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Abstract. In this paper, we study robust iterative solvers for finite element systems re-
sulting in approximation of steady-state Richards’ equation in porous media with highly
heterogeneous conductivity fields. It is known that in such cases the contrast, ratio
between the highest and lowest values of the conductivity, can adversely affect the per-
formance of the preconditioners and, consequently, a design of robust preconditioners is
important for many practical applications. The proposed iterative solvers consist of two
kinds of iterations, outer and inner iterations. Outer iterations are designed to handle
nonlinearities by linearizing the equation around the previous solution state. As a result
of the linearization, a large-scale linear system needs to be solved. This linear system is
solved iteratively (called inner iterations), and since it can have large variations in the
coefficients, a robust preconditioner is needed. First, we show that under some assump-
tions the number of outer iterations is independent of the contrast. Second, based on
the recently developed iterative methods, we construct a class of preconditioners that
yields convergence rate that is independent of the contrast. Thus, the proposed itera-
tive solvers are optimal with respect to the large variation in the physical parameters.
Since the same preconditioner can be reused in every outer iteration, this provides an
additional computational savings in the overall solution process. Numerical tests are
presented to confirm the theoretical results.
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1. Introduction

In this paper, we study robust preconditioners for solving finite element approximations
of nonlinear flow equations in heterogeneous media. Our motivation stems from Richards’
equation [31] which describes the infiltration of water into a porous media whose pore
space is filled with air and water. In many cases, the heterogeneous porous media is char-
acterized by large variations of the conductivity. For example, in natural porous formations
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it is common to have several orders of magnitude of variations in the conductivity values.
A high contrast, expressed as the ratio between high and low conductivity values, brings
an additional scale into the problem. A design of robust preconditioners that converge
independent of small scales and high-contrast of the media for nonlinear problems is a
challenging task. In this paper, we address this problem for the model of two-phase flow
in porous media, the steady-state Richards’ equation.

The Richards’ equation has the form

Dtθ(u)− div(k(x ,u)∇(u+ x3)) = f , x ∈ Ω, (1.1)

where θ(u) denotes the volumetric fluid content, and k(x ,u) ≥ k0 > 0 is the relative
hydraulic conductivity and k0 is a constant. We assume that suitable initial and bound-
ary data are provided. The dependence of the volumetric water content and the relative
hydraulic conductivity from the pressure head is established experimentally by assum-
ing some functional form. There is a large number of functional forms used by hydrolo-
gists and soil scientists. In our numerical experiments, we use three popular among the
soil scientists models, namely, Haverkamp, van Genuchten models, and Exponential (see,
e.g., [8,22,30,36]).

In this paper, we are interested in robust preconditioners for the finite element system
resulting from the discretization of nonlinear equations when k(x ,u) is heterogeneous with
respect to space. We consider the steady-state Richards’ equation

div(k(x ,u)∇(u+ x3)) = f , x ∈ Ω, (1.2)

where k(x ,u) has high variations in x . In many practical cases, the heterogeneous portion
of the relative permeability is given by a spatial field that does not depend on u, i.e.,
k(x ,u) = k(x)λ(u). By denoting, u+ x3 as a new variable and assuming λ is smooth, we
can write the above equation as

div(k(x)λ(x ,u)∇u) = f , x ∈ Ω, (1.3)

where k(x) is a heterogeneous function, while λ(x ,u) is a smooth function that varies mod-
erately in both x and u. The heterogeneous function k(x) represents the high-variability
of the permeability of the media; see [13, 28]. Simple examples of heterogeneous func-
tions are, for example, periodic highly oscillatory functions with a period that is much
smaller than the size of the coarse block, k(x) = F(x/ε), where F(y) is a smooth periodic
function and ε is much smaller than the size of the coarse-grid block. More complicated
heterogeneous field examples are random homogeneous fields with characteristic length
scale of order ε, e.g., Gaussian random field with the correlation length of order ε. In
this paper, we consider general heterogeneous fields where the spatial variation of the per-
meability within coarse-grid block may not necessarily have any underlying structure (e.g.,
homogeneity) and moreover, the variations in the permeability magnitude can be very high
(comparable to small scales). Robust preconditioners for a finite element approximation
of Eq. (1.3) with such coefficients will be studied in the paper.



Robust Multiscale Iterative Solvers for Nonlinear Flows 361

We note that coarse-grid approximations of Richards’ equation are discussed in litera-
ture, e.g. [1, 9, 14]. Various iterative methods for solving nonlinear equations have been
proposed and studied in the past, e.g., [6, 7, 11, 25, 34, 37]. For example, in [6, 34], a
nonlinear iterative procedure has been proposed and its optimality has been established,
in [25], multilevel iterative methods have been studied for Richards’ equation, in [11],
two-level domain decomposition methods have been proposed and analyzed. To the best
of our knowledge, the techniques developed in the previous works have not considered
(robustness with respect to the contrast in) the case of highly heterogeneous conduc-
tivity fields, which is the main objective of this paper. The proposed iterative proce-
dure involves outer iterations and inner iterations, a technique that is commonly used
in the literature. Outer iterations are designed to handle nonlinearities by linearizing the
equation around the previous state. The simplest is Picard iteration that is described by
div(k(x)λ(x ,un)∇un+1) = f , where n denotes the outer iteration number. For every outer
iteration n, a linear problem needs to be solved. For the solution of the linear problem, we
employ two-level domain decomposition preconditioners within conjugate gradient (CG)
iterative technique. Both inner and outer iteration can, in general, depend on the contrast
and small scales. One of our main goals is to construct iterative process that converges
independently of both, the small scales and the contrast. In particular, we show that the
robust iterative techniques designed for a linear system can be re-used for every outer it-
eration if λ is a smooth function. Therefore, it is important to use efficient preconditioners
for solving linear systems arising in approximation of problems with highly heterogeneous
coefficients. Such preconditioners, designed in the earlier works [16,18,19], are discussed
below and described in Section 3.

For every outer iteration, the resulting linear system on the fine scale is solved us-
ing two-level domain decomposition preconditioner (e.g., [26, 35]), which involves local
(subdomain) and global (coarse) problems. The number of iterations required by domain
decomposition preconditioners is typically affected by the contrast in the media properties
(e.g., [26, 35]) that are within each coarse grid block. Because of the complex geometry
of fine-scale features, it is often impossible to separate low and high conductivity regions
into different coarse grid blocks. Consequently, without proper preconditioner, the number
of iterations can be very large, which substantially reduces the efficiency of the iterative
method, particularly for nonlinear flows.

In this paper, for every outer iteration we use the preconditioners designed in [16,18].
The main idea of these preconditioners consists of augmenting the coarse space in the
domain decomposition methods. In particular, a coarse space based on local spectral prob-
lems using multiscale functions is constructed. We prove that when the coarse space in
the domain decomposition methods includes these eigenfunctions, the condition number
of the preconditioned matrix is bounded independently of the contrast. The choice of
multiscale spaces is important to achieve small dimensional coarse spaces. By incorporat-
ing small-scale localizable features of the solution into initial multiscale basis functions,
we have shown that one can achieve small dimensional coarse spaces without sacrificing
the convergence properties of the preconditioners. Initial multiscale spaces can employ
constructions proposed for multiscale finite element methods in [13,15,23,24].
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We show that both, the number of outer iterations and the number of inner iterations,
are bounded independently of physical parameters, such as the contrast and small spatial
scales. We first prove that under some assumptions the number of outer iterations depends
on the contraction constant that is independent of the contrast in the conductivity field.
Our reasoning takes into account the high variations of the contrast in the conductivity
field and follows the standard for such nonlinear problems technique, e.g., [5]. As for
inner iterations, we use two-level preconditioners developed in [16, 18] that provide in-
dependent of the contrast condition number for every outer iteration. We use the same
preconditioner for every outer iterations repeatedly without sacrificing the convergence of
the overall method.

We note that one can use the Kirchhoff’s potential (see, e.g., [8, p. 29-31]) to transform
the original equation into a linear equation for the potential. However, this technique
becomes cumbersome when λ(x ,u) depends on x and does not have an explicit form
(e.g., given via a graph interpolation). Moreover, the difficulty of inversion of Kirchhoff’s
potential still needs to be performed and the extensions to time-dependent problems can
become complicated.

We test our methodology on a number of numerical examples for various nonlinear
models. We consider two different heterogeneous permeability fields and vary the contrast
over four orders in magnitude. Our numerical results show that the number of outer itera-
tions does not depend on the contrast. Moreover, the number of inner iterations on every
outer iteration does not depend on the contrast if an appropriate preconditioner is cho-
sen. We also test two-level domain decomposition preconditioner when the coarse space
includes only the initial multiscale basis functions. In this case, the number of iterations at
every outer iteration grows as the contrast increases.

The paper is organized as follows. In Section 2, we introduce the problem. Section 3 is
devoted to the description of robust preconditioners. Some of the proofs are presented in
the Appendix. In Section 4 we present numerical results and, finally, in Section 5 we draw
some conclusions.

2. Problem setting

2.1. Weak formulation

We multiply the Eq. (1.3) by a test function v ∈ H1
0(Ω) and integrate over the domain

Ω. After applying divergence theorem, we get that the solution u satisfies the following
integral identity
∫

Ω

k(x)λ(x ,u)∇u∇vd x =

∫

Ω

f vd x , for all v ∈ H1
0(Ω).

Now we define the space V = H1
0(Ω), set of all functions with square integrable generalized

derivatives of first order vanishing on the boundary ∂Ω, the form a(·, ·; ·)
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a(u, v; w) =

∫

Ω

k(x)λ(x , w)∇u∇vd x , (2.1)

and the functional F(·)
F(v) =

∫

Ω

f vd x . (2.2)

Then the variational form of (1.3) is to find u ∈ V such that

a(u, v; u) = F(v), for all v ∈ V. (2.3)

2.2. Finite element discretization

Let Th be a triangulation of the domain Ω into a finite number of triangular (tetrahe-
dral) elements. We assume that Th quasiuniform and regular; see [10]. Let V h be the finite
dimensional subspace of V of piece-wise polynomials with respect to Th. Let uh ∈ V h be a
solution of the following discrete problem.

a(uh, v; uh) = F(v), for all v ∈ V h. (2.4)

We know that under suitable conditions, one can ensure the existence of a solution to the
above equation. Define the nonlinear map Th : V h→ V h by

a(Thuh, v; uh) = F(v), for all v ∈ V h. (2.5)

This is well defined, since uh ∈ V h.

2.3. A nonlinear fixed point iteration

In this section we describe a robust numerical method to approximate the numerical
solutions of the Richards’ equation (2.4). We use a fixed point iteration based on the
contractivity of the mapping Th defined in (2.5). The numerical solution uh can be approx-
imated to an arbitrary accuracy via using Picard iteration.

Starting with an initial guess u0
h
∈ V h, we define the nonlinear fixed point iteration by

un+1
h
= Thun

h
.

That is, given un
h
, the next approximation un+1

h
is the solution of the linear elliptic equation

a(un+1
h

, w; un
h) = F(w), for all w ∈ V h. (2.6)

In order to define the solution method, we reformulate the problem (2.6) in terms of the
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linear operator An : V h→ V h defined for any given un
h
∈ V h as

a(v, w; un
h
) = (Anv, w), for all v, w ∈ V h, (2.7)

where (·, ·) is the standard L2-inner product in V h. In a similar manner, we present the
linear functional F(w) in the form

F(w) = (b, w), for all w ∈ V h. (2.8)

Obviously, b is the L2-projection of the right hand side f of (1.3) on V h. Then the equation
(2.6) can be rewritten in the following operator form

Anun+1
h
= b. (2.9)

Note that equation (2.6) (and its operator counterpart (2.9)) is an approximation of
the linear equation −div(k(x)λ(x ,un

h
)∇un+1

h
) = f with un

h
being the previous iterate. It

is known that the presence of the high-contrast coefficient k(x) makes computationally
difficult to construct appropriated robust linear solvers for computing un+1

h
. Moreover,

taking into account the contractivity of the operator Th, in order to get a robust method to
compute the solution of the Richards’ equation (2.5), we only need a robust method for
solving the linear problem (2.6).

The hydrolic conductivity k(x) has small scale features and high-contrast. Because of
the small scales and high contrast in the conductivity field, the solution of this system (of
size proportional the fine grid points) is prohibitively expensive. Therefore, an adequate
robust iterative method is needed.

The construction of robust solvers for high-contrast linear elliptic equation has been
considered by many authors. We will use as a preconditioner a two-level domain decom-
position method proposed in [16, 18, 19], which involves solutions of appropriate local
spectral problems. If B−1 is the preconditioner, our goal is to have the condition number
of B−1An bounded independent of the contrast and n (i.e, independent of un

h
). Now we de-

scribe a construction of such preconditioner for (2.9), which will give a robust with respect
to the contrast method for Richards’ equation.

3. FE discretization and two level domain decomposition preconditioner

3.1. Finite element approximation and local spaces

First, we provide an overview of the use of domain decomposition techniques for con-
structing preconditioners for multiscale finite element approximations of high-contrast el-
liptic equations (cf., [16,18–21]). For an extension to multilevel methods, we refer to [17].
Next, we briefly describe two-level domain decomposition setting that we use and intro-
duce the local spaces and the coarse space.

Let TH and Th be coarse and fine partitions of Ω into finite elements K (or nonoverlap-
ping subdomains) that consists of triangles, quadrilaterals, etc.. We assume that the coarse
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elements of TH consist of a number of fine elements from Th. Practically, we first introduce
the coarse-grid TH and then obtain the fine grid Th by partitioning each coarse element
into a number of smaller ones. Let χi be the nodal basis of the standard finite element
space with respect to the coarse triangulation TH . We denote by Nv the number of coarse
nodes, by {yi}Nv

i=1 the vertices of the coarse mesh TH , and define a neighborhood of each
node yi by

ωi =
⋃
{K j ∈ TH ; yi ∈ K j}. (3.1)

Let V h
0 (ωi) ⊂ V h be the set of finite element functions with support in ωi and RT

i
:

V h
0 (ωi)→ V h denote the extension by zero operator.

We define, for later use, the one level additive preconditioner (e.g., [26,35])

B−1
1 =

Nv∑

i=1

RT
i (A

0
i )
−1Ri, (3.2)

where the operators A0
i : V h

0 (ωi)→ V h
0 (ωi) are defined by

(A0
i v, w) = a(v, w; u0

h), for all v, w ∈ V h
0 (ωi), i = 1, · · · , Nv . (3.3)

The application of the preconditioner B−1
1 involves (A0

i )
−1 which means solving local prob-

lems subdomain-wise in each iteration. The operator A0
i , defined by the bilinear form

a(·, ·; u0
h
) restricted to V h

0 (ωi), is local and invertible.

3.2. Coarse space construction

For given Mc number of linearly independent functions {Φi}Mc

i=1 associated with the
coarse mesh TH (these will be introduced later), we define a coarse space V0 by

V0 = span{Φi}Mc

i=1. (3.4)

Below we shall give three choices of sets {Φi}Mc

i=1, that have been already used in the
construction of a robust preconditioner for An. These are: (1) multiscale coarse space (see,
e.g., [13] and the references therein), (2) energy minimizing coarse space (see, e.g., [38]),
and (3) a coarse space with local spectral information, (see, e.g., [16, 18, 19]). On an
abstract level, the main assumption is that Φi ∈ V h, but the support of each Φi is related to
the coarse mesh TH so that Mc << dim V h. Below we refer to the Φi ’s as coarse-scale basis
functions. The coarse space V0 defines an operator

Ac : V0→ V0, (Ac v, w; u0
h
) = a(v, w; u0

h
), ∀v, w ∈ V0.

Note that if RT
c : V0 → V h is the natural interpolation operator then we have

Ac = RcA
0RT

c with A0 defined by (2.7) for n= 0. (3.5)
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Note that the operator Ac uses the initial guess u0
h
∈ V h and is constructed only once at

the beginning of the fixed point nonlinear iteration. Likewise, the coarse basis functions
{Φ j}Mc

j=1 are related to the form a(·, ·; u0
h
) and are constructed only one time. These can

be regarded as a preprocessing step. Once the coarse space V0 is constructed and the
coarse-scale operator Ac is defined, we can use the two level additive preconditioner of the
form

B−1 = RT
c A−1

c Rc +

Nv∑

i=1

RT
i (A

0
i )
−1Ri = RT

c A−1
c Rc + B−1

1 . (3.6)

The preconditioner B−1 involves solving one coarse-scale system and Nv local problems in
each overlapping subdomain ωi , i = 1, · · · , Nv . The goal is to reduce the number of itera-
tions in the iterative procedure, e.g., a preconditioned conjugate gradient. An appropriate
construction of the coarse space V0 plays a key role in obtaining robust iterative domain
decomposition method. In the next Section 3.3 we present examples of such coarse space
constructions. We summarize the fixed point iteration in Algorithm 3.2.

Algorithm 3.1 Fixed point iteration

1: Initialize: Choose u0
h
∈ V h and compute the residual r0 = b− A0u0

h
.

2: Construct the coarse basis {Φ j}, the coarse space V0 in (3.4), and the coarse operator
Ac in (3.5) .

3: for n= 1,2, · · · until convergence do

4: Set the linear system Anun+1
h
= b (see (2.9)).

5: Using PCG with preconditioner B−1 in (3.6) solve the linear system in 4: to get
un+1

h
.

6: Compute the residual rn+1 = b− An+1un+1
h

.
7: end for

Remark 3.1. In the general domain decomposition method setting the overlapping subdo-
mains {ωi} could be chosen independently of the coarse triangulation T H . However, for
the purpose of this paper, we will only consider the partition introduced above.

3.3. Some multiscale coarse spaces

In this subsection we review several possibilities for construction of coarse basis func-
tions that have been used in design of two level preconditioners that are robust with respect
to the contrast.

3.3.1. Linear boundary conditions multiscale coarse spaces

Let χH
i be the nodal basis of the standard finite element space with respect to the coarse

triangulation TH . We define multiscale finite element basis function χms
i

that coincides
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with χH
i on the boundaries of the coarse partition. Namely, for each K ⊂ωi

∫

K

k∇χms
i ∇vd x = 0, ∀v ∈ V h ∩ V h

0 (ωi) and χms
i = χH

i on ∂ K . (3.7)

This means that χms
i is an approximation in the fine-grid space of the boundary value

problem

−div(k∇χms
i ) = 0 in K ⊂ωi, χms

i = χ
H
i on ∂ K , for all K ⊂ωi, (3.8)

where K is a coarse grid element within ωi. Then we define

V ms
0 = span{χms

i }. (3.9)

Note that multiscale basis functions coincide with standard finite element basis func-
tions on the boundaries of coarse grid blocks, while are oscillatory in the interior of each
coarse grid block. Even though the choice of χH

i can be quite arbitrary, our main assump-
tion is that the basis functions satisfy the leading order homogeneous equations when the
right hand side f is a smooth function (e.g., L2 integrable). We remark that the MsFEM
formulation allows one to take advantage of scale separation. In particular, K can be cho-
sen to be a volume smaller than the coarse grid. Various other boundary conditions have
been introduced and analyzed in the literature, see [13] and references therein. For exam-
ple, in [24], reduced boundary conditions are found to be efficient in many porous media
applications.

3.3.2. Energy minimizing coarse spaces

Coarse basis functions can be obtained by minimizing the energy of the basis functions
subject to a global constraint (see, [38]). More precisely, one can use the partition of
unity functions {χ em

i
}Nv

i=1, with Nv being the number of coarse nodes, that provide the least
energy. This can be accomplished by solving

min
Nv∑

i=1

∫

ωi

k|∇χ em
i |2, (3.10)

subject to the constraint
∑

i χ
em
i
= 1 with supp(χ em

i
) ⊂ ωi , i = 1, · · · , Nv. Note that∑

i χ
em
i
= 1 is a global constraint though it is not tied to any particular global fields unlike

the methods discussed previously. One can solve (3.10) following a procedure discussed
in [38] and then define the coarse space

V em
0 = span{χ em

i }. (3.11)

We note that the computation of these basis functions requires the solution of a global
linear system, a procedure more expensive compared to the local computation of multiscale



368 Y. Efendiev, J. Galvis, S. Ki Kang and R.D. Lazarov

finite element basis functions with linear boundary conditions χms
i .

3.3.3. A coarse space with local spectral information

We motivate the choice of the coarse spaces based on the analysis presented in [16,18,19].
First, we briefly review the results of [16, 18, 19]. For fixed ωi consider the eigenvalue
problem

−div(k∇ψωi

ℓ
) = µ

ωi

ℓ
ekψωi

ℓ
, (3.12)

where µωi

ℓ
and ψωi

ℓ
are eigenvalues and eigenvectors in ωi and ek is defined by

ek =
1

H2
k

Nv∑

j=1

|∇χ in
j |2. (3.13)

We recall that χ in
j

(simply denoted by χ j in further discussions) are the initial multiscale
basis functions (either multiscale basis functions with linear boundary conditions or en-
ergy minimizing basis functions) and Nv is the number of the coarse nodes. The eigen-
value problem considered above is solved with zero Neumann boundary condition and
understood in a discrete setting. Assume eigenvalues are given by

µ
ωi

1 ≤ µωi

2 ≤ · · · .

Basis functions are computed by selecting a number of eigenvalues (starting with small
ones) and multiplying corresponding eigenvectors by χi. Thus, multiscale space is de-
fined for each i as the span of χiψ

ωi

ℓ
, ℓ = 1, · · · , Li , where Li is the number of selected

eigenvectors (see Fig. 1 for an illustration).
We note that {ωi}yi∈T H is a covering of Ω. Let {χi}Nv

i=1 be a partition of unity subordi-

nated to the covering {ωi} such that χi ∈ V h
0 (ωi) and |∇χi| ≤ 1

H
, i = 1, · · · , Nv . Define the

set of coarse basis functions

Φi,ℓ = Ih(χiψ
ωi

ℓ
), for 1≤ ℓ≤ Li and 1≤ i ≤ Nv, (3.14)

where Ih is the fine-grid nodal value interpolation and Li is an integer number specified
for each i = 1, · · · , Nv. Note that in this case, there might be several basis functions per
coarse node. The number of basis functions per node is defined via the eigenvalue problem
(3.12). Denote by V0 the local spectral multiscale space

V lsm
0 = span{Φi,ℓ : 1≤ ℓ≤ Li and 1≤ i ≤ Nv}. (3.15)

3.4. Condition number estimates

In this section, we present a theoretical result which shows that the number of outer
iterations is independent of the contrast. First, for a given K > 0 we introduce the ball

V
K ,p

h
:= {v ∈ Vh : ‖v‖W1

p
≤K }. (3.16)
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The following three assumptions are used in the proofs of Theorems 1, 2, and 3.

Assumption 3.1.

(A) C0 ≤ k(x)≤ M, where C0, and M is a constant.

(B) The function λ(x ,u) satisfies the following conditions.

(a) λ(x ,u) is Lipschitz continuous with respect to u, i.e., there exists a constant C1 such

that |λ(x ,u)−λ(x , v)| ≤ C1|u− v|, for all u, v ∈ V , x ∈ Ω,

(b) λ(x ,u) is bounded above, i.e. there is a constant C such that λ(x ,u) ≤ C for all

x ∈ Ω and u ∈ L∞(Ω)
(c) λ(x ,u) is bounded below, i.e. there is a constant C2 such that 0 < C2 ≤ λ(x ,u) for

all x ∈ Ω and u ∈ V .

(C) See (A.9).

Under these assumptions, we show the following theorems concerning the existence of
the solution and the boundedness of the contraction constant.

Theorem 1. Under the Assumption 3.1 (A) and (B), there are constants α <∞,h0 > 0 and

ε > 0 such that for all 0< h≤ h0 and uh ∈ V h

|uh|W1
p (Ω)
≤ α sup

06=vh∈V h

a(uh, vh; ·)
|vh|W1

q (Ω)

, with a(u, v; ·) =
∫

Ω

k∇u∇v d x , (3.17)

whenever |2− p| ≤ ε, q is the dual index to p, 1
p
+ 1

q
= 1 and | · |W1

q (Ω)
is a semi-norm in

W 1
q (Ω).

Theorem 2. Let the Assumption 3.1 (A), (B) and (C) hold. Then (a) there exists K >

0, p > 2,h0 > 0,and δ > 0 such that for all F with ‖F‖W−1
p
≤ δ, Th maps V

K ,p
h

into itself

for all 0< h≤ h0 and by Browder Fixed Point Theorem, there exists a solution ũh of equation

(2.4) and it satisfies

Thũh = ũh. (3.18)

(b) The map Th : V
K ,p

h
→ V

K ,p
h

is a contraction and the contraction constant is independent

of the contrast.

Theorem 3. Under the assumptions of Theorem 1, we have cond(B−1An) ≤ C, where C is

independent of the contrast.

The proofs of these theorems are presented in Appendix 5.

Remark 3.2 (Degenerate case). In some practical cases the diffusion coefficient of the
Richards’ equation can approach to zero. For the analysis of mixed finite element approx-
imations of such problems we refer to e.g., [3, 29]. In general the proposed in this paper
methods are not directly applicable. Nevertheless, in some cases, our algorithms will yield
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Figure 1: Illustration of basis onstrution.
robust results. These cases includes coefficients where the regions of degeneracy can be
resolved by the coarse grid, or when those regions are union of isolated inclusions. How-
ever, when the region of degeneracy is complex and cannot be resolved by the coarse grid,
additional basis functions or some refinement may be required in order to get contrast-
independent preconditioners. And since we use a fixed point iteration, our outer loop will
allow us to determine approximately the region of degeneracy. We note that this requires
additional analysis and is a subject of future research.

4. Numerical results

In this section we present some representative numerical examples. We solve the
Richards’ equation (2.4) in Ω = [0,1] × [0,1] with f (x) = 1 and homogeneous Dirich-
let boundary conditions. We consider several models for the hydraulic conductivity: the

Figure 2: (Left): Condutivity �eld 1. Blue designates the regions where the oe�ient is 1 and otherolors designates the regions where the oe�ient is a random number between η and 10 ∗η. (Right):Condutivity �eld 2. Blue designates the regions where the oe�ient is 1 and red designates the regionswhere the oe�ient is η.
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Haverkamp, van Genuchten, and Exponential model (see, e.g. [8, 22, 30, 36]), as intro-
duced below. The coarse mesh TH is obtained by dividing Ω into 10× 10 mesh. The fine
triangulation is obtained by dividing each coarse-mesh element into 10× 10 squares and
further dividing each square into two triangles. Thus, the fine-mesh step size is h= 1/100.
In all the numerical experiments we use the initial approximation for the iterative process
u0

h
that solves

a(u0
h
, v; 0) = F(v), for all v ∈ V h. (4.1)

We apply the Algorithm (3.2). As stated in Algorithm (3.2) we use the preconditioner
B−1 in (3.6) with three different coarse spaces:

1. The coarse space V ms
0 described in Sect. 3.3.1. In this case B−1 is denoted by B−1

ms ;

2. The coarse space V em
0 described in Sect. 3.3.2. In this case B−1 is denoted by B−1

em ;

3. The coarse space V lsm
0 described in Sect. 3.3.3. In this case B−1 is denoted by B−1

lsm
.

We study the performance of Algorithm 3.2 with initial guess u0
h

and preconditioners B−1
ms ,

B−1
em , and B−1

lsm
. We consider different permeabilities with complex high-contrast configu-

rations, see Fig. 2. A number of parameter values in the nonlinearity of the hydraulic
conductivity are tested in our simulations. In particular, for each experiment we chose a
different set of parameters for the model and a set of contrast values for the hydraulic con-
ductivity. We note that, for each outer iteration in Algorithm 3.2 we have a PCG iteration.
The inner PCG iteration is convergent when the initial residual is reduced by a factor of
tolin = 1e− 10 while the outer tolerance is set to tolout = 1e− 8.

We consider the following indicators for the performance of the preconditioners:

• Coarse space dimension;

• The number of outer iterations of the nonlinear fixed point iteration (R-iter);

• The maximum and minimum number of inner PCG iterations over all outer iterations
(CG-iter) and the estimated maximum condition numbers (Cond).

We also verify numerically our main assumption in the proof of Theorem 1. That is, for
every outer iteration update we compute

‖
p

k|∇u|‖pp =
∫

D

(
p

k|∇u|)p d x , p = 1,2, · · · , 10.

We observe that this quantity remains bounded in all experiments.

4.1. Haverkamp model

First, we will study Haverkamp model. In the Haverkamp model, (see, e.g., [22]), the
hydraulic conductivity is given by

k(x ,u) = ks(x)
A

A+ (|u|/B)γ . (4.2)
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We present the first set of numerical results in Tables 1 and 2. We use the precondi-
tioner B−1

ms based on the coarse space V ms
0 . We observe from these tables that the numbers

of outer iterations do not change when the contrast value η increases. However, the condi-
tion number of the preconditioned system grows as η increases. We also observe that the
quantity ‖pk|∇u|‖pp, p = 1,2,3, · · · , 10, that is related to the number of outer iterations,
is bounded. We observe that the number of outer iterations is larger when B and γ (see
(4.2)) decrease. This is because the smaller values of B and γ increase the magnitude of
the conductivity that comes from its nonlinear component. Comparing Tables 1 and 2 that
use different conductivity fields, we see that the condition numbers in Table 2 are smaller
than the condition numbers in Table 1. This is because conductivity field 2 (see Figure 2)
has simpler heterogeneity structure compared conductivity field 1.

Next, we repeat the above numerical experiments using the preconditioner B−1
em based

on the coarse space V em
0 . Numerical results are presented in Tables 3 and 4. We observe

that, as before, the number of outer iterations is fixed with increasing η. On the other
hand, the condition number of the PCG iteration grows as the contrast increases. This
condition number is much larger compared to the case when spectral basis functions are
used as presented in the next tables.

Further, we show the numerical experiment using the preconditioner B−1
lsm

based on the
spectral coarse space V lsm

0 . Numerical results are presented in Tables 5 and 6. As before,
we observe that the number of outer iterations is independent of the contrast. We observe
that the condition number is also independent of the contrast. Note that the condition
number is substantially smaller than the one of the preconditioned system using B−1

ms or
B−1

em . In general, the number of inner PCG iterations is much smaller compared to those
when other coarse spaces are used.Table 1: Numerial results for preonditioner B−1

ms
. Here we use the Haverkamp model k(x , u) Eq. (4.2)with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

A= 1, B = 1, γ = 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 4 119,124 1.1e+ 3 0.12 11 131,139 1.4e+ 3 0.12
104 4 166,178 1.1e+ 4 0.12 11 179,199 1.4e+ 4 0.12
105 4 224,224 1.1e+ 5 0.12 11 224,224 1.4e+ 5 0.12
106 4 278,278 1.1e+ 6 0.12 11 278,278 1.4e+ 6 0.12Table 2: Numerial results for preonditioner B−1

ms
. Here we use the Haverkamp model k(x , u) Eq. (4.2)with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

A= 1, B = 1, γ = 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 4 113,113 2.6e+ 2 0.13 11 107,123 3.9e+ 2 0.13
104 4 163,171 2.5e+ 3 0.13 11 180,193 3.6e+ 3 0.13
105 4 224,232 2.5e+ 4 0.13 11 238,255 3.6e+ 4 0.13
106 4 288,295 2.5e+ 5 0.13 11 308,324 3.6e+ 5 0.13
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em
. Here we use the Haverkamp model k(x , u) = k(x)Eq. (4.2) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

A= 1, B = 1, γ= 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 83,83 1.3e+ 2 0.12 8 90,102 1.9e+ 2 0.12
104 3 88,88 2.5e+ 2 0.12 8 95,109 3.9e+ 2 0.12
105 3 89,90 3.0e+ 2 0.12 8 97,113 4.6e+ 2 0.12
106 3 95,103 3.1e+ 2 0.12 8 103,115 4.7e+ 2 0.12Table 4: Numerial results for preonditioner B−1

em
. Here we use the Haverkamp model k(x , u) Eq. (4.2)with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

A= 1, B = 1, γ= 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 90,90 1.6e+ 2 0.13 8 84,98 2.7e+ 2 0.13
104 3 94,94 3.7e+ 2 0.13 8 88,102 6.2e+ 2 0.13
105 3 95,95 4.2e+ 2 0.13 8 89,103 7.1e+ 2 0.13
106 3 96,96 4.3e+ 2 0.13 8 91,104 7.2e+ 2 0.13Table 5: Numerial results for preonditioner B−1

lsm
. Here we use the Haverkamp model k(x , u) Eq.(4.2)with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 166.

A= 1, B = 1, γ = 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 4 34,34 6.9 0.13 8 37,39 9.6 0.13
104 4 35,35 7.0 0.13 8 39,41 9.7 0.13
105 4 35,37 7.0 0.13 8 40,42 9.7 0.13
106 4 36,36 7.0 0.13 8 41,44 9.7 0.13Table 6: Numerial results for preonditioner B−1

lsm
. Here we use the Haverkamp model k(x , u) Eq. (4.2)with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 184.

A= 1, B = 1, γ = 1 A= 1, B = 0.01, γ= 0.5
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 31,31 6.2 0.13 8 35,37 8.1 0.13
104 3 33,33 6.3 0.13 8 36,37 8.0 0.13
105 3 33,33 6.3 0.13 8 38,43 8.0 0.13
106 3 34,34 6.3 0.13 8 38,41 8.0 0.13

4.2. Van Genuchten model

Next, we consider Van Genuchten model (see [36]) that is one of widely used empirical
constitutive relations. In this model, the hydraulic conductivity is given by

k(x ,u) = ks(x)
{1− (α|u|/B)n−1[1+ (α|u|)n]−m}2

[1+ (α|u|)n]m

2

. (4.3)

As before, we will present numerical results for all three coarse spaces. First, in Ta-
bles 7 and 8 we present the numerical results for the preconditioner B−1

ms . We observe
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ms
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

α= 0.005, B = 1, n= 2, m= 0.5 α= 0.01, B = 1, n= 4, m = 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 116,116 1.1e+ 3 0.13 2 115,116 1.1e+ 3 0.13
104 2 168,168 1.1e+ 4 0.13 2 174,174 1.1e+ 4 0.13
105 2 219,219 1.1e+ 5 0.13 2 219,219 1.1e+ 5 0.13
106 2 273,290 1.1e+ 6 0.13 2 267,272 1.1e+ 6 0.13Table 8: Numerial results for preonditioner B−1

ms
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

α= 0.005, B = 1, n= 2, m= 0.5 α= 0.01, B = 1, n= 4, m = 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 98,99 2.5e+ 2 0.13 2 99,99 2.5e+ 2 0.13
104 2 134,134 2.5e+ 3 0.13 2 160,160 2.5e+ 3 0.13
105 2 183,184 2.5e+ 4 0.13 2 219,223 2.5e+ 4 0.13
106 2 222,225 2.5e+ 5 0.13 2 286,287 2.5e+ 5 0.13Table 9: Numerial results for preonditioner B−1

em
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

α= 0.005, B = 1, n= 2, m= 0.5 α = 0.01, B = 1, n= 4, m= 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 82,82 1.3e+ 2 0.13 1 81 1.3e+ 2 0.13
104 2 85,85 2.5e+ 2 0.13 1 84 2.5e+ 2 0.13
105 2 88,88 3.0e+ 2 0.13 1 87 3.0e+ 2 0.13
106 2 93,101 3.1e+ 2 0.13 1 95 3.1e+ 2 0.13Table 10: Numerial results for preonditioner B−1

em
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

α = 0.005, B = 1, n= 2, m = 0.5 α= 0.01, B = 1, n= 4, m = 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 76,76 1.6e+ 2 0.13 1 88 1.6e+ 2 0.13
104 2 79,79 3.6e+ 2 0.13 1 90 3.6e+ 2 0.13
105 2 79,79 4.2e+ 2 0.13 1 87 4.1e+ 2 0.13
106 2 80,81 4.2e+ 2 0.13 1 90 4.2e+ 2 0.13

that the number of outer iterations is smaller compared to the other two models. The
number of outer iterations stays the same while increasing η. On the other hand, the con-
dition number of the linearized system increases as η increases. We observe that the value
‖pk|∇u|‖pp, p = 1,2,3, · · · , 10 is bounded independent of the contrast. Now we compare
Table 7 and Table 8 for two different conductivity fields depicted in Fig. 2. We observe
that the condition numbers presented in Table 8 is smaller than those presented in Table 7
which is consistent with our previous observations.

Numerical results for the preconditioner B−1
em are presented in Tables 9 and 10, while

numerical results for the preconditioner B−1
lsm

are presented in Tables 11 and 12. As before,
we observe that the number of outer iteration does not change with η increasing. How-
ever, the condition number of the inner iteration is increasing for B−1

em , while the condition
number of the inner iteration does not change (and is much smaller) for B−1

lsm
.
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lsm
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 166.

α= 0.005, B = 1, n= 2, m= 0.5 α = 0.01, B = 1, n= 4, m= 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 33,33 6.8 0.13 1 33 6.8 0.13
104 2 34,34 6.8 0.13 1 34 6.8 0.13
105 2 35,35 6.8 0.13 1 35 6.8 0.13
106 2 36,36 6.8 0.13 1 36 6.8 0.13Table 12: Numerial results for preonditioner B−1

lsm
. Here we use the van Genuhten model k(x , u) Eq.(4.3) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 184.

α= 0.005, B = 1, n= 2, m= 0.5 α = 0.01, B = 1, n= 4, m= 0.75
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 2 32,32 6.5 0.14 1 31 6.2 0.13
104 2 33,33 6.6 0.13 1 32 6.3 0.13
105 2 33,33 6.6 0.13 1 33 6.3 0.13
106 2 35,35 6.6 0.13 1 34 6.3 0.13Table 13: Numerial results for preonditioner B−1

ms
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

α= 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 4 119,120 1.0e+ 3 0.13 4 120,122 1.1e+ 3 0.13
104 4 166,178 1.1e+ 4 0.13 4 173,181 1.1e+ 4 0.13
105 4 224,224 1.1e+ 5 0.13 4 226,227 1.1e+ 5 0.13
106 4 274,284 1.1e+ 6 0.13 4 277,287 1.1e+ 6 0.13Table 14: Numerial results for preonditioner B−1

ms
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

α= 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 4 113,113 2.5e+ 2 0.13 4 114,115 2.5e+ 2 0.13
104 4 164,164 2.5e+ 3 0.13 4 164,164 2.5e+ 3 0.13
105 4 223,232 2.5e+ 4 0.13 4 227,231 2.5e+ 4 0.13
106 4 290,294 2.5e+ 5 0.13 4 289,302 2.5e+ 5 0.13

4.3. Exponential model

Finally, we present numerical results for exponential model. Here the hydraulic con-
ductivity depend exponentially on the pressure head u, that is,

k(x ,u) = ks(x)e
αu/B. (4.4)

This nonlinear equation can also be derived by homogenizing Stokes equation in porous
media when the fluid viscosity exponentially depends on the pressure [30].

We present the first set of numerical results in Tables 13 and 14. First, we use the
preconditioner B−1

ms based on the coarse space V ms
0 . We observe that the number of the

outer iterations does not change when the contrast η increases. However, the condition
number of the preconditioned system increases proportional to η. We also observe that the
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em
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 81.

α = 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 83,84 1.3e+ 2 0.13 3 84,84 1.3e+ 2 0.13
104 3 88,88 2.5e+ 2 0.13 3 89,90 2.6e+ 2 0.13
105 3 90,91 3.0e+ 2 0.13 3 92,92 3.1e+ 2 0.13
106 3 96,97 3.1e+ 2 0.13 3 97,98 3.1e+ 2 0.13Table 16: Numerial results for preonditioner B−1

em
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 81.

α = 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 91,91 1.6e+ 2 0.13 3 91,92 1.6e+ 2 0.13
104 3 95,95 3.6e+ 2 0.13 3 95,96 3.7e+ 2 0.13
105 3 95,95 4.2e+ 2 0.13 3 98,99 4.2e+ 2 0.13
106 3 98,98 4.2e+ 2 0.13 3 99,99 4.3e+ 2 0.13Table 17: Numerial results for preonditioner B−1

lsm
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in left piture of Fig. 2. The oarse spae dimension is 166.

α = 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 33,33 6.8 0.13 3 34,34 6.8 0.13
104 3 35,35 6.8 0.13 3 35,35 6.8 0.13
105 3 36,36 6.8 0.13 3 36,36 6.9 0.13
106 3 37,37 6.8 0.13 3 37,37 6.9 0.13Table 18: Numerial results for preonditioner B−1

lsm
. Here we use the Exponential model k(x , u) Eq.(4.4) with k(x) depited in right piture of Fig. 2. The oarse spae dimension is 184.

α = 1, B = 1 α= 2, B = 1
η R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp R-iter CG-iter Max Cond ‖(pk|∇u|)‖pp

103 3 32,32 6.4 0.13 3 32,32 6.6 0.13
104 3 34,34 6.8 0.13 3 34,34 6.7 0.13
105 3 34,34 6.5 0.13 3 35,35 6.7 0.13
106 3 36,36 6.8 0.13 3 35,36 6.7 0.13

quantity ‖pk|∇u|‖pp, p = 1,2,3, · · · , 10 is bounded independent of contrast η. We see that
the number of outer iterations stays the same for both set of parameters for nonlinearities
which means larger α values do not affect the outer iterations. We observe from Tables
13 and 14 (these use different conductivity fields) that the condition numbers in Table
14 are smaller than the corresponding condition numbers in Table 13. This is because
conductivity field 2 has simpler subgrid structure compared to conductivity field 1.

Next, we repeat the numerical experiment using the preconditioner B−1
em based on the

coarse space V em
0 and B−1

lsm
with coarse space V lsm

0 . Numerical results for the coarse space
B−1

em are presented in Tables 15 and 16 while the results for V lsm
0 are presented in Tables

17 and 18. As before, we observe that the number of outer iterations is independent of
the contrast. However, for space V em

0 the condition number increases as we increase the
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contrast. On the other hand, the condition number is independent of contrast when V lsm
0

is used as a coarse space. Moreover, we observe that the condition number produced by
V lsm

0 , is only 6 while the condition number for V em
0 is about 400 for η= 106. In conclusion,

B−1
lsm

provides truly independent-of-contrast solver.

5. Conclusions

In this paper, we study robust iterative solvers for finite element discretizations of
steady-state Richards’ equation. We assume that the nonlinear conductivity field can be
written as a product of a nonlinear function and a heterogeneous spatial function that
has high contrast. Due to spatial heterogeneities, the number of iterations in an iterative
method, in general, will depend on the contrast. To alleviate this problem, we design and
investigate iterative solvers that converge independent of the physical parameters (small
spatial scales and large contrast). The proposed iterative solvers consist of outer and inner
iterations, as it is commonly done in the literature. Outer iterations, designed to handle
nonlinearities, linearize the equation around the previous solution state. We show that
this linearization yields contrast independent iterative procedure. For inner iterations, we
use recently developed iterative methods (see [16, 18]) that converge independent of the
contrast. One of main ingredients of this approach, the construction of coarse spaces, is
discussed in details in the paper. Since the same preconditioner was used for every outer
iteration, this makes the overall solution process quite efficient. Numerical results are
presented to confirm the theoretical findings.

In future, we would like to study the time-dependent case and the case with non-
separable nonlinearities and heterogeneities. In the latter, we plan to develop nonlinear
local problems that can identify high-conductivity regions and include these features into
the coarse space. We also would like to design and analyze methods when the diffusion co-
efficient approaches to zero as in the case of heterogeneous media with complex geometry
zones of dry soil.
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Appendix: Proof of Theorems 1, 2, and 3

A.1. Proof of Theorem 1

It was shown in [5] that for δ > 0 there exists ε > 0 such that

|uh|W1
p (Ω)
≤ (1+δ) sup

06=vh∈V h

〈∇uh,∇vh〉
|vh|W1

q
(Ω)

, for all |2− p| ≤ ε, (A.1)
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where 1
p
+ 1

q
= 1 and δ and ε are independent of h. Now, we consider a high-contrast case

via a perturbation argument.
Define a bilinear formB : W 1

p (Ω)×W 1
q (Ω)→ R by

B(u, v) := 〈∇u,∇v〉 − 1

M
a(u, v; ·).

It follows from Assumption 3.1 (A) and Hölder’s inequality that

B(u, v)≤
�

1− C0

M

�∫

Ω

|∇u(x)∇v(x)|d x ≤
�

1− C0

M

�
|u|W1

p (Ω)
|v|W1

q (Ω)
. (A.2)

Note that C0/M < 1. Then the identity

〈∇u,∇v〉=B(u, v) +
1

M
a(u, v; ·),

together with estimates (A.1) and (A.2) yields

M

�
1

1+ δ
−
�

1− C0

M

��
|uh|W1

p (Ω)
≤ sup

06=vh∈V h

a(uh, vh; ·)
|vh|W1

q (Ω)

.

Let δ = C0

2M−C0
, and choose ε to be as given in (A.1) for this particular choice of δ. Then,

M

�
1

1+ δ
−
�

1− C0

M

��
=

C0

2
.

Recall that a(u, v; ·) can be very large because of high contrast. This completes the proof.
Note that ε and α depend only on the constants C0, C∗ and M , though the coercivity bound
is independent of the contrast M . �

A.2. Proof of Theorem 2

(a) For any uh ∈ V
K ,p

h
, k(x)λ(x ,uh) satisfies the conditions of Theorem 1 with a con-

stant M0 such that

M0 = sup{k(x)λ(x , s) : ‖s‖L∞ ≤ cp| logh|K }, (A.3)

where h is the mesh-size of the partition Th and cp is the constant in Sobolev’s inequality
[5],

‖v‖L∞(Ω) ≤ cp| log h|‖v‖W1
p (Ω)

, for all v ∈W 1
p (Ω). (A.4)

The constant M0 exists because of Assumption 3.1 (A) and (B). Then uh ∈ V
K ,p

h
implies

that ‖uh‖L∞(Ω) ≤ cp| logh|‖uh‖W 1
p (Ω)
≤ cp| logh|K and hence sup{k(x)λ(x ,uh)} ≤ M0. For
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sufficiently small K (e.g., K = C/cp) there is a p > 2 such that the inequality (3.17) in
Theorem 1 holds. Then

‖Thuh‖W 1
p (Ω)
≤α sup

06=vh∈V h

a(Thuh, vh; uh)

|vh|W1
q (Ω)

=α sup
06=vh∈V h

F(vh)

|vh|W1
q (Ω)

≤ C‖F‖W−1
p (Ω)

.

Choose ‖F‖W−1
p (Ω)
≤ K /C to get ‖Thuh‖W 1

p (Ω)
≤ K , i.e., Th maps V

K ,p
h

into itself. By

Browder fixed point [12], there exists a solution ũh of equation (2.4) and it satisfies

Thũh = ũh. (A.5)

(b) Now, we shall show the mapping Th is contraction and also that the contractivity
constant is independent of the contrast.

Suppose uh, vh ∈ V
K ,p

h
satisfy a(Thuh, w; uh) = F(w) and a(Thvh, w; vh) = F(w).

Thus,

a(Thuh, w; uh)− a(Thvh, w; vh) = 0. (A.6)

Since a(·, ·, ·) is a bilinear form, from equation (A.6) we get

a(Thuh− Thvh, w; uh) = a(Thvh, w; vh)− a(Thvh, w; uh). (A.7)

Now using the definition of a(·, ·, ·), the right hand side of the equation (A.7) can be written
as
∫

Ω

k(x)(λ(x , vh)−λ(x ,uh))∇Thvh∇wd x

≤
�∫

Ω

k(x)(∇Thvh)
2|λ(x , vh)−λ(x ,uh)|2d x

� 1
2
�∫

Ω

k(x)(∇w)2d x

� 1
2

≤
�∫

Ω

|k(x)|q|∇Thvh|2qd x

� 1
2q
�∫

Ω

|λ(x , vh)−λ(x ,uh)|2q′d x

� 1
2q′

�

�∫

Ω

k(x)(∇w)2d x

� 1
2

(By Hőlder’s inequality,
1

q
+

1

q′
= 1)

≤
�∫

Ω

|k(x)|q|∇Thvh|2qd x

� 1
2q
�

C1

∫

Ω

|vh− uh|2q′d x

� 1
2q′

�

�∫

Ω

k(x)(∇w)2d x

� 1
2

(By Lipschitz continuity of λ) (A.8)
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≤
�∫

Ω

|k(x)|q|∇Thvh|2qd x

� 1
2q
�

C1C2q′

∫

Ω

(∇(vh− uh))
2d x

� 1
2

�

�∫

Ω

k(x)(∇w)2d x

� 1
2

, (By Sobolev inequality),

where we have used the Sobolev inequality ‖u‖
L2q′ (Ω) ≤ C2q′‖Du‖L2(Ω) with 2q′ ∈ [1,∞]

for function u with bounded mean oscillation. Next, we want to bound

�∫

Ω

|k(x)|q|∇Thvh|2qd x

� 1
2q

with some constant which is independent of the contrast, i.e., the constant doesn’t depend
on k(·).

Now we make the following assumption, which is slightly different from Assumption
3.1(C).

Assumption A.1. Given the equation a(Thvh, Thvh, vh) = F(Thvh) (see (2.5)), we assume

that ∫

Ω

(k(x)|∇Thvh|2)q/2d x ≤ C
q

F , (A.9)

where C
q

F → 0 as ‖F‖W−1
q (Ω)→ 0 for some q > 2.

We note that when F = 0 then C2
F = 0, thus, Thvh is zero almost everywhere. Moreover,

if ‖F‖W−1
2 (Ω) is small, then C2

F is small and C2
F converges to zero as ‖F‖W−1

2 (Ω) goes to zero.

The inequality (A.9) assumes that we have continuity of C
q

F with respect to ‖F‖W−1
2 (Ω) for

any q > 2 that is sufficiently close to 2. We note that ‖Thvh‖W 1
q (Ω)

is bounded by ‖F‖W−1
q (Ω)

as shown above. This is typically used to show the contractivity of the map Th.
Now, we can conclude that

∫

Ω

k(x)(λ(x , vh)−λ(x ,uh))∇Thvh∇wd x

≤C

�∫

Ω

(∇(vh− uh))
2d x

� 1
2
�∫

Ω

k(x)(∇w)2d x

� 1
2

, (A.10)

where the constant C depends on Lipschitz constant C1.
Now put w = Thuh− Thvh, then left hand side of (A.7) is bounded below,

a(Thuh− Thvh, Thuh− Thvh,uh) =

∫

Ω

(k(x)λ(x ,uh)(∇(Thuh− Thvh))
2d x

≥ C2

∫

Ω

k(x)(∇(Thuh− Thvh))
2d x . (A.11)
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Combine equations (A.10) and (A.11), then we get
∫

Ω

k(x)(∇(Thuh− Thvh))
2d x

≤C−1
2 C

�∫

Ω

(∇(vh− uh))
2d x

� 1
2
�∫

Ω

k(x)(∇(Thuh− Thvh))
2d x

� 1
2

.

Then using the Assumption 3.1 (a), we get

C
1
2

0

�∫

Ω

(∇(Thuh− Thvh)
2d x

� 1
2

≤ C−1
2 C

�∫

Ω

(∇(vh− uh))
2d x

� 1
2

.

So we can deduce that

|Thuh− Thvh|W1
2
≤ C
− 1

2
0 C−1

2 C |uh− vh|W1
2
, (A.12)

i.e., the mapping Th is a contraction if C is chosen sufficiently small (see Assumption A.1).

A.3. Proof of Theorem 3

From Lemma 1 and Lemma 10 of [18] we have that there is a stable decomposition,
that is, there exists v0 ∈ V lsm

0 , vi ∈ V h
0 (ωi), i = 1, · · · , Nv , such that

∫

D

k|∇v0|+
Nv∑

i=1

∫

ωi

k|∇vi|2 ≤ C0

�
1+

1

H2µL+1

�∫

D

k|∇v|2,

for some positive constant independent of the contrast and µL+1 = mini µLi+1. Here we
select the first Li smallest eigenvalues of (3.12). Then, for a fixed w we have stable de-
composition,

∫

D

λ(x , w)k(x)|∇v0(x)|+
Nv∑

i=1

∫

ωi

λ(x , w)k(x)|∇vi|2

≤ C0
maxx∈D λ(x , w)

minx∈D λ(x ,ω)

�
1+

1

H2µL+1

�∫

D

λ(x , w)k(x)|∇v|2.

According to the abstract theory of domain decomposition, see [26,35], we conclude that
the condition number of the preconditioned matrix is of order

cond(B−1A)≤ C0
maxx∈D λ(x , w)

minx∈D λ(x ,ω)

�
1+

1

H2µL+1

�
.
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Further noting that the number of nonlinear outer iterations is bounded (see Theorem 2),
we conclude that the proposed iterative procedure converges independent of the contrast.
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