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Abstract. In this paper, an extremal eigenvalue problem to the Sturm-Liouville equa-

tions with discontinuous coefficients and volume constraint is investigated. Liouville

transformation is applied to change the problem into an equivalent minimization prob-

lem. Finite element method is proposed and the convergence for the finite element

solution is established. A monotonic decreasing algorithm is presented to solve the ex-

tremal eigenvalue problem. A global convergence for the algorithm in the continuous

case is proved. A few numerical results are given to depict the efficiency of the method.
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1. Introduction

LetΩ be an open bounded domain in Rn (n= 1,2,3), consider the following eigenvalue

problem: ¨ −div(σ(x)∇u) = λu in Ω,

u= 0 on ∂Ω,
(1.1)

where σ(x) is a positive piecewise constant function. For any given such function σ, it is

known (cf. [11,16,22]) that the Eq. (1.1) admits a sequence of eigenvalues

0< λ1 ≤ λ2 ≤ · · · →∞,

and its smallest eigenvalue λ1 is denoted by λ1(σ). We are interested in the minimization

of the first eigenvalue λ1(σ) among all possible choices of function σ(x). This extremal

eigenvalue problem arises from a lot of structural engineering and optimal design problems

(cf. [1,5]). For example, if we consider the non-homogenous heat conductor with different
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conductivities, the first eigenvalue and its corresponding eigenfunction represents the first

mode of heat diffusion pattern. In particular, we assume that the heat conductor is made

by two materials with conductivities α and β , 0 < α < β . Let the materials with the

conductivity α occupies a measurable set D ⊂ Ω, then

σ(x) = αχD + βχΩ\D,

where χD is the characteristic function of D. The material with conductivity α are assumed

to have a fixed volume, which leads to the following optimization problem:

Problem 1.1. For

min
σ∈A

λ1(σ),

whereA is the admissible set for all possible choices of the conductivity function which is

defined as:

A =
�
σ : σ = αχD + βχΩ\D, −

∫

Ω

σ = c

�
,

where −
∫

is the average of integral function on the domain and c is a constant which satis-

fies: α≤ c ≤ β .

The condition to the existence for the minimizer of this problem remains an open

question. From the work of Murat and Tartar on a control problem involving immiscible

fluids [26], it is known that the Problem 1.1 may not always possess a solution, and in

general one should consider the framework of homogenization theory. Existence of a so-

lution and optimality conditions in the class of relaxed designs has been discussed in Cox

and Lipton [12].

If the domain Ω is an interval in R1 or a ball in Rn, the existence of the minimizer has

been studied in various papers. The one dimensional problem was solved by Krein [23]

by exploiting the equivalence between this problem and a similar extremal eigenvalue

problem for a composite membrane with variable densities. The technique is so-called

Liouville transformation, to transfer the variable conductivity σ into the lower-order term,

then one can use the results of extremal eigenvalue problem for a composite membrane,

see Cox, Mclaughlin [14, 15]. The Liouville transformation can be found in many papers

in the context of Sturm-Liouville problems with discontinuous coefficients such as [6, 18,

19, 25]. When the domain is a ball, the existence of a radially symmetric minimizer has

been proved in [2] by using rearrangement technique.

On the other hand, the numerical treatment to the extremal eigenvalue problem of a

variable density membrane have been studied in [13–15, 17, 29], but there are only few

works for the extremal eigenvalue problem with variable conductivity (cf. [9, 10, 12]).

The finite element method for the eigenvalue problem have been studied extensively,

see [1, 7, 8, 30] for constant conductivity function case and [3] for discontinuous conduc-

tivity. The computational result can also be found in Nemat-Nasser et al. [27,28]. Recently,

Liang et al. [24] study the convergence of the finite element method for the extremal eigen-

value problem with variable density function. Inspired by the previous works, we exploit
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the finite element method in the extremal eigenvalue problems with variable conductivi-

ties in the one dimension interval. The idea is to transfer the extremal eigenvalue problem

with variable conductivities to the extremal eigenvalue problem with variable densities by

Liouville transformation, then applying finite element method to solve the later equiva-

lent extremal eigenvalue problem and using discrete inverse transformation to obtain the

numerical solution of original extremal eigenvalue problem.

The outline of this paper is as follows. In last part of this section, we give some nota-

tions of function space. In Section 2, Liouville transformation, and a monotonic decreasing

algorithm are introduced. The property of σ-problem and corresponding ρ-problem are

given and the convergence for monotonic decreasing algorithm for ρ-problem is proved.

In Section 3, the extremal eigenvalue problem is discretized by finite element method

and the convergence analysis is given. In Section 4, generalization to the extremal eigen-

value to the Sturm-Liouville problems with nonlinear potential term is studied, a modified

monotonic decreasing algorithm combining with Dinkelbach’s iterative algorithm for linear

fractional optimization is provided. In Section 5, some numerical examples are given to

depict the efficiency of our method. In the last Section 6, conclusion as well as the possible

further research are discussed.

The standard Sobolev space W m,p and Hm on Ω with the norm ‖ · ‖W m,p and ‖ · ‖m. The

L2 norm is simplified as ‖ · ‖, and (·, ·) is inner product in L2 space.

2. Continuous extremal eigenvalue problem

2.1. Monotonic decreasing algorithm for σ-problem

Define Rayleigh’s quotients R :A ×H1
0(Ω)\{0} → R by:

R(σ,u) =

∫
Ω
σ|∇u|2
∫
Ω

u2
,

then, by Rayleigh’s principle (cf. [18]),

λ1(σ) = min
u∈H1

0(Ω)\{0}
R(σ,u).

Therefore, Problem 1.1 can be equivalently presented as

min
σ∈A ,u∈H1

0(Ω),u6=0
R(σ,u).

Similar as in [24], we may propose a monotonic decreasing algorithm for Problem 1.1, see

Algorithm 2.1. It can be shown that the above algorithm produces a monotonic decreasing

eigenvalue sequence, and it converges to a fixed point of the composite map σ → σ ◦ u.

But unfortunately, the fixed point of this composite map is not unique. More importantly,

even in the one dimensional case, the limit point of conductivity σ is very sensitive to the

initial guess. Our numerical tests in Section 5 verify this phenomena. On the other hand,
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 de
reasing algorithm for σ-problem.1. initialize σ0,2. for k = 1,2, · · · , solve
uk−1 = u(σk−1) ¬ argmin

u∈H1
0 ,
∫ 1

0
(u)2=1,
∫ 1

0
u>0

R(σk−1,u) and σk = σ(uk−1) ¬ argmin
σ∈A

R(σ,uk−1),3. if σk = σk−1, then stop.
if the domain is specified as an interval in R1, one may apply Liouville transformation to

transfer this σ-problem to an equivalent ρ-problem (see the details in next subsection),

and we can prove the stability of the monotonic decreasing algorithm for ρ-problem. In

this paper, we will focus on the one dimensional case:

¨ −(σ(x)ux)x = λu in (0, Lx),

u(0) = u(Lx) = 0.
(2.1)

The corresponding extremal eigenvalue problem reads:

Problem 2.1. For

min
σ∈Ax

λ1(σ),

where

Ax =

�
σ(x) ∈ L∞(0, Lx ) : α≤ σ(x)≤ β , −

∫ Lx

0

σ = c

�
. (2.2)

Different from Problem 1.1, we replace the nonconvex admissible set A by its L∞

weak star closure Ax . Cox and Jouron [12,20] has shown that Problem 1.1 and Problem

2.1 admit the same minimizer for the one dimensional case. It means that the minimizers

of λ1(σ) for Problem 2.1 inAx has "bang-bang" property.

Remark 2.1. We employ the concept "bang-bang" from the optimal control theory. A

function σ ∈Ax has "bang-bang" property, if σ(x) = α or β for a.e. x ∈ (0, Lx).

For the convenience we give the solution to the σ-problem in one dimensional case.

Lemma 2.1 (see [18]). There exists a unique minimizer σ∗(x) ∈Ax to the Problem 2.1. To

be more specific, the conductivity function σ∗(x) is defined by:

σ∗(x) =





α, for x ∈ (0, zσ1 ),

β , for x ∈ (zσ1 , zσ2 ),

α, for x ∈ (zσ2 , Lx ),
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where

zσ1 =
Lx

2

β − c

β −α , zσ2 = Lx − zσ1 =
Lx

2

β + c − 2α

β −α .

2.2. Liouville transformation

As we mentioned in last subsection, to avoid the instability of the algorithm, we use

Liouville transformation to reformulate σ-problem into an equivalent ρ-problem. For

Eq. (2.1), we introduce the change of variable as:

y =

∫ x

0

d t

σ(t)
,

and define new functions v(y) = u(x), ρ(y) = σ(x). Then the Eq. (2.1) can be rewrote as

the system of the density ρ(y):
¨ −vy y = λρv in (0, L y),

v(0) = v(L y) = 0,
(2.3)

where L y =
∫ Lx

0
σ−1(t)d t. For any "bang-bang" function σ ∈ Ax , in particular, for the

optimal solution of Problem 2.1, we have

L y =
�α+ β − c

αβ

�
Lx .

One can find that function ρ(y) satisfies α≤ ρ(y) ≤ β and the integral constraint

∫ L y

0

ρ(y)d y =

∫ Lx

0

σ(x)d x

σ(x)
= Lx .

The admissible set for the function ρ is:

Ay =

�
ρ(y) ∈ L∞(0, L y) : α ≤ ρ(y)≤ β ,

∫ L y

0

ρ(y)d y = Lx

�
. (2.4)

If the first eigenvalue of Eq. (2.3) is denoted by λ1(ρ), then another extremal eigenvalue

problem

Problem 2.2. For

min
ρ∈Ay

λ1(ρ)

admits the same minimum value as Problem 2.1 and the corresponding minimizer follows

σ(x) = ρ(y). The inverse Liouville transformation from Eqs. (2.3) to (2.1) can also be

defined by

x =

∫ y

0

ρ(s)ds, σ(x) = ρ(y).
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Similarly we can define Rayleigh’s quotient R :Ay ×H1
0(0, L y) \ {0} → R as:

R(ρ, v) =

∫ L y

0
|vy |2d y
∫ L y

0
ρv2d y

.

Then for any given ρ(y) ∈Ay ,

λ1(ρ) = min
v∈H1

0(0,L y ),v 6=0
R(ρ, v),

and hence Problem 2.2 can be equivalently presented as

min
ρ∈Ay ,v∈H1

0(0,L y ), v 6=0
R(ρ, v).

In the next section, we will introduce monotonic decreasing algorithm to the ρ-problem.

Below the solution to Problem 2.2 is provided.

Lemma 2.2 (see [18]). There exists a unique minimizer ρ∗(y) ∈Ay to the Problem 2.2. To

be more specific, the density function ρ∗(y) is defined by:

ρ∗(y) =





α, for y ∈ (0, z
ρ
1 ),

β , for y ∈ (zρ1 , z
ρ
2 ),

α, for y ∈ (zρ2 , L y),

where

z
ρ
1
= L y

β(β − c)

2(β −α)(β +α− c)
, z

ρ
2
= L y − z

ρ
1
= L y

β(β − c) + 2α(c−α)
2(β −α)(β +α− c)

.

2.3. Continuous monotonic decreasing algorithm for ρ-problem

In this subsection, without loss of generality, we assume

(0, L y) = (0,1),

∫ L y

0

ρ(y)d y =
α+ β

2
,

for simplicity. Consider the eigenvalue problem

¨ −v′′ = λρv in (0,1),

v(0) = v(1) = 0,
(2.5)

and the admissible set

Ay =

�
ρ ∈ L∞(0,1) : α≤ ρ(y)≤ β , a.e. y ∈ (0,1),

∫ 1

0

ρ(y) =
α+ β

2

�
.
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 de
reasing algorithm for ρ-problem.1. initialize ρ0,2. for k = 1,2, · · · , solve
vk−1 = v(ρk−1)¬ argmin

v∈H1
0 ,
∫ 1

0
(vy )

2=1,
∫ 1

0
v>0

R(ρk−1, v) and ρk = ρ(vk−1)¬ argmin
ρ∈Ay

R(ρ, vk−1),3. if ρk = ρk−1, then stop.
A monotonic decreasing algorithm is used to solve Problem 2.2, see the de-

tails in Algorithm 2.2. It can be observed that there exists a unique minimizer

min
v∈H1

0 ,
∫ 1

0
v>0,
∫ 1

0
(v)2y d y=1

R(ρ, v) for any given ρ ∈ Ay . On the other hand, for any v

be eigenfunction associated to the smallest eigenvalue of Eq. (2.5), there exists a unique

minimizer for minρ∈Ay
R(ρ, v), denoted by ρ(v). Therefore, Algorithm 2.2 is a type of

fixed point iteration, and we have its convergence as follows.

Lemma 2.3. ρk in Algorithm 2.2 converges to the solution of Problem 2.2.

Proof. The proof is divided into two parts. Firstly we show ρk converges to a fixed

point of composite map ρ ◦ v, and secondly we prove the only fixed point of ρ ◦ v is the

solution of Problem 2.2.

Step 1. If algorithm terminate in finite step, i.e., ρk = ρk+1, then clearly ρk is a fixed

point of ρ ◦ v. Otherwise, we can observe that

R(ρk, vk)≤R(ρk, vk−1) ≤R(ρk−1, vk−1),

hence λk = R(ρk, vk) is a monotonic decreasing sequence, and let λk → λ. It is known

that triples (λk,ρk, vk) satisfy

((vk)y , (w)y ) = λ
k(ρkvk, w), ∀w ∈ H1

0 , (2.6)

and
∫ 1

0
(vk)2y d y = 1, vk(y) > 0 for y ∈ (0,1). Since ‖vk‖H1 is bounded, passage to a

subsequence and still denote it by vk, we have

ρk→ ρ weakly in L2(0,1),

vk→ v weakly in H1
0(0,1),

λk→ λ.

Since H1
0(0,1) ,→ C0(0,1) compactly, then we have vk→ v in C0(0,1) and v ≥ 0. The limit

triple (λ,ρ, v) satisfies

(vy , w y ) = λ(ρv, w), ∀w ∈ H1
0 . (2.7)
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Form Eq. (2.6), we can deduce the following:

∫ 1

0

(vy)
2d y = λ

∫ 1

0

ρ(v)2 = lim
k→∞

λk

∫ 1

0

ρk(vk)2 = lim
k→∞

∫ 1

0

(vk
y)

2 = 1.

Together with v ≥ 0 for y in [0,1], it implies that

v = argmin

v∈H1
0 ,
∫ 1

0
v>0

∫ 1
0 (v

k)2y d y=1

R(ρ, v)

and hence v = v(ρ). It remains to show that ρ = argminρ∈Ay
R(ρ, v). By ρk = ρ(vk−1)¬

argmin ρ∈Ay
R(ρ, vk−1) in Algorithm 2.1, we know that the density function ρk satisfies

ρk = α+ (β −α)χ[ak ,bk]
, bk = ak +

1

2
,

where ak is the unique point in [0,1/2] which satisfies (uniqueness is from the strictly

convexity of vk):

vk−1(ak) = vk−1
�

ak +
1

2

�
.

Now let a is the unique point in [0,1/2], which satisfies

v(a) = v
�

a+
1

2

�
,

we will show that ak → a. Let w(y) = v(y)− v(y + 1/2) for 0 ≤ y ≤ 1/2, then we have

w(a) = 0, which implies a is the unique root of w. Since w(y) is continuous, if w(ak)→ 0,

then ak → a (otherwise ∃ank
→ a 6= a ⇒ w(a) = 0, which is a contradiction). We notice

that |w(ak)| = |(v(ak)− vk(ak))− (v(bk)− vk(bk))| ≤ 2‖v − vk‖L∞ , hence w(ak)→ 0 ⇒
ak→ a.

Let ρ̂ = ρ(v) = α+ (β −α)χ[a,b], then

‖ρk − ρ̂‖=
p

2|ak − a|(β −α)→ 0.

This implies that ρ = ρ̂ = ρ(v). Now we have proved there exists a subsequence of ρk

which converges to a fixed point of ρ ◦ v. In the following, we should show that ρ is

the only one fixed point of the systems. By the uniqueness of the fixed point, the whole

sequence converges to ρ.

Step 2. Clearly the solution of Problem 2.2 is the fixed point of ρ◦ v. Next assume ρ be

one fixed point of iteration, and (λ, v) be the corresponding eigenvalue and eigenfunction.

Since v is strictly convex function in (0,1), there exists a unique s ∈ (0,1/2), such that

v(s) = v(s + 1/2), moreover, v(y) > v(s) for y ∈ (s, s + 1/2) and v(y) < v(s) for x ∈
(0, s)∪(s+1/2,1). Then ρ = α+(β−α)ξ[s,s+1/2]. We will show that the only possible s be
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1/4 and obtain the uniqueness of fixed point. Let v(s) = v(s+ 1/2) = b, then −v′′ = λρv

in (0, s) with boundary condition v(0) = 0, v(s) = b. We can solve this boundary value

problem and find

v(y) =
sin[
p
αλy]

sin[
p
αλs]

b, ∀y ∈ [0, s].

Similarly we also have

v(y) =
sin[
p
αλ(1− y)]

sin
hp
αλ
�

1

2
− s
�i b, ∀y ∈
h

s+
1

2
,1
i

,

and

v(y) = c sin(
p
βλy) + d cos(
p
βλy), ∀y ∈
h

s, s+
1

2

i
,

where

c =
cos(
p
βλs)− cos
hp
βλ
�

s+ 1

2

�i

sin
�p

βλ

2

� b, d =
sin
hp
βλ
�

s+ 1

2

�i
− sin(
p
βλs)

sin
�p

βλ

2

� b.

From above formula, we can calculate the left derivative and right derivative at point s

and s+ 1/2. By Embedding Theorem, v ∈ H2(0,1) ,→ C1(0,1), v′(y) should be exist and

continuous. Therefore

p
αλ

cos(
p
αλs)

sin(
p
αλs)

b = v′−(s) = v′+(s) =

p
βλ

sin
�p

βλ

2

�
�

1− cos
�pβλ

2

��
b,

−
p
αλ

cos
hp
αλ
�

1

2
− s
�i

sin
hp
αλ
�

1

2
− s
�i b = v′+
�

s+
1

2

�
= v′−
�

s+
1

2

�

= −
p
βλ

sin
�p

βλ

2

�
�

1− cos
�pβλ

2

��
b.

Then we have

cot(
p
αλs) = cot
hp
αλ
�1

2
− s
�i

.

Due to the strictly monotonic property for cot function, we obtain s = 1/2− s and hence

ρ = βχ(1/4,3/4) +αχ(0,1/4)∩(3/4,1) be the only fixed point of composite map ρ ◦ v. �

Remark 2.2. The uniqueness of the fixed point to the composite map ρ ◦ v plays the

important role for the stability of this algorithm. This global convergence result can be

verified numerically in the Section 5.
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3. Finite element approximation

In the Subsection 3.1, we consider the finite element method for Problem 2.2 and estab-

lish some properties for finite element solution. A discrete inverse Liouville transformation

is introduced in Subsection 3.2 to obtain the discrete solution for Problem 2.1 from the

finite element solution of Problem 2.2. The convergence of finite element method is given

in Subsection 3.3. Finally, we will list the discrete version of monotone decrease algorithm

in Subsection 3.4.

3.1. Finite element method for Problem 2.2

Now we consider a partition on the interval [0, L y], where

L y =

∫ Lx

0

1

σ∗(x)
d x =

β +α− c

αβ
Lx . (3.1)

Let 0= y0 < y1 < · · · < yN = L y ,∆yi = |yi− yi−1|, for i = 1, · · · , N , and h=maxN
i=1{∆yi}.

The finite element space are defined by:

Vh,y =
�

vh ∈ C0(0, L y), vh|[yi−1,yi]
be linear function, i = 1, · · · , N

	
,

and

Ah,y =
n
ρh ∈ L∞(0, L y), ρh|(yi−1,yi)

be constant ρh,i, i = 1, · · · , N ,

N∑

i=1

ρh,i∆yi = Lx

o
.

Let {ψi}N−1
i=1

be the basis of the function space Vh,y with ψi(y j) = δi, j , then any function

vh ∈ Vh,y can be represented as:

vh =

N−1∑

j=1

vh(y j)ψ j.

Given vh ∈ Vh,y and ρh ∈Ah,y , the Rayleigh’s quotient:

R(ρh, vh) =

∫ L y

0
|(vh)y |2d y
∫ L y

0
ρhv2

h
d y

=

∫ L y

0

h N−1∑

j=1

[vh(y j)(ψ j)y

i2
d y

∫ L y

0

ρh

h N−1∑

j=1

vh(y j)ψ j

i2
d y

=
V T

h
K Vh

V T
h
MVh

, (3.2)

where K andM are two matrices with entries:

Ki, j =

∫ L y

0

(ψi)y(ψ j)y d y, Mi, j =

∫ L y

0

ρhψiψ jd y,

and Vh be the vector with Vh = (vh(y1), vh(y2), · · · , vh(yN−1))
T . Then the discretization

form of Problem 2.2 reads:
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Problem 3.1. For

min
ρh∈Ah,y

λ1,h(ρh),

where λ1,h(ρh) be the smallest generalized eigenvalue of K respect to M . Let Vh =

(q1, · · · ,qN−1)
T be the corresponding generalized eigenvector, we call vh =

∑N−1

j=1 q jψ j the

corresponding eigenfunction. It is known that Problem 3.1 admits a solution.

Lemma 3.1. For any given ρh ∈ Ah,y , the eigenfunction corresponding to the smallest gen-

eralized eigenvalue of K respect to M is strict positive in (0, L y) (up to a multiplicative

constant).

Proof. let λ1,h be the smallest generalized eigenvalue and Vh = (q1, · · · ,qN−1) be the

corresponding eigenvector. From Rayleigh’s principle, we know that the function vh =∑N−1

i=1 qiψi is the minimizer of R(ρh,uh) for uh ∈ Vh,y . Now we define evh =
∑N−1

i=1

��qi

��ψi,

one can easily verify (let q0 = qN = 0):

∫ L y

0

(evh)
2
y d y =

N∑

1

∫ yi

yi−1

(evh)
2
y d y =

N∑

1

∫ yi

yi−1

� 1

∆y i

(|qi| − |qi−1|)
�2

d y

≤
N∑

1

∫ yi

yi−1

� 1

∆y i

(qi − qi−1)
�2

d y

=

N∑

1

∫ yi

yi−1

(vh)
2
y d y =

∫ L y

0

(vh)
2
y d y (3.3)

and
∫ L y

0

ρh(evh)
2d y =

N∑

1

ρh,i

∫ yi

yi−1

(evh)
2d y =

N∑

i=1

ρh,i∆y i

3
(|qi−1|2+ |qi−1qi|+ |qi|2)

≥
N∑

i=1

ρh,i∆y i

3
(q2

i−1+ qi−1qi + q2
i )

=

N∑

i=1

ρh,i

∫ yi

yi−1

v2
h d y =

∫ L y

0

ρhv2
h d y. (3.4)

Then R(ρh,evh) ≤ R(ρh, vh) and hence evh is also the eigenfunction corresponding to λ1,h.

In the following we will show that qi 6= 0, i = 1,2, · · · , N − 1. Without loss of generality,

assume qi = 0 and |qi+1| > 0, 1 ≤ i ≤ N − 2. If |qi−1| > 0, then let q∗i = min(|qi−1|, |qi+1|)
and define v∗

h
=
∑i−1

j=1 |q j|ψ j + q∗
i
ψi +
∑N−1

i+1 |q j|ψ j = evh+ q∗
i
ψi. One can observe

∫ L y

0

(v∗h)
2
y d y −
∫ L y

0

(evh)
2
y d y

=

∫ yi

yi−1

[(v∗h)
2
y − (evh)

2
y]d y +

∫ yi+1

yi

[(v∗h)
2
y − (evh)

2
y]d y < 0
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and

∫ L y

0

ρh(v
∗
h)

2d y −
∫ L y

0

ρh(evh)
2d y

=

∫ yi

yi−1

ρh[(v
∗
h)

2− (evh)
2]d y +

∫ yi+1

yi

ρh[(v
∗
h)

2 − (evh)
2]d y > 0.

Hence R(ρh, v∗
h
)<R(ρh, vh), which implies that vh is not a minimizer of R(ρh, ·). On the

other hand, if |qi−1|= 0 we choose

0< q∗i <
2∆yi|qi+1|
∆yi +∆yi+1

and let v∗
h
= evh+ q∗iψi, then we have

∫ L y

0

(v∗h)
2
y d y −
∫ L y

0

(evh)
2
y d y

=

∫ yi

yi−1

[(v∗h)
2
y − (evh)

2
y]d y +

∫ yi+1

yi

[(v∗h)
2
y − (evh)

2
y]d y

=
(q∗i )

2

∆yi

+
(|qi+1| − q∗i )

2

∆yi+1

− q2
i+1

∆yi+1

= q∗i
� q∗i
∆yi

+
q∗i
∆yi+1

− 2|qi+1|
∆yi+1

�
< 0

and

∫ L y

0

ρh(v
∗
h)

2d y −
∫ L y

0

ρh(evh)
2d y

=

∫ yi

yi−1

ρh[(v
∗
h)

2− (evh)
2]d y +

∫ yi+1

yi

ρh[(v
∗
h)

2− (evh)
2]d y

=
q∗i
3
[ρh,i∆yiq

∗
i +ρh,i+1∆yi+1(q

∗
i + |qi+1|)]> 0. (3.5)

Similarly, R(ρh, v∗
h
) < R(ρh,evh) ≤ R(ρh, vh), which is the contradiction. Then we obtain

that qi 6= 0, i = 1,2, · · · , N − 1.

Next we will show that {qi}N−1
1 have same sign. Assume {qi}N−1

1 have both positive

and negative components, then there exists i such that qi,qi+1 have different signs. Since

the inequalities (3.3) and (3.4) are strict in this case, we obtain R(ρh,evh) < R(ρh, vh).

Therefore vh is strictly positive (up to a multiplicative constant). �

In later of this section, for given ρh ∈ Ah,y , λ1,h(ρh) and vh(ρh) are the smallest gen-

eralized eigenvalue of respect to the stiffness matrix K and corresponding normalized

positive eigenfunction (
∫ L y

0
(vh(ρh))

2
y d y = 1), without confusion we denote it by λ1,h and

vh for simplicity.
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Lemma 3.2. For any given ρh ∈Ah,y , let vh(ρh) =
∑N−1

i=1 qiψi, then we have

qi − qi−1

∆yi

>
qi+1 − qi

∆yi+1

, i = 1,2, · · · , N − 1, (3.6)

where q0 = qN = 0.

Proof. Recall the definition of matrix K andM , we find

K =




1

∆y1
+ 1

∆y2
− 1

∆y2
· · · · · · · · ·

− 1

∆y2

1

∆y2
+ 1

∆y3
− 1

∆y3
· · · · · ·

...
...

. . .
...

...

· · · · · · − 1

∆yN−2

1

∆yN−2
+ 1

∆yN−1
− 1

∆yN−1

· · · · · · · · · − 1

∆yN−1

1

∆yN−1
+ 1

∆yN




and

M =
1

6




2ρh,1∆y1+ 2ρh,2∆y2 ρh,2∆y2 · · ·
ρh,2∆y2 2ρh,2∆y2+ 2ρh,3∆y3 ρh,3∆y3

...
...

. . .

· · · · · · ρh,N−2∆yN−2

· · · · · · · · ·
· · · · · ·
· · · · · ·
...

...

2ρh,N−2∆yN−2+ 2ρh,N−1∆yN−1 ρh,N−1∆yN−1

ρh,N−1∆yN−1 2ρh,N−1∆yN−1+ 2ρh,N∆yN




.

From K Vh = λ1,hMVh with Vh = (q1,q2, · · · ,qN−1)
T , we get:

� 1

∆y1

+
1

∆y2

�
q1 −

1

∆y2

q2 =
λ1,h

6
[2(ρh,1∆y1 +ρh,2∆y2)q1+ρh,2∆y2q2], (3.7a)

− 1

∆y j

q j−1 +
� 1

∆y j

+
1

∆y j+1

�
q j −

1

∆y j+1

q j+1

=
λ1,h

6
[ρh, j∆y jq j−1 + 2(ρh, j∆y j +ρh, j+1∆y j+1)q j +ρh, j+1∆y j+1q j+1],

2≤ j ≤ N − 2, (3.7b)

− 1

∆yN−1

qN−2+
� 1

∆yN−1

+
1

∆yN

�
qN−1

=
λ1,h

6
[ρh,N−1∆yN−1qN−2+ 2(ρh,N−1∆yN−1+ρh,N∆yN )qN−1]. (3.7c)
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By virtue of (3.7a)-(3.7c), qi > 0 for i = 1, · · · , N − 1 and q0 = qN = 0, we can deduce that

the terms (q j − q j−1)/∆y j , ( j = 1,2, · · · , N) decreases strictly. �

Let ρ∗
h

be solution of discrete minimization Problem 3.1, λ∗
1,h

and v∗
h

be the correspond-

ing eigenvalue (λ∗
1,h
= λ1,h(ρ

∗
h
)) and eigenfunction. Clearly

ρ∗h = argmin
ρh∈Ay,h

∫ L y

0
(v∗

h
)2y d y

∫ L y

0
ρh(v

∗
h
)2d y

,

which implies that ρ∗
h

be the maximizer the denominate
∫ L y

0
ρh(v

∗
h
)2d y for the fixed v∗

h
.

Let v∗
h
=
∑N−1

1 qiψi, then

∫ L y

0

ρh(v
∗
h)

2d y =

N∑

1

ρh,i

∫ yi

yi−1

(v∗h)
2d y =

N∑

1

ρh,i∆yi

3
(q2

i−1 + qi−1qi + q2
i ). (3.8)

Define mi = q2
i−1 + qi−1qi + q2

i , t i = ρh,i∆yi, i = 1,2, · · · , N , then t i satisfies constraint∑N
i=1 t i = Lx .

Lemma 3.3. There exists i∗ ∈ {1,2, · · · , N − 1}, such that:

m1 < m2 < · · ·< mi∗−1 < mi∗ , mi∗+1 > mi∗+2 > · · ·> mN−1 > mN .

Proof. Since (q1 − q0)/h1 > 0, (qN − qN−1)/hN < 0 and {(qi − qi−1)/hi}Ni=1 is strictly

decreasing sequence, there exists i∗ with 1≤ i∗ ≤ N − 1 which satisfies:

qi∗ − qi∗−1

∆yi∗
> 0≥ qi∗+1 − qi∗

∆yi∗+1

.

Hence

0= q0 = q1 < q2 < · · ·< qi∗−1 < qi∗ , qi∗ ≥ qi∗+1 > qi∗+2 > · · · > qN−1 > qN .

Therefore

m1 < m2 < · · ·< mi∗−1 < mi∗ , mi∗+1 > mi∗+2 > · · ·> mN−1 > mN .

The proof is completed. �

Next we rearrange {1,2, · · · , N} to {τ1,τ2, · · · ,τN} by the following rule: mτ1
≤ mτ2

≤
· · · ≤ mτN

. Define Iα = {τ1, · · · ,τk−1}, Iβ = {τk+1, · · · ,τN}, Iθ = {τk}, s.t.

|∆yτ1
|+ · · ·+ |∆yτk−1

| ≤ β(β − c)

(β −α)(α+ β − c)
L y < |∆yτ1

|+ · · ·+ |∆yτk
|. (3.9)
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One can observe: if j ∈ Iα and j ≤ i∗ then {1, · · · , j} ⊆ Iα; if j ∈ Iα and j ≥ i∗ + 1 then

{ j, · · · , N} ⊆ Iα. The proof is the consequence of Lemma 3.3. Therefore Iα can be identified

as Iα = {1, · · · , j1} ∪ { j2, · · · , N}, and τk = j1 + 1 or j2 − 1. Define

ρ∗h,i =





α, i ∈ Iα,

β , i ∈ Iβ ,

θ , i = τk,

(3.10)

where θ is chosen to satisfy constraint

θ |∆yτk
|+α
∑

i∈Iα

|∆yi|+ β
∑

i∈Iβ

|∆yi|= Lx .

It can be verified α ≤ θ ≤ β .

Lemma 3.4. Define ρ∗
h
∈ Ah,y by ρ∗

h
|(yi−1,y1)

= ρ∗
h,i

, then ρ∗
h

is the maximizer of
∫ L y

0
ρh(v

∗
h
)2d y.

Proof. For any ρh ∈ Ah,y , recall mi = q2
i−1 + qi−1qi + q2

i , t i = ρh,i∆yi, i = 1,2, · · · , N

and t∗i = ρ
∗
h,i
∆yi, i = 1,2, · · · , N , then it is sufficient to check

∑N
i=1 t imi ≤
∑N

i=1 t∗i mi.

Let ei = t i − t∗i , then we have

N∑

i=1

t imi −
N∑

i=1

t∗i mi =
∑

i∈Iα

eimi +
∑

i∈Iβ

eimi + eτk
mτk

.

Since
∑N

i=1 ei = 0, then eτk
= −(∑i∈Iα

ei +
∑

i∈Iβ
ei), and

N∑

i=1

t imi −
N∑

i=1

t∗i mi =
∑

i∈Iα

ei(mi −mτk
) +
∑

i∈Iβ

ei(mi −mτk
).

By observing ¨
mi ≤ mτk

, ∀i ∈ Iα,

mτk
≤ mi, ∀i ∈ Iβ ,

and the fact α≤ ρh,i ≤ β , we have

¨
ei(mi −mτk

) = ∆yi(ρh,i −α)(mi −mτk
)≤ 0, ∀i ∈ Iα,

ei(mi −mτk
) = ∆yi(ρh,i − β)(mi −mτk

)≤ 0, ∀i ∈ Iβ .

Combining above results, we obtain the desired result. �

From above Lemma, the solution to Problem 3.1 can be represented as:

ρ∗h =





α, if 0≤ y < y j1
,

θ , if y j1
< y ≤ y j1+1,

β , if y j1+1 ≤ y < y j2
,

α, if y j2
< y ≤ L y ,

or ρ∗h =





α, if 0≤ y < y j1
,

β , if y j1
< y ≤ y j2−1,

θ , if y j2−1 < y ≤ y j2
,

α, if y j2
< y ≤ L y .

(3.11)
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3.2. The discrete inverse transformation

In the last subsection, we obtain the optimal solution for the discretization of Problem

2.2. Now we introduce a discrete inverse transform to recover the discrete solution of

Problem 2.1. Recall the solution of Problem 3.1 is ρ∗
h

in (3.11), and define:

∆x i = ρ
∗
h,i∆yi, σ∗h,i = ρ

∗
h,i, (3.12a)

x0 = 0, x i = x i−1+∆x i, i = 1, · · · , N , (3.12b)

then xN =
∑N

i ρ
∗
h,i
∆yi = Lx . Therefore {x i}N0 forms a partition of interval [0, Lx]. The

discretization of admissible setAx (2.2) can be defined as

Ah,x =

�
σh ∈ L∞(0, Lx), σh|xi

xi−1
= σh,i , −
∫ Lx

0

σh = c

�
. (3.13)

Let σ∗
h
=
∑N

i=1σ
∗
h,i
χ[xi−1,xi]

, one should be noticed that in general σ∗
h
* Ah,x since ρ∗

h
is

not exactly "bang-bang" function. The next Lemma implies σ∗
h

is not far away from the

admissible setAh,x .

Lemma 3.5. When h→ 0, then −
∫
σ∗

h
d x → c.

Proof. Let Lα,y =
∑

i∈Iα
|∆yi|, Lβ ,y =
∑

i∈Iβ
|∆yi|, Lθ ,y =
∑

i∈Iθ
|∆yi|. Then

¨
Lα,y + Lβ ,y + Lθ ,y = L y ,

αLα,y + β Lβ ,y + θ Lθ ,y = Lx .

It implies that

∫ Lx

0

σ∗hd x =

N∑

i=1

σ∗h,i∆x i =

N∑

i=1

ρ∗h,i∆yi = α
2 Lα,y + β

2 Lβ ,y + θ
2 Lθ ,y

=(α+β)Lx −αβ L y + (θ −α)(θ − β)Lθ ,y

=(α+β)Lx − (α+ β − c)Lx + (θ −α)(θ −β)Lθ ,y

=cLx + (θ −α)(θ −β)Lθ .

Therefore

���
∫ Lx

0

σ∗hd x − cLx

���≤ |θ −α||θ − β ||Lθ | ≤ h
(α+ β)2

4
.

So, the lemma is proved. �

From the proof of above Lemma, we immediately have following result:

Corollary 3.1. For ρ∗
h

and ρ∗, the optimal solutions to Problem 2.2 and Problem 2.1 respec-

tively, we have

−
∫ L y

0

(ρ∗h)
2(y)d y →−
∫ L y

0

(ρ∗)2(y)d y =
cαβ

α+ β − c
.
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3.3. Convergence analysis

We first consider the discretization of Problem 2.2.

Theorem 3.1. Let ρ∗
h

be the solution of Problem 3.1, λ∗
1,h

and v∗
h

be corresponding eigenvalue

and positive normalized eigenfunction (
∫ L y

0
(v∗

h
)2y d y = 1). For h→ 0+ we have:

λ∗1,h→ λ∗1,

ρ∗h→ ρ∗ in L2(0, L y),

v∗h → v∗ in H1(0, L y),

where ρ∗ be the optimal solution to Problem 2.2, and (λ∗1, v∗) be the corresponding eigenvalue

and eigenfunction.

Proof. Firstly we claim that

λ∗1,h→ λ∗1,

ρ∗h→ ρ∗ weak star in L∞(0, L y),

v∗h → v∗ in H1(0, L y).

The proof of this claim is similar to Theorem 3.8 in the paper [24] and Lemma 2.3. Firstly

passage to a subsequence we have ρ∗
h
→ ρ∗ weak star in L∞(0, L y), λ

∗
1,h
(ρ∗

h
) → λ∗ and

v∗
h
(ρ∗

h
)→ v∗ weakly in H1(0, L y). Then we notice that (λ∗

1,h
(ρ∗

h
),ρ∗

h
, v∗

h
(ρ∗

h
)) satisfies

∫ L y

0

(v∗h(ρ
∗
h))
′v′h = λ

∗
1,h(ρ

∗
h)

∫ L y

0

ρ∗hv∗h(ρ
∗
h)vh, ∀vh ∈ Vh,y .

Sobolev embedding theorem (H1
0 ,→ L2 compactly) and dense property for finite element

space (∪hVh,y

H1

= H1
0) implies that the limit pair (λ∗1,ρ∗, v∗) satisfies

∫ L y

0

v∗′v′ = λ∗
∫ L y

0

ρ∗v∗v, ∀v ∈ H1
0 .

It is not difficult to see that the limit function v∗ is a positive eigenfunction, which implies

that λ∗ = λ∗1. The uniqueness of solution gives the convergence for the whole sequence.

Lastly norm convergence with weak convergence in H1 leads the strong convergence for

eigenfunction, which complete this claim.

Then by the uniqueness of weak limit we have ρ∗
h
→ ρ∗ weakly L2(0, L y). Then to-

gether with Corollary 3.1, we can deduce that ρ∗
h
→ ρ∗ in L2(0, L y). �

Now we move to Problem 2.1. By discrete inverse transformation and the formula of

ρ∗
h

(3.11), we can get

σ∗h =





α, if 0≤ x < x j1
,

θ , if x j1
< x ≤ x j1+1,

β , if x j1+1 ≤ x < x j2
,

α, if x j2
< x ≤ Lx ,

or σ∗h =





α, if 0≤ x < x j1
,

β , if x j1
< x ≤ x j2−1,

θ , if x j2−1 < x ≤ x j2
,

α, if x j2
< x ≤ Lx .

(3.14)
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Without loss of generality, assume σ∗
h

has the first representation in later of this subsection,

we will prove
∫ Lx

0
|σ∗

h
−σ∗|d x→ 0.

Lemma 3.6. Recall the formula (3.11) and Lemma 2.2 for the discrete optimal density ρ∗
h

and the continuous optimal density ρ∗ respectively. Let h→ 0, then we have y j1
→ z

ρ
1

and

y j2
→ z

ρ
2 .

Proof. By Theorem 3.1,
∫ L y

0
|ρ∗

h
−ρ∗|2d y → 0, then ∀ε > 0, ∃h> 0, s.t. ∀h<min(h,ε),

we have:

∫ L y

0

|ρ∗h−ρ∗|2d y ≤ ε(β −α)2.

Together with

∫ L y

0

|ρ∗h−ρ∗|2d y ≥ |y j2
− z

ρ
2 |(β −α)2,

it implies that |y j2
− z

ρ
2 | ≤ ε.

On the other hand, if y j1
≥ z

ρ
1 , then

∫ L y

0

|ρ∗h−ρ∗|2d y ≤ ε(β −α)2,

∫ L y

0

|ρ∗h−ρ∗|2d y ≥ |y j1
− z

ρ
1 |(β −α)2,

leads to |y j1
− z

ρ
1
| ≤ ε.

If y j1
< z

ρ
1 ≤ y j1+1, |y j1

− z
ρ
1 | < h≤ ε. If y j1+1 < z

ρ
1 ,

∫ L y

0

|ρ∗h−ρ∗|2d y ≤ ε(β −α)2,

∫ L y

0

|ρ∗h−ρ∗|2d y ≥ |y j1+1 − z
ρ
1 |(β −α)2,

which gives |y j1
− z

ρ
1
| ≤ h+ ε= 2ε. Overall, let h→ 0, we have y j1

→ z
ρ
1

, y j2
→ z

ρ
2

. �

Lemma 3.7. Recall the formula (3.14) and Lemma 2.1 for the discrete optimal conductivity

σ∗
h

and the continuous optimal conductivity σ∗ respectively. Let h→ 0, then we have x j1
→ zσ1

and x j2
→ zσ2 .

Proof. From the discrete and continuous inverse Liouville transformation, we can derive

that:

zσ1 = αz
ρ
1 , x j1

= αy j1
,

Lx − zσ2 = α(L y − z
ρ
2 ), Lx − x j2

= α(L y − y j2
).

Combined with Lemma 3.6, we can obtain x j1
→ zσ1 , z j2

→ zσ2 . �
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Theorem 3.2. Using the same notation as Lemma 3.7, we have σ∗
h
→ σ∗ in L1(0, Lx) when

h→ 0.

Proof. By Lemma 3.7, ∀ε > 0, ∃h> 0, s.t. ∀h<min(h,ε), we have:

|x j1
− zσ1 | ≤

ε

8(β −α) , |x j2
− zσ2 | ≤

ε

8(β −α) , h≤ ε

2β(β −α) .

Then by ∫ Lx

0

|σ∗h−σ∗|d x =

�∫ x j1

0

+

∫ x j1+1

x j1

+

∫ x j2

x j1+1

+

∫ Lx

x j2

�
|σ∗h−σ∗|d x ,

we have

∫ x j1

0

|σ∗h−σ∗|d x ≤ (β −α)|x j1
− zσ1 |,

∫ x j1+1

x j1

|σ∗h−σ∗|d x ≤ hβ(β −α),
∫ x j2

x j1+1

|σ∗h−σ∗|d x ≤ (β −α)|x j1
− zσ1 |+ (β −α)|x j2

− zσ2 |,
∫ Lx

x j2

|σ∗h−σ∗|d x ≤ (β −α)|zσ2 − x j2
|.

Therefore ∫ Lx

0

|σ∗h−σ∗|d x ≤ ε.

This completes the proof. �

3.4. Discrete monotonic decreasing algorithm

In this section, a discrete monotonic decreasing algorithm is used to solve Problem 3.1.

See Algorithm 3.1. Given any initial guess ρ0
h
∈ Ah,y , we solve the smallest eigenvalue

and its corresponding eigenfunction v0
h

of Eq. (2.3) for ρh = ρ
0
h
, then we update ρ1

h
from

the eigenfunction v0
h

such that it minimizes the Rayleigh’s quotient R(ρh, v0
h
). Repeat this

process until the stop rule is satisfied, where λk
h
=R(ρk

h
, vk

h
). Once we obtain the discrete

optimal triple (λ∗
1,h

,ρ∗
h
, v∗

h
) from Algorithm 3.1, the discrete optimal σ∗

h
can be recovered

by the discrete inverse Liouville transformation (3.12).

In Algorithm 3.1, Step 1.2.1 can be obtained by MATLAB routine ei gs; Step 1.2.2

follows the similar construction in Lemma 3.4. Without loss of generality let k = 0, we

provide the details to compute the minimization of Rayleigh’s quotient R(ρh, v0
h
). Firstly
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rete version of monotoni
 de
reasing algorithm.1. Compute ρh, λ1(ρh).1.1 Initial guess for ρ0
h
∈Ah,y , 
al
ulate (λ0

1,h
, v0

h
).1.2 Do while not optimal (|λk

h
− λk−1

h
| ≥ ε).1.2.1 vk

h
= vh(ρ

k
h
)¬ argmin

vh∈Vh,y\{0}
R(ρk

h
, vh), λk =R(ρk, vk).1.2.2 ρk

h
= ρh(v

k−1
h
)¬ argmin

ρh∈Ah,y

R(ρh, vk−1
h
).2. Re
over σ∗

h
by dis
rete inverse transformation.

the the mass integration J(∆y) = −
∫
∆y
(v0

h
)2 are defined in each element ∆y . To minimize

the discrete version of Rayleigh’s quotient (3.2), it is same as to maximize:

∫

L y

ρh(v
0
h )

2 =

N∑

1

∫

∆y

ρh(v
0
h)

2 =

N∑

1

ρh,iJ(∆y,i)|∆y,i|.

Suppose (τ1,τ2, · · · ,τN ) be a permutation of (1,2, · · · , N) with

J(∆y,τ1
)≤ J(∆y,τ2

) ≤ · · · ≤ J(∆y,τN
).

Define ρ1
h

as follows:

ρ1
h,τ1
= · · ·= ρ1

h,τk−1
= α, ρ1

h,τk+1
= · · ·= ρ1

h,τN
= β ,

where the subscript τk is satisfied with:

|∆y,τ1
|+ · · ·+ |∆y,τk−1

| < β(β − c)

(β −α)(α+ β − c)
L y ≤ |∆y,τ1

|+ · · ·+ |∆y,τk−1
|+ |∆y,τk

|.

To fulfill the constraint, we adopt

ρ1
h,τk
=

1

|∆y,τk
|
�

Lx −α
k−1∑

j=1

|∆y,τ j
| − β

N∑

j=k+1

|∆y,τ j
|
�

.

4. The extremum eigenvalue of Sturm-Liouville problem with potential

In this section, we will extend our method to the Sturm-Liouville problems with non-

linear potential. It is not like Problem 2.1, the extremum eigenvalue for Sturm-Liouville

problems with general potential does not have a closed form solution. And according to

the authors’ knowledge, there is no numerical result for this problem yet. The monotonic
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decreasing algorithm applied to σ-problem directly still have instability, and we will use

Liouville transformation to reformulate the σ-problem to an equivalent ρ-problem and

apply modified monotonic decreasing algorithm to solve it.

The eigenvalue problem for σ-problem with nonlinear potential reads:
¨ −(σ(x)ux)x + q(u) = λ(σ)u in (0, Lx),

u(0) = u(Lx ) = 0,
(4.1)

where q(u) is a smooth function of the variable u(x). The minimization problem is the

same as Problem 2.1. Applying Liouville transformation, σ-problem can be reformulated

into the following ρ-problem:
¨ −vy y +ρq(v) = λρv in (0, L y),

v(0) = v(L y) = 0.
(4.2)

Hence the corresponding Rayleigh’s quotients of above systems be

R(ρ, v) =

∫ L y

0
|vy |2d y +
∫ L y

0
ρvq(v)d y

∫ L y

0
ρv2d y

.

Unlike Algorithm 2.2, the subproblem

ρk = argmin
ρ∈Ay

R(ρ, vk−1)

is not straightforward now. We notice that for any given v, the subproblem

ρ = argmin
ρ∈Ay

∫ L y

0
|vy |2d y +
∫ L y

0
ρvq(v)d y

∫ L y

0
ρv2d y

is a linear fractional program. To overcome the nonconvexity of the cost functional, we use

the Dinkelbach’s iterative algorithm [4, 21] to solve this linear fractional program. After

standard finite element discretization as in Section 3.1, we need to solve subproblem

min
ρh∈Ah,y

R(ρh, vh) =

∫ L y

0
|(vh)y |2d y +
∫ L y

0
ρhvhq(vh)d y

∫ L y

0
ρv2

h
d y

,

which is equivalent to solve

max
ρh∈Ah,y

∫ L y

0
ρv2

h
d y

∫ L y

0
|(vh)y |2d y +
∫ L y

0
ρhvhq(vh)d y

.

From [4], the above optimization problem is equivalent to

F(t∗) = argmax
ρh∈Ah,y

�∫ L y

0

ρhv2
h d y − t∗
∫ L y

0

ρhvhq(vh)d y

�
= 0,
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where

t∗ =

∫ L y

0
ρ∗

h
v2

h
d y

∫ L y

0
ρ∗

h
vhq(vh)d y

.

Then Dinkelbach’s algorithm is used to find t∗ iteratively, see Algorithm 4.1. At each

iteration of Dinkelbach’s algorithm, we may use the same technique from Algorithm 3.1.Algorithm 4.1: Modi�ed monotoni
 de
reasing algorithm.1. Given a toleran
e ε > 0 and initial guess ρ0
h
∈Ah,y , 
ompute (λ0

1,h
, v0

h
). Set k = 0.2. Do while |λk

h
− λk−1

h
| ≥ ε. Let eρ0

h
= ρk

h
, evh = vk

h
.2.1 Cal
ulate t(1) =

Σeρ0
h
(evh)

2

Σeρ0
h
evhq(evh)

, set m = 1.2.2 (Dinkelba
h's iteration) Do while F(t(m))≥ ε.2.2.1 update eρm
h
= argmax
eρh∈Ah,y

{Σeρm−1
h
(evh)

2 − t(m)Σeρm−1
h
evhq(evh) },2.2.2 t(m+1) =

Σeρm
h
(evh)

2

eρm
h
evhq(evh)

, set m= m+ 1.2.3 update ρk
h
= eρm

h
, 
ompute (λk

1,h
, vk

h
), set k = k+ 1.3. Re
over σ∗

h
by dis
rete inverse transformation.

5. Numerical examples

In this section, we present some numerical experiments to verify our efficiency of our

algorithm.

Example 5.1. Consider the one-dimensional interval is Lx = 1.5, the conductivities of two

materials are α = 1.0, β = 2.0, the volume constraint c is 1.5, namely two materials have

equal areas. After Liouville transformation, it can be deduced that: L y = 1.125.

The exact extremal eigenvalue λ∗1 is same the smallest eigenvalue with exact density

profile (solution of Problem 2.2) and it is approximately computed over a very fine mesh

(3× 215 in our test). The mesh grids in our numerical example generate randomly. From

the solution on the mesh with N grid points and 2N grid points, the convergence order can

be calculated by

log2

��λN −λ∗1
��

��λ2N −λ∗1
�� .

From Table 1, the minimum of λ1 decreases as the mesh grids increasing. The convergence

order of the eigenvalue is O (h2). The Fig. 1 shows the conductivity σ∗
h

and the eigenfunc-

tion u∗
h

corresponding with the extremal eigenvalue λ∗
1,h

in 65 mesh grids. We observe that



Extremal Eigenvalues of the Sturm-Liouville Problems with Discontinuous Coefficients 679Table 1: A grid re�nement analysis for the extremal eigenvalue problem.
N I terat ions Minλ1 Order

24 4 4.83667467357407

25 4 4.81371122780496 1.97742704964463

26 5 4.80784148622367 2.00557426484817

27 6 4.80638460008228 1.99109294762469

28 6 4.80601686034790 2.00595789305809

29 7 4.80592547342413 1.99794092714717

210 8 4.80590260241290 1.99636507777688
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(b) EigenfunctionFigure 1: The 
ondu
tivity σ∗
h
and eigenfun
tion u∗

h
with the extremal eigenvalue λ∗

1,h
.

the conductivity σ∗
h

in only one element is neither 1.0 nor 2.0, which matches our analysis

result. It can be found that the eigenfunction u∗
h

is non-smooth, which means that there is

jump for the conductivity where material property changed.

Example 5.2. The optimization problem is the same as Example 5.1. But we will solve

the extremum eigenvalue problem in two ways. One way is to solve the conductivity

problem directly, we can find the solution to the monotone decreasing algorithm depends

on the choice of the initial data. But if we use the Liouville transformation, to reformulate

the optimal conductivity distribution problem into the density configuration problem, the

numerical experiment shows the algorithm is stable and does not depend on the initial

data.

In this example, we use uniform mesh with 3 ∗ 25 elements and choose the initial con-

ductivity(density) distribution randomly. Without the Liouville transformation, we get the

approximate minimum λ1 is 4.89377248044174. The corresponding eigenfunction u∗
h

and
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tivity σ∗
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and eigenfun
tion u∗

h
with Liouville transformation.

the conductivity distribution σ∗
h

have been described in Fig. 2. Applying Liouville trans-

formation and discrete inverse transformation, we can obtain the optimal minimum λ1 is

4.80636482143785. We also plot the corresponding eigenfunction u∗
h

and the conductivity

distribution σ∗
h

have been described in Fig. 3.

Example 5.3. For above numerical experiments, the finite element space is chosen as con-

tinuous piecewise linear function. Next we will employ the continuous piecewise quadratic

finite element space. The optimization problem is the same as Example 5.2.

We use a uniform mesh with 3 ∗ 25 intervals and choose the initial conductivity (den-

sity) distribution randomly. By applying Liouville transformation and the discrete inverse

transformation, we can obtain the optimal minimum λ1 is 4.80589495485539 and the
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(b) EigenfunctionFigure 4: The 
ondu
tivity σ∗
h
and eigenfun
tion u∗

h
with Liouville transformation by P2 �nite element.

corresponding eigenfunction u∗
h

and the conductivity distribution σ∗
h

have been plotted in

Fig. 4.

Example 5.4. We will consider the Sturm-Liouville problems with potential q(u) = u3. We

will also solve this problem by direct solver and by Liouville transformation.

In numerical experiments, let the interval Lx = 1.5, the conductivities of two mate-

rials are α = 1.0, β = 2.0, the volume constraint c is 1.5. The mesh grids with 3 ∗ 27

and initial conductivity(density) distribution generate randomly. By the direct solver, we

could get the approximate minimum eigenvalue is 5.48770808403623. The correspond-

ing eigenfunction u∗
h

and the conductivity distribution σ∗
h

have been described in Fig. 5. By

the Liouville transformation and inverse transformation solver, we can obtain the optimal

minimum λ1 is 5.30592595833589. We also plot the corresponding eigenfunction u∗
h

and

the conductivity distribution σ∗
h

in Fig. 6.

6. Conclusions

In this paper, finite element method with a monotonic decreasing algorithm are ap-

plied to solve the extremal eigenvalue of the Sturm-Liouville problem on an interval with

variable conductivities. Convergence analysis and numerical experiments are obtained in

the paper. We also determine the extremal eigenvalue of the Sturm-Liouville problem with

nonlinear potential. Our work can be generalized in several directions. Firstly Dirichlet

boundary condition can be replaced by Neumann boundary condition or Robin boundary

condition. Secondly, a singular Sturm-Liouville system may be under consideration. Lastly,

our method may be extend to find a radially symmetric minimizer when the domain is a

ball.
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