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A 2-DIMENSIONAL MECHANICAL MODEL OF

THE FORMATION OF A SOMITE

YUKIE GOTO

Abstract. The mechanochemical model proposed in 1983 by G. Oster, J. D. Murray and A.
K. Harris has been deployed to describe various morphological phenomena in biology, such as
feather bud formation [17] and angiogenesis and vasculogenesis [10, 13]. In this article, we apply
a mechanochemical model to the formation of a somite to better understand the role that the
mechanical aspects of the cells and the extracellular matrix (ECM) play in somitogensis. In
particular, our focus lies in the effect of the contractile forces generated by the cells, which are
exerted onto the surrounding ECM. Our approach involves the linear stability analysis and a study
of asymptotic behavior of the cell density based on a priori estimates. The full model considered
in 2 dimensional space is numerically simulated to show that the traction force of the cells alone
can generate a pattern.

Key words. somites, somitogenesis, mechano-chemical model, traction, linear stability analysis,
numerical analysis

1. Introduction

Somites are spherical blocks of the mesodermal cells in vertebrate embryos align-
ing alongside the notochord, which longitudinally extends underneath the neural
tube. In later development, they are the precursors to various organs such as ribs,
limbs and dorsal skins [25]. Somitogenesis is the formation of these somites and
involves a wide range of mechanisms which are spatially and temporally intertwined
[1].

At an early developmental stage, the cells in the bilateral bands of the presomitic
mesoderm (PSM) express a variety of adhesive molecules on their surfaces depend-
ing on their positions. Particularly, those located at the far anterior end of the
mesoderm show higher adhesion than those at the posterior end [25]. Consequent-
ly, the cells at the anterior end undergo drastic increase in the density and become
compacted to much rounder shape, and eventually they separate themselves into
a somite at regular time intervals. Throughout the process of somitogenessis, new
cells are added in the posterior end of the PSM due to the cell division and the
cells entering from Hensen’s node, keeping each band of the PSM approximately
constant.

The formation of somites are highly regulated in terms of space and time. Each
somite is periodically formed in pair on both sides of the notochord from the anterior
end to the posterior end of the PSM [24, 25]. For example, the amount of time
required for one somite to form is approximately 30 minutes in case of zebrafish
and, for the chick embryo 90 minutes and for the mouse embryo 120 minutes.
Furthermore, the total number of somites is characteristic to species: 30, 50 and 65
somites for Zebrafish, chick and mouse embryo, respectively, [8, 24]

There have been several models proposed to explain the formation of somites,
among which are the clock and wavefront model first proposed by Cookee and
Zeeman [3] and later revised by Pourquié et al. [5, 6], the wave/cell polarization
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model proposed by Polezhaev [19, 20], the Reaction-diffusion model proposed by
Meinhardt [12], and the cell-cycle model proposed by Stern et al.[21, 22] and later
mathematically formulated by Colliers and his co-workers [2, 11]. The model which
we choose to study in this paper is the mechanochemical model, applied to somi-
togenesis. This model was first introduced by J. D. Murray, G. F. Oster and A. K.
Harris in 1983, see [17], and there have been various applications of this model to
morphogenetic pattern formation [10, 14, 15, 17, 18, 23]. Compared to the other
models mentioned earlier, this model focuses on the mechanical aspects of the cells
and their surrounding environment and relies on the measurable quantities such as
tissue deformation properties, cell densities and forces [15, 16, 17].

This article is organized as follows. In Section 2, we give a brief overview of
the mechanical properties of the mesodermal cells and the ECM and that of their
mechanical interaction, followed by the introduction of a mechanochemical model
in the context of somitogenesis along with the short explanation of its construc-
tion. Then, in Section 3, the linear stability analysis is performed and asymptotic
behavior of the cell density is analyzed via linearization of the system and a priori
estimates. Finally, in Section 4, we show the discretization of the system and the
results of our numerical simulation.

2. Mechanochemical model

The fibroblast cells live and crawl within the fibrous tissue composed of the ex-
tracellular matrix (ECM). Their interaction with the surrounding environment can
lead to a morphogenic pattern formation in an embryo at an early developmen-
tal stage. The characteristic features which enable the cells to move within the
fibrous surroundings are broad and flat protrusions, called lamellipodia, and long
finger-like protrusions, called filopodia, which extend from the lamellipodia. The
filopodia are often assumed to sense the surface of the environment to look for
guidance cues. However, since the precise functionalities of the two remain elusive,
we will not make distinction between the roles each one takes upon locomotion of
the cells. The filopodia (lamellipodia) can attach themselves to the surrounding
adhesive sites which include the ECM material points and the surfaces of other
cells and then, contract. Since the filopodia extend to all the opposing directions,
the resulting situation is just like a tug-of-war and so, the cell migrates in the di-
rection of the net contractile (traction) force. In accordance to the translocation
of the cells, the ECM provides further geometric guidance cues directing the cells’
movement.

This intricately coordinated mechanical interaction between the cells and the
viscoelastic ECM is encapsulated in the mechano-chemical model [17]. In this
paper, we will make use of this framework to find out whether the mechanical
interaction of the cells with their surrounding environment alone can lead to the
formation of a somite. To be more precise, we will numerically experiment to see
if the traction forces exerted by the cells onto the ECM are enough to generate a
somite.

Now let us introduce the mechanochemical model. Let Ω = (0, L1) × (0, L2)
where L1, L2 > 0. For each x = (x, y) ∈ Ω and t > 0, we define the three variables

n = n(x, t) = the density of cells (cells/cm3),

ρ = ρ(x, t) = the density of ECM (mg /cm3),

u = u(x, t) = the displacement vector of the ECM.

(1)
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With these unknowns, the model reads

(2)



















nt = −∇ · (nut) ,

∇ ·
[

(µ1ǫt + µ2θtI) +
E

1 + ν

(

ǫ+
ν

1− 2ν
θI

)

+
τnρ

1 + λn2
I

]

= 0,

ρt = −∇ · (ρut) ,

where ǫ is the strain tensor defined by ǫ = ǫ(u) = 1
2

(

∇u+∇uT
)

, θ = ∇ · u is the
dilation of the matrix material, λ > 0 and

(3) τ := τ(x, y) =
τsom

1 + e−2α(x−x∗)
+ τpsm, τpsm, τsom, α, x∗ > 0.

Furthermore, each parameter represents the following quantities:

µ1 = the shear viscosity,

µ2 = the bulk viscosity,

E = Young’s modulus,

ν = Poisson ratio,

I = the unit tensor.

(4)

The relations between the coefficients µ1, µ2, E and ν are well-known and available
in the literature.

Below we provide a brief description of each of the three equations. For the
detailed construction of the equations, we refer the readers to [15, 17]; (2)1 is the
cell equation, describing the movement of the cells within the ECM. Assuming
that the proliferation and both short-range and long-range diffusions of the cells
are negligible, this equation reflects in a classical manner the transportation of the
cells by the displacement of the ECM. Similarly, (2)3 is the conservation equation
for the ECM, representing its convection movement; (2)2 is a tensorial equation
depicting the mechanical equilibrium between the ECM and the traction forces
exerted by the cells. Assuming that the ECM material can be modeled as a linear
isotropic viscoelastic continuum and that the cells and the ECM remain in the
mechanical equilibrium, this equation is derived from applying the fundamental
law on continuum mechanics:

(5) ∇ · σ + ρF = 0.

where σ is the stress tensor and F is the external force exerted on the matrix. In
our case, σ can be expressed as the sum of the two stress tensors depending on its
respective contributor: σECM and σcell. Since the ECM is assumed to possess the
viscous and elastic properties, σECM is defined by

(6) σECM = µ1ǫt + µ2θtI +
E

1 + ν

(

ǫ+
ν

1− 2ν
θI

)

.

To consider σcell, we identify the adhesive sites for the filopodia with the surfaces of
neighboring cells and the ECM material points and thus, consequently, on a region
where n and ρ are large, the filopodia gain more traction. We also note that there
is experimental data indicating that there is adhesion gradient increasing from the
posterior end to the anterior end of the presomitic mesoderm (PSM), we obtain
σcell defined by

(7) σcell =
τnρ

1 + λn2
I,

where τ is defined as in (3). Finally, assuming the external forces F is negligible,
the substitution of (6) and (7) into (5) leads to (2)2.
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In order to proceed with the mathematical analysis, we equip the system (2)
with the initial conditions given by

(8) n(x, y, 0) = n0, ρ(x, y, 0) = ρ0, u(x, y, 0) = (0, 0),

where n0, ρ0 > 0 are constant, and with the following boundary conditions: zero-
flux boundary conditions for n and ρ,

(9)
∂n

∂n
= 0,

∂ρ

∂n
= 0 for (x, y) ∈ ∂Ω,

and the zero boundary condition for u,

(10) u(x, y) = (0, 0) for (x, y) ∈ ∂Ω.

We integrate (2)1 and (2)3 over Ω. With the use of integration by parts and the
imposed boundary conditions, we find

(11)
d

dt

∫

Ω

n(x, t)dx = 0 and
d

dt

∫

Ω

ρ(x, t)dx = 0,

where x = (x, y). For the cell-ECM interaction equation (2)2, we multiply it by u

and then integrate over Ω. It then follows from the integration by parts and the
boundary conditions that

µ1

4

d

dt

∫

Ω

|∇u|2dx+
(µ1

4
+

µ2

2

) d

dt

∫

Ω

|∇ · u|2dx

+
E

2(1 + ν)

∫

Ω

|∇u|2dx+
E

2(1 + ν)(1− 2ν)

∫

Ω

|∇ · u|2dx

+

∫ L2

0

(τ(0)− τ(L1))
n(0, y, t)ρ(0, y, t)

1 + λ(n(0, y, t))2
u(0, y, t)dy

+

∫

Ω

τnρ

1 + λn2
∇ · udx = 0,

(12)

where we have set u = (u, v) and defined |∇u|2 := |∇u|2 + |∇v|2.
These a priori estimates are not sufficient to derive an existence and uniqueness

result of solutions in the present nonlinear problem. However, in modeling the
formation of a pattern, the system (2) must admit spatially and temporally inho-
mogeneous solutions which correspond to the cell aggregation. In order to see if
there is still some potential, in the next section we perform the stability analysis by
spectral method around a uniform steady state solution and then test the validity
of its prediction by numerical simulation.

3. Mathematical analysis on the mechanochemical model

3.1. Linear stability analysis. Let us first bring our attention to the function
τ defined in (3), which involves our control parameters. The parameter x∗ splits
the domain Ω into two regions: {(x, y) : x∗ ≤ x ≤ L1, 0 ≤ y ≤ L2} corresponds to
the somitic region where a somite is formed and {(x, y) : 0 ≤ x < x∗, 0 ≤ y ≤ L2}
corresponds to the (non-somitic) PSM. Also, α controls the sharpness of the increase
of τ from the PSM region to the somitic region. Most importantly, the parameters of
our main interest are τsom and τpsm. The values of these two parameters determine
the magnitude of the cell traction forces exerted on the surrounding adhesive sites.
The question to be answered is how large or small they have to be in the somitic
region or in the PSM, respectively. The following linear stability analysis suggests
a threshold value τcritical > 0 for the traction force.
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For further analysis, in order to avoid cumbersome notations, we rewrite the
system (2) by using the Einstein notation as follows;

(13)















































nt = −(n∂tuj),j ,

∂

∂t

[µ1

2
uk,jj +

(µ1

2
+ µ2

)

uj,jk

]

+
E

2(1 + ν)
uk,jj +

E

2(1 + ν)(1− 2ν)
uj,jk +

(

τnρ

1 + λn2

)

,k

= 0

for k = 1, 2, 3,

ρt = −(ρ∂tuj),j .

The stability analysis by spectral method naturally imposes the space-periodic
boundary conditions. That is,

n(0, y, t) = n(L1, y, t) and n(x, 0, t) = n(x, L2, t),

u(0, y, t) = u(L1, y, t) and u(x, 0, t) = u(x, L2, t),

ρ(0, y, t) = ρ(L1, y, t) and ρ(x, 0, t) = ρ(x, L2, t).

(14)

Moreover, we assume that τ is a constant
The uniform steady state solutions to the above set of equations are of the form

(15) n = n0, ρ = ρ0, u = u0 ,

where n0, ρ0 and u0 = (u0, v0) are constants. Among all the possible values of
n0, ρ0 and u0, n0 ≤ 0 and ρ0 ≤ 0 are irrelevant in the biological situation we are
considering here and so, we will take n0, ρ0 > 0. Also, we set u0 = (0, 0). The
fundamental idea behind the linear stability analysis is to analytically observe the
behavior of the solutions when a small perturbation is imposed on their steady
states. Thus, we let

(16) n = n0 + ñ, ρ = ρ0 + ρ̃, u = ũ ,

where ñ, ρ̃ and ũ satisfy |ñ| ≪ n0, |ρ̃| ≪ ρ0 and |ũ| ≪ n
− 1

3

0 , respectively. We
then substitute these into (13) and after ignoring the nonlinear terms, we find the
linearized system as follows;

(17)



































∂tñ = −n0∂tũj,j ,

∂

∂t

[µ1

2
ũk,jj +

(µ1

2
+ µ2

)

ũj,jk

]

+
E

2(1 + ν)
ũk,jj +

E

2(1 + ν)(1 − 2ν)
ũj,jk

+
τρ0(1 − λn2

0)

(1− λn2
0)

2
ñ,k +

τn0

1− λn2
0

ρ̃,k = 0 for k = 1, 2, 3,

∂tρ̃ = −ρ0∂tũj,j .

Note that (17)2 is obtained by linearizing only the term corresponding to σcell,
since the derivatives of u are linearly involved in (13)2.

Now we look for a solution (17) of the form

(18) ñ = Ñeσt+iω·x , ρ̃ = P̃ eσt+iω·x , ũ = Ũeσt+iω·x ,

where σ is the growth factor, ω = (ω1, ω2, ω3) is the wavevector and Ñ , P̃ and

Ũ = (Ũ1, Ũ2, Ũ3) are proportionality coefficients. Substituting (18) into (17), we
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find
(19)






























































Ñ + in0ωjŨj = 0 ,
[

{(µ1

2
+ µ2

)

ω2
k +

µ1

2
ωjωj

}

σ +
E

2(1 + ν)(1 − 2ν)
ω2
k +

E

2(1 + ν)
ωjωj

]

Ũk

+

[

(µ1

2
+ µ2

)

σ +
E

2(1 + ν)(1 − 2ν)

]

∑

j 6=k

ωjωkŨj

− i
τρ0(1− λn2

0)

(1 + λn2
0)

2
ωkÑ − i

τn0

1 + λn2
0

ωkP̃ = 0 for k = 1, 2, 3,

P̃ + iρ0ωjŨj = 0 .

This is a system of five linear equations with unknowns Ñ , P̃ , Ũ1, Ũ2 and Ũ3. For
this system to have a nontrivial solution, we require that the determinant of the
corresponding 5 by 5 matrix to be zero. Equivalently,

(20) b3σ
3 + b2σ

2 + b1σ + b0 = 0 ,

with

b3 = −1

4
µ2
1(µ1 + µ2)|ω|6,

b2 = µ1

[

µ1E(5ν − 3) + µ1τ̃ (1 + ν)(1 − 2ν) + 2µ2E(2ν − 1)

4(1 + ν)(1 − 2ν)

]

|ω|6,

b1 = E

[

µ1E(4ν − 3) + 2µ1τ̃(1 + ν)(1− 2ν) + µ2E(2ν − 1)

4(1 + ν)2(1 − 2ν)

]

|ω|6,

b0 = E2

[

E(ν − 1) + τ̃ (1 + ν)(1 − 2ν)

4(1 + ν)3(1− 2ν)

]

|ω|6,

(21)

and with

(22) |ω| = ω1 + ω2 + ω3 and τ̃ =
2τn0p0

(1 + λn2
0)

2
;

(20) together with (21) is called the dispersion relation and its roots are given by

(23) σ1, σ2 = − E

µ1(1 + ν)
and σ3 =

1

µ1 + µ2

(

E(ν − 1)

(1 + ν)(1 − 2ν)
+ τ̃

)

.

The formation of a somite requires that (19) admits spatially inhomogeneous so-
lutions which do not decay with time. Thus, we need to obtain the solution σ of
(20) such that Re(σ) > 0, since this condition leads to instability modes. Now, we
observe that σ1, σ2 < 0 since µ1, E, ν > 0 and hence, they are not of our interest.
On the other hand, σ3 > 0 if and only if

(24) τ > τcritical

where τcritial is defined by

(25) τcritical :=
E(1 − ν)

(1 + ν)(1 − 2ν)

(1 + λn2
0)

2

2n0ρ0
.

Note that τcritical > 0 since typically 0 < ν < 0.5.
We can then deduce the following. A necessary condition for the formation of a

somite is that the traction force exerted by the fibroblast cells onto the ECM must



MECHANICAL MODEL FOR A SOMITE 209

exceed the value of τcritical. That is, if the values of τsom and τpsm are chosen so
that

τ(x, y) ≤ τcritial for 0 ≤ x < x∗ and 0 ≤ y ≤ L2

τ(x, y) ≥ τcritial for x
∗ ≤ x ≤ L1 and 0 ≤ y ≤ L2,

(26)

then we can expect the aggregation of cells in the somitic region.

3.2. Asymptotic development of the cell density. In this section, we study
the time evolution of the model (2), in particular, that of the cell density n, using
two different approaches: One is based on a priori estimate and the other involves
a method of perturbation analysis. These two approaches shed some light on the
asymptotic behavior of n and demonstrate how the different parameters play a role
in controlling its amplitude.

In order to proceed, we will first reduce the above set (2) of four coupled nonlinear
partial differential equations into one as demonstrated below.

Taking the divergence of (2)1, the tensorial equation can be expressed in terms
of θ:

(27)
∂

∂t
∆θ +

E(1− ν)

(1 + ν)(1 − 2ν)
∆θ +∆

(

τnρ

1 + λn2

)

= 0.

Since the changes in cell strain during pattern formation in an embryo is small [4,
Sec 5], we assume as in [4] that |θ| ≪ 1. We can then linearize (2)1 and (2)2 about
the respective uniform steady states, n0 and ρ0. Integrating the resulting equations
over [0, t], we find that

(28) n(x, t) = n0(1− θ(x, t)) and ρ(x, t) = ρ0(1− θ(x, t)).

Solving (28)1 for θ and then substituting the resulting equation into (28)2 leads to
an expression of ρ in terms of n. Thus, combining (27) with (28), we obtain the
small-strain quasi-steady state equation which involves only n:

(29) (µ1 + µ2)
∂

∂t
∆n+

E(1− ν)

(1 + ν)(1 − 2ν)
∆n−∆

(

τρ0n
2

1 + λn2

)

= 0.

Here we recall that τ is assumed to be a positive constant as in Sec 3.1, λ is one of
the control parameters and ρ0, µ1, µ2, E and ν are constants.

In order to investigate the asymptotic behavior of n, we work on the above
equation (29). Our first approach involves establishing a priori estimate and to
begin, we multiply (29) by n and integrate over Ω. Using the integration by parts
together with the boundary condition (9), we find

µ1 + µ2

2

d

dt

∫

Ω

|∇n(x, t)|2dx+
E(1 − ν)

(1 + ν)(1 − 2ν)

∫

Ω

|∇n(x, t)|2dx

− 2τρ0

∫

Ω

n

(1 + λn2)2
|∇n(x, t)|2dx = 0.

(30)

Since for all n ∈ R,

(31) −c1(λ) ≤
n

(1 + λn2)2
≤ c1(λ) where c1(λ) :=

9

16
√
3λ

,

it follows that

µ1 + µ2

2

d

dt

∫

Ω

|∇n(x, t)|2dx

≤
(

2τρ0c1(λ)−
E(1− ν)

(1 + ν)(1− 2ν)

)∫

Ω

|∇n(x, t)|2dx .

(32)
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Application of Gronwall’s inequality results in

d

dt

∫

Ω

|∇n(x, t)|2dx

≤
∫

Ω

|∇n(x, 0)|2dx
{

exp

[

2

µ1 + µ2

(

2τρ0c1(λ) −
E(1 − ν)

(1 + ν)(1 − 2ν)

)

t

]}

.

(33)

We note that by (25) and (31),

(34)
2

µ1 + µ2

(

2τρ0c1(λ)−
E(1− ν)

(1 + ν)(1 − 2ν)

)

> 0 if and only if τ > τcritial .

It follows from (33) that if the initial data n(x, 0) is constant as in (8), then n is
a function constant in x. On the other hand, if the initial data n(x, 0) is not a
constant function of x, then |∇n(t)|L2(Ω) tends to 0 exponentially as t increases,
provided τ < τcritical. If τ > τcritial, then there is possibility that |∇n(t)|L2(Ω)

grows exponentially as t increases.
The next approach focus on the long time behavior of n when the traction

function is perturbed from τcritical. Thus, given 0 < ǫ ≪ 1, we set

(35) T = ǫ2t and τ = τcritical + ǫ2δ, where δ = ±1,

and view n as a function of ǫ, x and T , ignoring the dependence of n on t except
through T . We then substitute (35) into the linearized equation of (29). Using (25)
and ∂

∂t
= ǫ2 ∂

∂T
, we find

(36) (µ1 + µ2)
∂

∂T
∆n− δ

2ρ0n0

(1 + λn2
0)

2
∆n = 0.

Thus, we see that for T > 0, the cell density n satisfies the following elliptic
equation;

(37) ∆n(x, T ) = ∆n(x, 0) exp

[

δ
2n0ρ0

(µ1 + µ2)(1 + λn2
0)

2
T

]

, x ∈ Ω.

It can be inferred from the above equation that, if the given initial data n(x, 0) is a
constant function over Ω, then n(x, T ) = C(T ) for some function C. If otherwise, as
T increases, ∆n grows exponentially when τ > τcritical (i.e., δ = 1) and it decreases
exponentially when τ < τcritical (i.e., δ = −1).

4. Numerical simulation

In order to test what is predicted by linear stability analysis, we consider the
problem (2) over the domain Ω = [0, 10]× [0, 1], i.e., L1 = 10 and L2 = 1. Also, as
stated in Section 2, we impose zero-flux boundary conditions (9) for n and ρ and the
zero boundary condition (10) for u. The initial conditions are chosen to correspond
to the uniform steady states, n(x, y, 0) = n0, ρ(x, y, 0) = ρ0 and u(x, y, 0) = (0, 0).

A typical graph of the traction function is given below. Here we have set τsom =
6.43× 106, τpsm = 3.21× 106, x∗ = 5 and α = 1.

4.1. Discretizations. For discretizing a domain, we introduceM meshlines paral-
lel to y-axis and N meshlines parallel to x-axis, which subdivide the computational
domain Ω into (M +1)× (N +1) many rectangular meshes. The size of each mesh
is then ∆x by ∆y where ∆x = 10

M+1 and ∆y = 1
N+1 for some integers M, N > 0.

We set x0 = 0, xM+1 = L1, y0 = 0 and yN+1 = L2 and define the nodal points
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Figure 1. Traction function.

by xi = i∆x for i = 1, 2, . . . , M and yj = j∆y for j = 1, 2, . . . , N . Denoting a
time-step by ∆t, we can write

(38) nk
i,j ≈ n(i∆x, j∆y, k∆t), ρki,j ≈ n(i∆x, j∆y, k∆t),

and if u = (u, v),

(39) uk
i,j ≈ (uk

i,j , v
k
i,j) ≈ (u(i∆x, j∆y, k∆t), v(i∆x, j∆y, k∆t) ) .

We discretize the cell equation (2)1 and the ECM equation (2)2 by using implicit
Euler method for time derivatives of n and ρ, centered finite difference for space
derivatives ∇· and backward difference for ut. Then, the discretized cell equation
reads: for k = 0, 1, 2, . . ., i = 1, . . . ,M and j = 1, . . . N ,

nk+1
i,j − 1

2∆y
(vk+1

i,j−1 − vki,j−1)n
k+1
i,j−1 −

1

2∆x
(uk+1

i−1,j − uk
i−1,j)n

k+1
i−1,j

+
1

2∆y
(vk+1

i,j+1 − vki,j+1)n
k+1
i,j+1 +

1

2∆x
(uk+1

i+1,j − uk
i+1,j)n

k+1
i+1,j = nk

i,j

(40)

This results in a MN ×MN linear matrix system:

(41) ANk+1 = Nk,

where Nk is a vector of length MN defined by

(42) Nk = (nk
1,1, n

k
2,1, . . . , n

k
M,1, n

k
2,1, n

k
2,2, . . . , n

k
M,2 . . . , n

k
1,N , nk

2,N , . . . , nk
M,N)

and A is a MN ×MN matrix of the form given by

(43) A =



















D1 S1 0 · · · 0

T1 D2 S2
. . .

...

0 T2 D3
. . . 0

...
. . .

. . .
. . . SN−1

0 · · · 0 TN−1 DN



















withDl being anM×M tridiagonal matrix for l = 1, . . . ,M and Sl, Tl beginM×M

diagonal matrices. For fixed i, j and k, (40) corresponds to ((j− 1)M + i)th-row of
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the matrix A. We discretize the ECM equation (2)2 in the same manner and arrive
at

ρk+1
i,j − 1

2∆y
(vk+1

i,j−1 − vki,j−1)ρ
k+1
i,j−1 −

1

2∆x
(uk+1

i−1,j − uk
i−1,j)ρ

k+1
i−1,j

+
1

2∆y
(vk+1

i,j+1 − vki,j+1)ρ
k+1
i,j+1 +

1

2∆x
(uk+1

i+1,j − uk
i+1,j)ρ

k+1
i+1,j = ρki,j .

(44)

As in the case of the cell equation, this leads to an MN×MN linear matrix system
given by AP k+1 = P k where A is defined as in 43 and

(45) P k = (ρk1,1, ρ
k
2,1, . . . , ρ

k
M,1, ρ

k
2,1, ρ

k
2,2, . . . , ρ

k
M,2 . . . , ρ

k
1,N , ρk2,N , . . . , ρkM,N) .

For the cell-ECM interaction equation (2)3, we first employ the explicit Euler
method for time derivative and then centered finite difference for space derivatives.
We then obtain two sets of equations; for i = 1, . . . ,M and j = 1, . . . , N ,

αu
i,ju

k+1
i,j + αu

i,j−1u
k+1
i,j−1 + αu

i−1,ju
k+1
i−1,j + αu

i,j+1u
k+1
i,j+1 + αu

i+1,ju
k+1
i+1,j

+ cR
(

vk+1
i−1,j−1 − vk+1

i−1,j+1 + vk+1
i+1,j+1 − vk+1

i+1,j−1

)

= βu
i,ju

k
i,j + βu

i,j−1u
k
i,j−1 + βu

i−1,ju
k
i−1,j + βu

i,j+1u
k
i,j+1 + βu

i+1,ju
k
i+1,j

+ cL
(

vki−1,j−1 − vki−1,j+1 + vki+1,j+1 − vki+1,j−1

)

+ fk
(j−1)M+i

(46)

and

αv
i,jv

k+1
i,j + αv

i,j−1v
k+1
i,j−1 + αv

i−1,jv
k+1
i−1,j + αv

i,j+1v
k+1
i,j+1 + αv

i+1,jv
k+1
i+1,j

+ cR
(

uk+1
i−1,j−1 − uk+1

i−1,j+1 + uk+1
i+1,j+1 − uk+1

i+1,j−1

)

= βv
i,jv

k
i,j + βv

i,j−1v
k
i,j−1 + βv

i−1,jv
k
i−1,j + βv

i,j+1v
k
i,j+1 + βv

i+1,jv
k
i+1,j

+ cL
(

uk
i−1,j−1 − uk

i−1,j+1 + uk
i+1,j+1 − uk

i+1,j−1

)

+ fk
MN+(j−1)M+i,

(47)

where the coefficients in the left hand sides of the above two equations are given by

αu
i,j =

−2(µ1 + µ2)(∆y)2 − µ1(∆x)2

(∆x)2(∆y)2
,

αu
i,j−1 = αu

i,j+1 =
µ1

2(∆y)2
,

αu
i−1,j = αu

i+1,j =
µ1 + µ2

(∆x)2
,

αv
i,j =

−2(µ1 + µ2)(∆x)2 − µ1(∆y)2

(∆x)2(∆y)2
,

αv
i,j−1 = αv

i,j+1 =
µ1 + µ2

(∆y)2
,

αv
i−1,j = αv

i+1,j =
µ1

2(∆x)2
,

cR =
1

4∆x∆y

(µ1

2
+ µ2

)

,

(48)
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and those in the right hand sides are given by

βu
i,j =

2

(∆x)2

[

∆t
E(1− ν)

(1 + ν)(1 − 2ν)
− (µ1 + µ2)

]

+
2

(∆y)2

[

∆t
E

2(1 + ν)
− µ1

2

]

,

βu
i,j−1 = βu

i,j+1 = − 1

(∆y)2

[

∆t
E

2(1 + ν)
− µ1

2

]

,

βu
i−1,j = βu

i+1,j = − 1

(∆x)2

[

∆t
E(1 − ν)

(1 + ν)(1 − 2ν)
− (µ1 + µ2)

]

,

βv
i,j =

2

(∆y)2

[

∆t
E(1− ν)

(1 + ν)(1 − 2ν)
− (µ1 + µ2)

]

+
2

(∆x)2

[

∆t
E

2(1 + ν)
− µ1

2

]

,

βv
i,j−1 = βv

i,j+1 = − 1

(∆y)2

[

∆t
E(1− ν)

(1 + ν)(1 − 2ν)
− (µ1 + µ2)

]

,

βv
i−1,j = βv

i+1,j = − 1

(∆x)2

[

∆t
E

2(1 + ν)
− µ1

2

]

,

cL =
1

4∆x∆y

(

µ1

2
+ µ2 −∆t

E

2(1 + ν)(1 − 2ν)

)

.

(49)

Finally,

fk
(j−1)M+i =

∆t

2∆x

(

τki−1,jn
k
i−1,jρ

k
i−1,j

1 + λ(nk
i−1,j)

2
−

τki+1,jn
k
i+1,jρ

k
i+1,j

1 + λ(nk
i+1,j)

2

)

,

fk
MN+(j−1)M+i =

∆t

2∆y

(

τki,j−1n
k
i,j−1ρ

k
i,j−1

1 + λ(nk
i,j−1)

2
−

τki,j+1n
k
i,j+1ρ

k
i,j+1

1 + λ(nk
i,j+1)

2

)

.

(50)

This leads to a 2MN × 2MN linear system given by

(51) AUk+1 = BUk + fk,

where Uk is a vector of length 2MN defined by
(52)

Uk = (uk
1,1, . . . , u

k
M,1, . . . , u

k
1,N , . . . , uk

M,N , vk1,1, . . . , v
k
M,1, . . . , v

k
1,N , . . . , vkM,N) :

fk is a vector of length 2MN whose components are fk
l , 1 ≤ l ≤ 2MN . Finally,

A and B are 2MN × 2MN band matrices whose entries are given by αu
i,j , α

v
i,j and

βu
i,j , β

v
i,j , respectively, for 1 ≤ i ≤ M and 1 ≤ j ≤ N .

In our simulation, we choose the numbers of meshlines M = 81 and N = 71 and
a time step ∆t = 0.1, unless stated otherwise. These parameter values are chosen
to adequately resolve and simulate the sharp increase or decrease of n and ρ which
occurs during their evolution as t increases.

The values of the parameters listed in (4) are taken from [7]: n0 = 5.2 ×
103(cells/ml), ρ0 = 1(mg/ml) and u(x, y, 0) = (0, 0), µ1 = 3.187 × 107(P), µ2 =
2.12 × 107(P), E = 7.649 × 107(Pa), ν = 0.2 Also, we have taken λ = 1.2 × 106.
With these, we can compute τcritical = 9.14× 106 by using the formula (25).

4.2. Numerical Results. The numerical scheme described in Section 4.1 is im-
plemented by using Matlab.

The figures shown in Fig. 2 - 4 represent a typical numerical solution (n(t),u(t), ρ(t))
of (2), equipped with the boundary conditions (9)-(10) and the initial conditions
(8), computed at t = 1.5 and t = 4.5. Their intersections with the plane y = 0.5,
that is, the graphs of n(x, 0.5, t) for x ∈ [0, 10], are presented in Fig. 5 in order to
provide better visual aides for the time-evolution of the cell density n.
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In Figures 2 - 4, the right half of the domain [x∗, 10] × [0, 1] corresponds to
the somitic region where the traction function τ(x, y) > τcritical and the left half
[0, x∗] × [0, 1] corresponds to the PSM where the traction function remains below
τcritical-plane. As shown in Fig. 2a - Fig. 2b, our numerical simulations show
the increase in the cell density n over the somitic region, accompanied by the
simultaneous decrease in n over the region centered at x∗. The increase in n confirms
the result obtained from performing the linear stability analysis in Sec 3.1 and
corresponds to the formation of a somite. The decrease of n suggests the formation
of the boundary of a somite.

Furthermore, it should be observed in Fig. 2a - Fig. 3b that the aggregation
of cells and the variation of the ECM occur simultaneously, which agrees with the
experimental data indicating the deformation of the ECM induced by the contractile
force generated by the cells [17]. The vector fields of the displacement vector u

shown in Fig. 4a - Fig. 4b show that the ECM is compressed and aligned due to
the cell tractile forces and is drawn in the directions of the net contractile force
vector, hence, toward the region where the values of n are greater.

Fig. 5 provides a better description of the time-evolution of our numerical so-
lution n as t increases. The process of the cell aggregation starts off to the left of
the boundary line x = x∗ which separates the somitic region from the PSM. The
initial increase in n is observed near x = 7.195. Once n grows sufficiently large,
the peak of n starts migrating toward the right boundary x = 10 of the domain Ω,
as it increases in the height. This observation is explained by the motile activity
of the cells in response to the variation of the concentration of the adhesive sites.
According to our numerical data, the migration of the peak of n begins around
t = 4.6.

Moreover, it should also be noted that in Fig. 5a, the separation of a somite
from the PSM is observed in our numerical simulations, just before the migration
of the cells starts; Over the region centered at x = x∗, n decreases and becomes
approximately zero. This numerical observation can correspond to the physical
separation of the tissue observed in vivo [9].

We have so far focused on the effect of the contractile forces generated by the
cells, hence, on the traction function (3) and the parameters τsom and τpsm involved
in its definition. However, there is another control parameter λ, whose effect is yet
to be investigated. We hereby present here, as a remark, the two graphs below,
hoping to shed some light on the role of λ in this problem. Fig. 6a and Fig. 6b
are, respectively, the followings graphs:

(53)

{

(λ, c) : c = max
x∈[0,L1]

n(x, 0.5, 5.5 : λ)

}

and

(54)

{

(λ, c) : c = min
x∈[0,L1]

n(x, 0.5, 5.5 : λ)

}

where n(x, 0.5, 5.5 : λ) denotes the first component of a solution of (2) for given
λ. These graphs indicate that max{n(x, 0.5, 5.5) : 0 ≤ x ≤ 10 } increases and
min{n(x, 0.5, 5.5) : 0 ≤ x ≤ 10 } decreases, exponentially as λ increases.

5. Conclusion

Our numerical results indicate that, in response to the traction forces exerted
by the cells onto the ECM, the mechanochemical model can indeed give rise to
the formation of a somite and its separation from the rest of the PSM. Moreover,
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Figure 2. n0 = 5.2×103(cells/ml), ρ0 = 1(mg/ml) and u(x, 0) =
(0, 0), µ1 = 3.187 × 107(P), µ2 = 2.124 × 107(P), E = 7.649 ×
107(Pa), ν = 0.2, λ = 1.2 × 10−6, τsom = 1.27 × 107, and τpsm =
2.74× 106.

our numerical scheme with the particular parameter values can simulate some phe-
nomena observed in vivo, such as the migration of the cells driven by their own
contractile force and the interaction between the cells and the ECM. What it does
not show is the roundness of a somite. It should also be noted that the value of
λ can be adjusted to manipulate the amplitude of the cell density, although its
physical significance in the formation of a somite is not clear.

In summary, as our numerical results suggest, the mechanochemical model well
captures the key mechanical properties of the cells and the ECM, involved in form-
ing a somite. This suggests the validity of deploying the mechanochemical model
to simulate the formation of a somite and/or somitogenesis.
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Figure 3. n0 = 5.2×103(cells/ml), ρ0 = 1(mg/ml) and u(x, 0) =
(0, 0), µ1 = 3.187 × 107(P), µ2 = 2.124 × 107(P), E = 7.649 ×
107(Pa), ν = 0.2, λ = 1.2 × 10−6, τsom = 1.27 × 107, and τpsm =
2.74× 106.
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