂i+1(Ai+2∂
2
i+2u)∂ivhdxdy
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=
∑

K∈Th

3∑

i=1

l3i
li+1(ni · ni+1)

2α

(
(Ai∂

2
i uvh)(Zi+2)− (Ai∂

2
i uvh)(Zi+1)

−

∫

ei

∂i(Ai∂
2
i u)vhds

)

−
∑

k∈Th

3∑

i=1

l4i+2

2α

(
(Ai+2∂

2
i+2uvh)(Zi+2)− (Ai+2∂

2
i+2uvh)(Zi+1)

−

∫

ei

∂i(Ai+2∂
2
i+2u)vhds

)
+O(h2)‖u‖3‖vh‖1.(22)

Combining (20) and (22), we can get the desired result (13). �

Let Nh denote the set of vertices of the triangulation Th and ωh
j := {K : K ∈

Th and Zj ∈ K} denote the patch around the node Zj (see Figure 2). From (14)
and assume the local number of Zj in each triangle K ∈ ωj is i (see Figure 2), we
have

W (u, v, Th) =
∑

K∈Th

3∑

i=1

(
l3i
li+1(ni · ni+1)

2α
(Ai∂

2
i uv)(Zi+2)

−l3i+1

li+2(ni+1 · ni+2)

2α
(Ai+1∂

2
i+1uv)(Zi+2)

)

−
∑

K∈Th

3∑

i=1

( l4i+2

2α
(Ai+2∂

2
i+2uv)(Zi+2)−

l4i
2α

(Ai∂
2
i uv)(Zi+2)

)

=
∑

K∈Th

3∑

i=1

( l3i+1li+2(ni+1 · ni+2)

2α
(Ai+1∂

2
i+1u)(Zi)

−
l3i+2li(ni+2 · ni)

2α
(Ai+2∂i+2u)(Zi)

)
v(Zi)

−
∑

K∈Th

3∑

i=1

( l4i
2α

(Ai∂
2
i u)(Zi)−

l4i+1

2α
(Ai+1∂

2
i+1u)(Zi)

)
v(Zi)

=
∑

Zj∈Nh

[ ∑

K∈ωh
j

( l3i+1li+2(ni+1 · ni+2)

2α
(Ai+1∂

2
i+1u)(Zj)

−
l3i+2li(ni+2 · ni)

2α
(Ai+2∂i+2u)(Zj)

)]
v(Zj)

−
∑

Zj∈Nh

[ ∑

K∈ωh
j

( l4i
2α

(Ai∂
2
i u)(Zj)−

l4i+1

2α
(Ai+1∂

2
i+1u)(Zj)

)]
v(Zj).(23)

Let’s define Ni = (cos2 θi, 2 sin θi cos θi, sin
2 θi). Assume Th has N nodes and let’s

define the matrix Mes(Th) ∈ RN×3 and du ∈ RN×3 as follows

Mes(Th)(j, :) =
∑

K∈ωh
j

(
l3i+1

li+2(ni+1 · ni+2)

2α
Ai+1(Zj)Ni+1

−l3i+2

li(ni+2 · ni)

2α
Ai+2(Zj)Ni+2

)



146 QUN LIN AND HEHU XIE
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Figure 2. The patch ωj and the local numbers of Zj in each K ∈ ωj

−
∑

K∈ωh
j

( l4i
2α
Ai(Zj)Ni −

l4i+1

2α
Ai+1(Zj)Ni+1

)
,(24)

and

du(j, :) =
(
∂2xu(Zj), ∂x∂yu(Zj), ∂

2
yu(Zj)

)
,(25)

where Mes(Th)(j, :) and du(j, :) denote the j-th row of the corresponding matrix.

Corollary 3.1. For W (u, vh, Th), we have
∣∣W (u, vh, Th)

∣∣ =
∣∣∣
∑

Zj∈Nh

Mes(Th)(j, :) · du(j, :)vh(Zj)
∣∣∣, ∀vh ∈ Vh,(26)

where the matrix Mes(Th) is defined as (24). Then the following estimate holds
∣∣W (u, vh, Th)

∣∣ ≤ Ch−1‖Mes(Th)‖F ‖u‖2,∞‖vh‖0, ∀vh ∈ Vh,(27)

where ‖ · ‖F denote the Frobenius matrix norm. Furthermore, we also have the
following estimate for ‖Mes(Th)‖F

‖Mes(Th)‖F ≤ Ch−1.(28)

Proof. From (23) and (24), we can easily obtain (26). By using the following
relations

ch−1‖vh‖0 ≤
( ∑

Zj∈Nh

vh(Zj)
2
) 1

2

≤ Ch−1‖vh‖0, ∀vh ∈ Vh,(29)

and Höider inequality, we can obtain (27). The estimate (28) can be directly
obtained from the quasi-uniform condition of Th. �

4. Asymptotic error expansion

In this section, we give the asymptotic error expansion of the finite element
approximation by using the suitable interpolation postprocessing method.

In order to obtain asymptotic error expansion, we need to construct the following
auxiliary finite element equation:

Find ψ ∈ V such that

B(ψ, v) = g(v), ∀v ∈ V ,(30)
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where

g(v) := −
1

12
W
(
u,Ph/2v, Th

)
+

1

12
K
(
u,Ph/2v, Th

)
,(31)

with Ph/2 is the L2-projection operator with respect to Vh/2 defined on the mesh
Th/2

(
Ph/2φ, vh/2

)
= (φ, vh/2), ∀vh/2 ∈ Vh/2.(32)

First we have the following estimate

sup
v∈V

g(v)

‖v‖0
≤ Ch−1

(
‖Mes(Th)‖F + 1

)(
‖u‖4 + ‖u‖2,∞

)
.(33)

Then from the regularity of the elliptic problem, the following estimate holds

‖ψ‖2 ≤ C sup
v∈V

g(v)

‖v‖0
≤ Ch−1

(
‖Mes(Th)‖F + 1

)(
‖u‖4 + ‖u‖2,∞

)
.(34)

Remark 4.1. Here, we use the projection operator Ph/2 to overcome the difficulty
V 6⊂ L∞(Ω).

Lemma 4.1. Assume u ∈ H4(Ω), Lhu and πhu are the finite element approxima-
tion and interplant corresponding to Th. Then we have

∥∥Lhu− πhu− h2Lhψ
∥∥
1
≤ Ch2‖u‖3.(35)

Proof. Let ηh := uh − πhu − h2Lhψ. By the coercivity of the bilinear form B(·, ·),
(6), (13), (30) and the property Vh ⊂ Vh/2, we have

C0‖ηh‖
2
1 ≤ B(ηh, ηh) = B(uh − πhu− h2Lhψ, ηh)

= B(u− πhu− h2Lhψ, ηh) = B(u− πhu, ηh)− h2B(Lhψ, ηh)

= B(u− πhu, ηh)− h2B(ψ, ηh) ≤

∫

Ω

ρ(u− πhu)ηhdxdy + Ch2‖u‖3‖ηh‖1

≤ Ch2‖u‖3‖ηh‖1.

This is the desired result (35). �

In order to do the extrapolation, we always need to obtain the asymptotic ex-
pansion of the finite element approximation. For this aim, it is needed to do the
higher order interpolation postprocessing ([9, 5]). For the general meshes, since
they are not obtained by the regular refinement from the structured meshes, the
reasonable postprocessing method is the type of recovery method for linear element
([17, 18]). Let us define Qh as the recovery operator Qh : Vh 7−→ Vh × Vh where
QhLhu is some type of approximation to the gradient of the exact solution ∇u by
the finite element approximation Lhu. Here we assume that the operator Qh has
the following properties

‖Qhvh‖0 ≤ C|vh|1, ∀vh ∈ Vh,(36)

‖Qhu−∇u‖0 ≤ Ch2‖u‖3,(37)

Qhu = Qh(πhu).(38)

Theorem 4.1. Assume Lhu and πhu are the finite element approximation and
interplant corresponding to Th. Then we have

∥∥QhLhu−∇u− h2∇ψ
∥∥
0
≤ Ch2

(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.(39)
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Proof. By (34), (35) and the properties (36)-(38) of the interpolation postprocessing
operator Qh, we have
∥∥QhLhu−∇u− h2∇ψ

∥∥
0
≤‖Qh(Lhu− πhu− h2Lhψ)‖0 +

∥∥Qhπhu−∇u
∥∥
0

+ h2
∥∥Qh(Lhψ − πhψ)

∥∥
0
+ h2

∥∥Qhπhψ −∇ψ
∥∥
0

≤Ch2
(
‖u‖4 + ‖u‖2,∞

)
+ Ch3‖ψ‖2

≤Ch2
(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.

Thus we complete the proof. �

In order to use the extrapolation method, we need to refine the mesh Th in the
regular way (please read Section 2).

i 
i+1 

i+2 

i+1 

i+2 

i 

Figure 3. The elements of Th/2 in an element K ∈ Th

For the relation between Th and Th/2, we have the following lemma.

Lemma 4.2. If Th/2 is obtained from Th by the regular refinement, we have

‖Mes(Th)‖F = ‖Mes(Th/2)‖F ,(40)

W (u, vh/2, Th/2) = W (u, vh/2, Th),(41)

K(u, vh/2, Th/2) = K(u, vh/2, Th).(42)

Proof. For every new nodes Zj produced by the regular refinement, it is easy to
check that

Mes(Th/2)(j, :) = (0, 0, 0).(43)

Thus, we can obtain (40) and (41) can also be derived from (43). Similarly, we can
obtain (42) by the property of the new edges by regular refinement (Figure 3). �

Similarly to Theorem 4.1, based on Lemma 4.2, we can obtain the following
asymptotic error expansion of the finite element approximation Lh/2u.

Lemma 4.3. Assume u ∈ H4(Ω), Lh/2u and πh/2u are the finite element approx-
imation and interplant corresponding to Th/2. Then we have

∥∥∥Lh/2u− πh/2u−
(h
2

)2
Lh/2ψ

∥∥∥
1
≤ Ch2‖u‖3,(44)

∥∥∥Qh/2Lh/2u−∇u −
(h
2

)2
∇ψ
∥∥∥
0
≤ Ch2

(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.(45)
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Proof. Let

ηh/2 := Lh/2u− πh/2u−
(h
2

)2
Lh/2ψ.

By the coercivity of the bilinear formB(·, ·), (6), (13) and (30), similarly to Theorem
4.1 we have

C0‖ηh/2‖
2
1 ≤ B(ηh/2, ηh/2) = B

(
Lh/2u− πh/2u−

(h
2

)2
Lh/2ψ, ηh/2

)

= B
(
u− πh/2u−

(h
2

)2
Lh/2ψ, ηh/2

)

= B(u− πh/2u, ηh/2)−
(h
2

)2
B
(
Lh/2ψ, ηh/2

)

≤ Ch2‖u‖3‖ηh/2‖1.

This is the desired result (44). Based on (44) and (40)-(42) and the properties
(36)-(38) of the interpolation postprocessing operator Qh/2, we have

∥∥∥Qh/2Lh/2u−∇u−
(h
2

)2
∇ψ
∥∥∥
0

≤
∥∥∥Qh/2(Lh/2u− πh/2u−

(h
2

)2
Lh/2ψ)

∥∥∥
0
+
∥∥Qh/2πh/2u−∇u

∥∥
0

+
(h
2

)2∥∥∥Qh/2(Lh/2ψ − πh/2ψ)
∥∥∥
0
+
(h
2

)2∥∥∥Qh/2πh/2ψ −∇ψ
∥∥∥
0

≤Ch2‖u‖3 + Ch3‖ψ‖2

≤Ch2
(
1 + ‖Mes(Th/2)‖F

)(
‖u‖4 + ‖u‖2,∞

)

=Ch2
(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.

This is the result (45) and we complete the proof. �

Based on the asymptotic error expansions (39) and (45), we can define the ex-
trapolation scheme as

Lextra
h u :=

4Qh/2Lh/2u−QhLhu

3
.(46)

Theorem 4.2. We have the following error estimate for the extrapolation solution
defined in (46)

∥∥Lextra
h u−∇u

∥∥
0
≤ Ch2

(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.(47)

Proof. By Theorem 4.1 and Lemma 4.3, we have
∥∥Lextra

h u−∇u
∥∥
0
=
∥∥4Qh/2Lh/2u−QhLhu− 3∇u

∥∥
0

=
∥∥∥4
(
Qh/2Lh/2u−∇u−

(h
2

)2
∇ψ
)
−
(
QhLhu−∇u− h2∇ψ

)∥∥∥
0

≤4
∥∥∥Qh/2Lh/2u−∇u−

(h
2

)2
∇ψ
∥∥∥
0
+
∥∥∥
(
QhLhu−∇u− h2∇ψ

)∥∥∥
0

≤Ch2
(
1 + ‖Mes(Th)‖F

)(
‖u‖4 + ‖u‖2,∞

)
.(48)

Thus we complete the proof. �

The estimate (47) shows that the effectiveness of extrapolation method depends
on the estimate ‖Mes(Th)‖F . So we call ‖Mes(Th)‖F as the extrapolation mea-
surement of the mesh Th ([14]).

From (28), (40) and Theorem 4.2, the extrapolation method can arrive O(h2)
convergence rate if we refine the mesh in the regular way from any initial mesh Th0

.
Especially, we have the following corollary.
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Corollary 4.1. Assume that u ∈ H4(Ω), Th is produced by refining the triangula-
tion Th0

in the regular way and h0 = O(1). Then we have the following extrapolation
estimate

∥∥Lextra
h u−∇u

∥∥
0

≤ Ch2
(
‖u‖4 + ‖u‖2,∞

)
.(49)

Proof. (49) can be obtained easily from (28), (40), (47) and h0 = O(1). �

5. Numerical results

In this section, we show the effectiveness of the extrapolation method on gen-
eral meshes by two numerical examples. First, we present an example to test the
convergence order of the extrapolation on general meshes. In the second example,
we will check the influence of the regularity of exact solutions on the extrapolation
method.

5.1. Convergence order of extrapolation scheme. In this subsection, we solve
the following second order elliptic problem

−∇(A∇u) + ρu = f, in Ω,(50)

u = uD, on ∂Ω,(51)

where

(52) A =

(
ex

2+1 exy

exy ey
2

)
,

ρ = x2 + y2 and Ω = [−1, 1]× [−1, 1]\[−1, 0]× [0, 1]. The function f and boundary
condition uD are chosen such that the exact solution is u = exy. Figure 4 shows
the three initial meshes with size h = 0.4, h = 0.2 and h = 0.1 for our numerical
tests. The corresponding numerical results are presented in Figure 5.
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Figure 4. The initial meshes for the L shape domain

From numerical results showed in Figure 5, we find that the extrapolation
method can improve the convergence order form first to second on the general
initial meshes. This confirms the theoretical result in Theorem 4.2.
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Figure 5. The numerical results for equation (50)-(51)

5.2. Regularity check of extrapolation. In this subsection, we solve the fol-
lowing model problem

−∆u = f, in Ω,(53)

u = uD, on ∂Ω,(54)

where Ω = [0, 1]× [0, 1]. We chose different functions f and uD such that the exact
solutions are u = (x2 + y2)4/3, u = (x2 + y2)5/6 and u = (x2 + y2)1/3, respectively.
It is easy to know the three exact functions belong to H3+1/6−ǫ(Ω), H2+1/6−ǫ(Ω)
and H1+1/3−ǫ(Ω).

We compute these three examples with linear finite element and extrapolation
method to check the influence of the regularity on the extrapolation. Here, we
adopt the initial meshes showed in Figure 6 to produce two mesh sequences by the
regular refinement.
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Figure 6. The initial meshes for the square domain

Figures 7 and 8 show the errors of the extrapolation method for the initial meshes
h = 0.1 and h = 0.05, respectively.
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Figure 7. Numerical results for equation (53)-(54) with initial
mesh size h0 = 0.1
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Figure 8. Numerical results for equation (53)-(54) with initial
mesh size h0 = 0.1

Figures 7 and 8 shows that even when the exact solution belongs to H2+1/6(Ω),
the extrapolation method can improve the convergence order obviously. But when
the exact solution u ∈ H1+1/3(Ω), extrapolation scheme can not improve the con-
vergence order.

6. Concluding remarks

In this paper, we analyze the extrapolation method for the second order elliptic
problems by linear finite element on general meshes. Based on our analysis, we find
the extrapolation can improve the convergence order on the meshes produced by
regular refinement on general initial meshes. This means the extrapolation method
can be applied on the general domains by the totally automatical triangulation
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and dose not need to construct the meshes artificially. Based on the definition
‖Mes(Th)‖F , extrapolation method can improve the convergence order when it
is applied on the classical so-called superconvergence meshes (structured meshes)
([1, 2, 3, 5, 7, 9, 10, 12, 13, 15, 16, 17, 18]).

The idea presented in this paper can be extended to other types of problems and
this may be our future work.
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