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Abstract. We propose an efficient gradient-type algorithm to solve the fourth-order LLT

denoising model for both gray-scale and vector-valued images. Based on the primal-dual

formulation of the original nondifferentiable model, the new algorithm updates the pri-

mal and dual variables alternately using the gradient descent/ascent flows. Numerical

examples are provided to demonstrate the superiority of our algorithm.
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1. Introduction

Image denoising is one of the most fundamental tasks in image processing. For gener-

ality, let us consider a vectorial function u(x) defined on a bounded domain Ω⊂ R2:

u : Ω→ Rd

x = (x1, x2) 7→ u(x) := (u1(x),u2(x), · · · ,ud(x)). (1.1)

The observed noisy image u0(x) is modeled as

u0 = u+ n, (1.2)

where n is a d-dimensional additive Gaussian noise with zero-mean. When d = 1 and 3,

we get the model for gray-scale and color images, respectively. The task of image denoising

is to recover the true image u from the given noisy data u0, which belongs to the inverse

problems. The well-known ill-posedness of inverse problems is often handled by some

regularization methods. Tikhonov type regularization is very popular and useful for many
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types of inverse problems. In the field of image denoising, one of the most famous and

influential approaches is the ROF model, which is proposed by Rudin, Osher, and Fatemi

in [15] originally for gray-scale image denoising. The ROF model aims to minimize the

following energy functional:

∫

Ω

|∇u(x)|d x+
β

2

∫

Ω

|u− u0|
2d x , (1.3)

where the first term is the total variation (TV) term and β > 0 is a parameter that controls

the contribution of the fidelity term [5]. The novelty of the ROF model is that it allows

discontinuous solutions and hence can preserve sharp edges while removing noise. The

vectorial TV can be defined similarly and has been applied to some color image processing

problems [1,2].

However, an undesired disadvantage of the TV based model is the “staircase” effects

[12,13], as can be seen from images in [15,18], which is the result of piecewise constant

solutions. A variety of higher order variational models (especially fourth-order) are intro-

duced to alleviate the staircase effects [6, 8, 11, 13, 16, 21]. In [13], a new fourth-order

filter based variational model, which is referred as the LLT model, has been proposed. To

better preserve edges and avoid the oversmoothing of the fourth order models simultane-

ously, some mixed models have been proposed [12, 14]. Lysaker and Tai [14] devise an

iterative scheme by a convex combination of the results of the second and the fourth order

models. A variational approach combining a total variational filter and a fourth order filter

is proposed by Li et al. [12].

In numerical implementation, both the TV-based and the LLT model suffer from the

nondifferentiability. A direct method is to replace the original nondifferentiable L1-norm by

a modified version through introducing a small regularization parameter. However, there

is a trade-off between the accuracy versus the speed of convergence. A variety of efficient

algorithms are developed to deal with this problem. One class is based on variable splitting

and constrained optimization [3,17]. In [17], a FFT based algorithm is proposed by virtue

of variable splitting and the penalty method. The split Bregman algorithm [10] and the

augmented Lagrangian method [19, 20], which were demonstrated to be equivalent with

each other, are also efficient algorithms. Another class uses the primal-dual formulation

of the original problem. Many methods of this class focus either on the primal variable

or on the dual variable [4,7]. Recently, Zhu and Chan [22] presented an efficient primal-

dual hybrid gradient (PDHG) algorithm, which alternates between the primal and dual

variable by gradient-type methods. This algorithm is both simple and fast. Furthermore,

it can be applied to a large range of restoration problems. Motivated by [22], we propose

an effective and fast primal-dual based gradient algorithm to solve the fourth-order LLT

model.

The following part of the paper is organized as follows. In Section 2, we recall first the

LLT model in a vectorial form and then review briefly the existing methods for solving the

LLT model. In the next section, we present the PDHG algorithm for solving the LLT model.

In Section 4, some numerical implementation details are given. Numerical examples and

comparisons are shown in Section 5. Finally, we conclude the paper in Section 6.
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2. LLT model and related works

We first recall the LLT model for gray-scale and vector-valued images. Then we briefly

review three existing algorithms for solving this model.

2.1. LLT model

The LLT model was proposed in [13] for gray-scale image to alleviate the staircase

effect introduced by the ROF model. The LLT model requires to solve the following mini-

mization problem with respect to a scalar image u

min
u

¨∫

Ω

|∇2u|d x +
β

2

∫

Ω

|u− u0|
2d x

«

, (2.1)

where

∇2u=













∂ 2u

∂ x2
1

∂ 2u

∂ x1∂ x2

∂ 2u

∂ x2∂ x1

∂ 2u

∂ x2
2













(2.2)

is the Hessian of u and

|∇2u| =

s

�

∂ 2u

∂ x2
1

�2

+

�

∂ 2u

∂ x1∂ x2

�2

+

�

∂ 2u

∂ x2∂ x1

�2

+

�

∂ 2u

∂ x2
2

�2

. (2.3)

To solve this nondifferentiable problem, |∇2u| is often replaced by
p

|∇2u|2 + ǫ in

numerical implementation. Similar to the solution of the ROF model, a proper choice of

ǫ is a difficult task. Moreover, the fourth-order filter imposes more rigid restrictions on

the time step size of the discretized gradient flow, which leads to a slow convergence of

the iterative process. Therefore, the dual method was employed to solve the fourth-order

model [9] to improve accuracy and speed up convergence.

Let us introduce some notations in the following. The T V 2 norm of u is defined in a

more formalized form as

T V 2(u) =

∫

Ω

|∇2u|d x = sup
p∈X

∫

Ω

2
∑

i, j=1

u∂i∂ j p
i jd x ,

where

X =
n

p =

�

p11 p12

p21 p22

�

∈ C2
c (Ω,R2×2), |p(x)|¶ 1 for all x ∈ Ω

o

(2.4)

with

|p(x)|=

√

√

√

√

2
∑

i, j=1

(pi j)2.
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For convenience, we denote the operator div2 as

div2p(x) =

2
∑

i, j=1

∂i∂ j p
i j .

For a vector-valued image u = (u1,u2, · · · ,ud), the vectorial LLT model can be proposed

similarly. Let 〈·, ·〉 stand for the Euclidean scalar product defined by

〈u,v〉 :=
d
∑

i=1

〈ui , vi〉, ∀ v= (v1, v2, · · · , vd) : Ω→ Rd .

Notice

∇2u = (∇2u1,∇2u2, · · · ,∇2ud).

Then

T V 2(u) =

∫

Ω

|∇2u|d x = sup
p∈X d

∫

Ω

〈u, div2p〉d x ,

where

div2 p= (div2p1, div2p2, · · · , div2pd), pi =

�

p11
i

p12
i

p21
i

p22
i

�

, for i ∈ {1,2 · · · , d},

X d =

¨

p=

��

p11
1 p12

1

p21
1 p22

1

�

,

�

p11
2 p12

2

p21
2 p22

2

�

, · · · ,

�

p11
d

p12
d

p21
d

p22
d

��

, |p(x)|¶ 1, ∀x ∈ Ω

«

with

|p(x)|=

√

√

√

√

d
∑

i=1

�

(p11
i
)2 + (p12

i
)2 + (p21

i
)2 + (p22

i
)2
�

.

The d-dimensional vectorial LLT model reads

min
u

¨∫

Ω

|∇2u|d x +
β

2

∫

Ω

|u− u0|
2d x

«

, (2.5)

including (2.1) as a special case d = 1.

2.2. Existing solvers

In this section, we briefly review three existing algorithms to solve the LLT model.

2.2.1. Gradient descent method

In [12,13], the finite difference scheme was used to numerically discretize the LLT model

(2.1). Regularization of the gradient flow was inevitable in their method even though a

special difference scheme was employed. The convergence speed is slow and the accuracy

is limited as demonstrated in [9].
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2.2.2. Dual method for the LLT model

Motivated by Chambolle’s dual algorithm for the ROF model [4], Chen et al. [9] proposed

a dual method to solve the LLT model for gray-scale images. The general vectorial form

can be given similarly. The solution of (2.5) is given by

u = u0 −
1

β
div2p, (2.6)

where p is the converged value of the iterative sequence {pk} generated by

pk+1 =
pk + δ∇2(div2pk − βu0)

1+ δ|∇2(div2pk − βu0)|
, k = 0,1, · · · , (2.7a)

p0 = 0, (2.7b)

where the time step δ > 0 should satisfy δ < 1/64 to guarantee the convergence of the

iterative scheme (2.7).

2.2.3. Augmented Lagrangian method

Recently, the higher order models are solved using the variable splitting technique and

the augmented Lagrangian method in [20]. They formulated the following constrained

problem

min
u,p

¨∫

Ω

|p|d x +
β

2

∫

Ω

|u− u0|
2d x

«

subject to p=∇2u.

The augmented Lagrangian method is employed to transform the above constrained prob-

lem into an unconstrained one:

min
u,p

¨∫

Ω

|p|d x +
β

2

∫

Ω

|u− u0|
2d x +

∫

Ω

λ(p−∇2u)d x +
µ

2

∫

Ω

|p−∇2u|d x

«

,

where λ is the Lagrangian multiplier and µ > 0 is the penalization parameter. Let F and

F−1 denote the Fourier transform and inverse transform, respectively. Then minimizing u

and p alternately gives the following algorithm [20].

Algorithm 1: Augmented Lagrangian method for the LLT model

• Step 1. Initialization: Set the Lagrangian multiplier λ0 = 0, u0=0 and choose

properly the penalization parameter µ.

• Step 2. Update alternately

uk+1 =F−1

�

βF (u0) +µF (div2)F (pk) +F (div2)F (λk)

β +µF (div2)F (∇2)

�
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pk+1 =











�

|wk| −
1

µ

�

wk

|wk|
, |wk|>

1

µ
,

0, |wk|¶
1

µ

with

wk =∇2uk+1−
λk

µ
.

• Step 3. Update the Lagrangian multiplier by

λk+1 = λk +µ(pk+1−∇2uk+1).

• Step 4. Check convergence. Iterate again if necessary; k = k+ 1.

3. PDHG algorithm for LLT model

The existing approaches focus either on the primal or on the dual variable, while the

PDHG algorithm alternates between the two variables and makes use of the information

from each other. Therefore, the PDHG algorithm converges much faster. We try to effi-

ciently solve the fourth-order nondifferentiable LLT model by a hybrid gradient algorithm.

We will present our primal-dual algorithm based on the vectorial LLT model (2.5). The

LLT model for gray images can be solved using our algorithm as a special case d = 1. The

primal-dual formulation of (2.5) can be written as

min
u

max
p∈X d

Φ(u,p), (3.1)

where

Φ(u,p) =

∫

Ω

〈u, div2p〉d x +
β

2

∫

Ω

|u− u0|
2d x

=

∫

Ω

〈∇2u, p〉d x +
β

2

∫

Ω

|u− u0|
2d x .

(3.2)

One can switch the minimization and the maximization to use equivalent formulations.

We use an alternating iterative algorithm to solve (3.1). From the initial guesses u0

and p0, we get uk+1 and pk+1 alternately from uk and pk.

Firstly, for fixed uk, we update p by solving the following maximization problem with

respect to p:

max
p∈X d

Φ(uk,p). (3.3)

The ascent direction of p is given by

∂Φ

∂ p
(uk,p) =∇2uk.
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The projected gradient ascent method for problem (3.3) reads

pk+1 = PX d (pk +τk∇2uk),

where τk > 0 is the time step and the projection operator PX d is defined as

PX d (z) = arg min
y∈X d
‖z− y‖.

In our case, the projection operator PX d can be simply computed in a straightforward way

as

PX d (x) =

�

x1

max{|x1|, 1}
,

x2

max{|x2|, 1}
, · · · ,

xd

max{|xd |, 1}

�

,

for x = (x1, x2, · · · , xd).

Secondly, for fixed pk+1, we solve the following minimization problem with respect to

u to update u:

min
u
Φ(u,pk+1). (3.4)

The gradient descent direction for (3.4) is

−
∂Φ

∂ u
(u,pk+1) = −
�

div2pk+1+ β(u− u0)
�

. (3.5)

Scaling the descent direction by 1/β and employing the gradient descent flow by the ex-

plicit Euler scheme with a time step θ k > 0, we can therefore update u by

uk+1− uk

θ k
= −
�

1

β
div2pk+1+ uk −u0

�

(3.6)

or equivalently,

uk+1 = (1− θ k)uk + θ k

�

u0 −
1

β

�

div2pk+1
�

�

. (3.7)

Unifying all the schemes together, we obtain the following algorithm.

Algorithm 2: PDHG algorithm for the LLT model

Step 1. Initialization: u0 = u0, p0 = 1, k = 0.

Step 2. Choose proper time steps τk and θ k.

Step 3. Update alternatively

pk+1 = PX d (pk +τk∇2uk)

uk+1 = (1− θ k)uk + θ k
�

u0 −
1

β

�

div2pk+1
�

�

.

Step 4. Check convergence. Iterate again if necessary; k = k+ 1.
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Remark 3.1. The updating of u in (3.7) can actually be seen as a relaxation method

making use of the information from the former step. From (3.5), we can derive the explicit

expression uk+1 = u0 +
1

β
div2pk+1. Then, (3.7) is the convex combination of the obtained

result and uk, which is a relaxation strategy.

4. Implementation issues

In numerical implementation, we represent a gray-scale image as an M × N matrix.

We first give the discretizations of the derivatives for the gray-scale image and that for the

vector-valued image can be defined channel by channel. We define D+x1
, D+x2

(resp. D−x1
,

D−x2
) as the forward (resp. backward) difference operators with the periodic boundary

condition. Denote

(D+x1
u)i, j =

¨

ui+1, j − ui, j, 1¶ i ¶ M − 1,

u1, j − uM , j , i = M ,

(D+x2
u)i, j =

¨

ui, j+1 − ui, j, 1¶ j ¶ N − 1,

ui,1 − ui,N , j = N .

Then D−x1
, D−x2

can be defined similarly. For the operators ∇2 and div2, we have

(∇2u)i, j =

�

(D−+x1 x1
u)i, j (D

++
x1 x2

u)i, j
(D++x2 x1

u)i, j (D
−+
x2 x2

u)i, j

�

and

(div2p)i, j = (D
+−
x1 x1

p11)i, j + (D
−−
x2 x1

p12)i, j + (D
−−
x1 x2

p21)i, j + (D
+−
x2 x2

p22)i, j,

p =

�

p11 p12

p21 p22

�

,

where
(D±∓x1 x1

u)i, j := (D±x1
(D∓x1

u))i, j,

(D±∓x2 x2
u)i, j := (D±x2

(D∓x2
u))i, j,

(D±±x1 x2
u)i, j := (D±x1

(D±x2
u))i, j,

(D±±x2 x1
u)i, j := (D±x2

(D±x1
u))i, j.

Then for a vector-valued image u = (u1,u2, · · · ,ud) and p = (p1, p2, · · · , pd) ∈ X d , we

obtain

(∇2u)i, j =
�

(∇2u1)i, j, (∇
2u2)i, j, · · · , (∇

2ud)i, j

�

,

(div2p)i, j =
�

(div2p1)i, j, (div2p2)i, j, · · · , (div2pd)i, j

�

.

All these operators can be computed simply and fast using matrix difference in MATLAB.
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We terminate the iteration if the following stopping condition is satisfied for some

prescribed tolerance TOL> 0

‖uk+1− uk‖2
‖uk‖2

< TOL. (4.1)

The MATLAB function imnoise is used to add Gaussian noise with zero-mean and devia-

tion σ to various images. For different values of TOL, we compute the Peak Signal-to-Noise

Ratio (PSNR) of the restored image to quantify the performance of the algorithms. If the

true image is u and u0 is its noisy perturbation, the PSNR of u and u0 is defined by

PSNR(u,u0) = 20 log10

�

C

E

�

, (4.2)

where C is the maximum possible pixel value of the image and E is the mean squared

error given by ‖u−u0‖2/(MN). In our experiments, all image intensities have been scaled

between 0 and 255. We therefore have C = 255.

The choice of suitable time steps is critical for the convergence behavior and speed of

the algorithm. We can use fixed time steps or similar adaptive time steps as in [22]. We

use the following strategy to determine the time steps:

τk =
(0.1+ 0.05 ∗ k)

4
and θ k =

�

0.2− 1

10+k

�

(4τk)
. (4.3)

5. Numerical experiments

In this section, we perform some numerical experiments and make comparisons be-

tween three different algorithms introduced in Section 2.2 for both gray and color image

denoising. We test our algorithm by some well-known images including Lena, Man and

Rose. All numerical experiments are implemented within the software MATLAB on a PC

with a 2.33GHz CPU and 2.0GB memory. The CPU time (in seconds) is reported. The dual

algorithm for the LLT model has been demonstrated to be more efficient than the gradient

descent method [9]. Here we focus on comparing among the primal-dual hybrid gradient

algorithm for the LLT model, the dual algorithm for the LLT model and the augmented

Lagrangian method for the LLT model, which we refer respectively as PDHG-LLT, D-LLT

and AL-LLT in the following.

5.1. Gray-scale image: d = 1

We use the gray images shown in Fig. 1 to test our algorithm corresponding to d = 1.

First, the noisy Lena image Fig. 1(c) is restored by different methods for different stop-

ping tolerance values TOL=10−4 and 10−6 to evaluate the performance of our algorithm.

When TOL=10−4, we can observe from Fig. 2(a), Fig. 2(b) and Fig. 2(c)that the PDHG-

LLT algorithm and the AL-LLT algorithm give more visually satisfactory solution than the

D-LLT algorithm. In order to better illustrate this difference, we provide the zoomed-in
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figures in Fig. 2(d), Fig. 2(e) and Fig. 2(f) by extracting a small portion from the restored

images. From the local regions, we can clearly see that the PDHG-LLT algorithm and the

AL-LLT algorithm obviously perform better than the D-LLT algorithm for the same toler-

ance. There are small differences on the PSNR values of the three algorithms as reported

in Table 1. More accurate restoration results with TOL=10−6 are displayed in the bottom

row of Fig. 2.

A qualitative comparison is given in Fig. 3 by potting the convergence history of the

relative L2-Error versus the CPU time of the three algorithms. To see the convergence

behavior more clearly, we provide the zoomed-in plot at the crossing point in the first few

iterations in Fig. 3. From Table 1 and Fig. 3, we can see that when the tolerance value

changes from 10−4 to 10−6, our method gives stable and satisfactory results, while D-LLT

has much improvement both in the visual effect and the PSNR value. Therefore, the D-LLT

algorithm requires higher accuracy hence much more iterations and time to achieve the

same solution as the PDHG-LLT algorithm. Moreover, the PDHG-LLT algorithm is slightly

slower than the AL-LLT algorithm when the tolerance is low but faster when the tolerance

is higher, which can be seen from the zoomed-in plot in Fig. 3.

Then Fig. 4, Fig. 5 and Table 2 show results of comparisons between the three algo-

rithms for the noisy Man image in Fig. 1(d). We can see that the PDHG-LLT algorithm is

(a) Lena (gray); size: 512× 512 (b) Man; size: 512× 512

(c) Noisy image; σ=0.01;

PSNR=20.25

(d) Noisy image; σ=0.01;

PSNR=20.50Figure 1: Original gray images and the degraded ones.
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(a) PDHG-LLT (b) D-LLT (c) AL-LLT

(d) A small part of (a) (e) A small part of (b) (f) A small part of (c)

(g) PDHG-LLT (h) D-LLT (i) AL-LLTFigure 2: Restored images for di�erent TOL values by the PDHG-LLT algorithm, the D-LLT algorithmand the AL-LLT algorithm, respe
tively. Top row: restored images for TOL=10−4. Middle row: a smallportion of the restored images in the top row. Bottom row: restored images for TOL=10−6.
significantly faster than the D-LLT algorithm for various tolerance values. Furthermore, the

PDHG-LLT algorithm also converges more slowly in a low level of accuracy and becomes

faster than the AL-LLT algorithm as the level of accuracy increases.

5.2. Color image: d = 3

In this subsection, we provide some examples for color image denosing. The original

color images and their degraded images are listed in Fig. 6.
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Firstly, in Fig. 7, Fig. 8 and Table 3, we present the results of the PDHG-LLT, the D-LLT

and the AL-LLT algorithm for the color Rose image in Fig. 6(a). From the figures and

data, we conclude that our PDHG-LLT algorithm and the AL-LLT algorithm are much faster
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Figure 3: Plots of relative L2-Error vs. CPU time for the gray Lena image by di�erent algorithms(TOL=10−6).

(a) PDHG-LLT (b) D-LLT (c) AL-LLT

(d) PDHG-LLT (e) D-LLT (f) AL-LLTFigure 4: Restored images for di�erent TOL values by the PDHG-LLT algorithm, the D-LLT algorithmand the AL-LLT algorithm, respe
tively. The �rst row: restored images for TOL=10−4. The se
ondrow: restored images for TOL=10−6.
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Figure 5: Plots of relative L2-Error vs. iteration number and CPU time for the Man image by di�erentalgorithms (TOL=10−6). Left: L2-Error vs. iteration number. Right: L2-Error vs. CPU time.Table 1: Computational e�orts for the gray Lena image: β =0.04.
TOL=10−4 TOL=10−6

Algorithm Iter CPU PSNR Iter CPU T-Onea PSNR

PDHG-LLT 116 28.56 28.43 468 118.77 0.254 28.52

D-LLT 186 55.97 28.44 3869 1118 0.307 28.52

AL-LLT 60 23.8 28.38 394 158.3 0.402 28.45

a The average CPU time of one iteration.Table 2: Computational e�orts for the Man image: β =0.05.
TOL=10−3 TOL=10−4 TOL=10−6

Algorithm Iter CPU PSNR Iter CPU PSNR Iter CPU PSNR

PDHG-LLT 35 8.59 26.34 85 21.94 26.36 396 103.36 26.36

D-LLT 33 10.03 26.67 171 52.66 26.43 2589 778.89 26.35

AL-LLT 18 6.86 25.41 71 28.36 25.92 523 211.6 26.05Table 3: Computational e�orts for the Rose image: β =0.07.
TOL=10−4 TOL=10−6

Algorithm Iter CPU PSNR Iter CPU T-Onea PSNR

PDHG-LLT 38 6.12 22.14 91 15.76 0.173 22.15

D-LLT 98 23.18 21.99 802 192.34 0.240 22.13

AL-LLT 33 14.92 21.49 194 94.76 0.489 21.52

a The average CPU time of one iteration.

than D-LLT algorithm in the vectorial case. Furthermore, the superiority of our algorithm

is more and more obvious as the tolerance level becomes smaller.

Then we use the color Lena image to evaluate again the performance of the algorithms

by increasing the noise level to σ = 0.02 as shown in Fig. 6(d). For the same tolerance

level, the results of our PDHG-LLT is better than D-LLT algorithm and the convergence
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(a) Rose; size: 250× 303 (b) Lena (color); size: 512× 512

(c) Noisy image; σ=0.01;

PSNR=16.06

(d) Noisy image; σ=0.02;

PSNR=12.61Figure 6: Original 
olor images and the degraded ones.

(a) PDHG-LLT (b) D-LLT (c) AL-LLTFigure 7: Restored images for TOL=10−6 by the PDHG-LLT algorithm, the D-LLT algorithm and theAL-LLT algorithm, respe
tively.
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olor Lena image: β =0.04.
TOL=10−3 TOL=10−4 TOL=10−6

Algorithm Iter CPU PSNR Iter CPU PSNR Iter CPU PSNR

PDHG-LLT 29 20.24 23.49 51 34.38 23.67 108 72.20 23.71

D-LLT 31 29.00 21.47 142 135.17 22.58 1280 1216.9 23.66

AL-LLT 10 11.87 23.51 25 32.47 23.58 189 248.9 23.59
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Figure 8: Plots of L2-Error vs. iteration number and CPU time for the Rose image (TOL=10−6). Left:
L2-Error vs. iteration number. Right: L2-Error vs. CPU time.
is faster as we can see from Fig. 9 and Table 4. Furthermore, compared to the D-LLT

algorithm, the saved time of our algorithm raises rapidly as the dimension d increases as

can be seen from Fig. 3 and Fig. 10. As the gray-scale case, the PDHG-LLT algorithm is the

fastest algorithm among the three algorithms in a high level of accuracy in the vectorial

case.

Obviously, the increase of the size or the dimension d of the noisy image can increase

the computational efforts of each algorithm. As demonstrated above, the total cost saving

by our algorithm is rather considerable compared with the D-LLT algorithm. The reduction

of the computational time mainly comes from both the huge decrease of the total iteration

number and the reduction of the cost time of each iteration. For the latter point, we can

see from Table 1 and Table 3 that the average cost saving for one iteration of our algorithm

compared with D-LLT algorithm is about 30%.

6. Conclusion

High order models usually impose severe restrictions on the time step size. In this

paper, we have presented an efficient primal-dual based gradient method to solve the

fourth-order LLT model for both gray-scale and vectorial image denoising. The proposed

algorithm avoids the regularization parameter for the nondifferentiable term by employing

the primal-dual formulation. Gradient-type methods are used to update the primal and

dual variables alternately. In each iteration, the primal variable and the dual variable use
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the updated information from each other, which makes the convergence very fast. We

compare our method with the existing methods for the LLT model. Various numerical

comparisons for gray and color image restoration show that our algorithm is much more

efficient than the dual algorithm due to the huge reduction in the total iteration number

and cost saving at each iteration. Comparing with the augmented Lagrangian algorithm,

the convergence of the proposed primal-dual algorithm is slightly slower at a low level of

accuracy but becomes faster at a relatively high level of accuracy.

(a) PDHG-LLT (b) D-LLT (c) AL-LLT

(d) A small portion of (a) (e) A small portion of (b) (f) A small portion of (c)

(g) PDHG-LLT (h) D-LLT (i) AL-LLTFigure 9: Restored images for di�erent TOL values. Top row: restored images for TOL=10−4 by thePDHG-LLT algorithm, the D-LLT algorithm and the AL-LLT algorithm, respe
tively. Middle row: asmall portion of the restored images in the top row. Bottom row: restored images for TOL=10−6 bydi�erent methods.



276 C. Liu, D. Kong and S. Zhu

0 200 400 600 800 1000 1200 1400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time

R
el

at
iv

e 
L2 −

E
rr

or

PDHG−LLT
D−LLT
AL−LLT

0 100

10
−5

Figure 10: Plots of L2-Error vs. CPU time for the 
olor Lena image (TOL=10−6).
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