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Abstract. We develop and analyze an adaptive hybridized Interior Penalty Discontinu-
ous Galerkin (IPDG-H) method for H(curl)-elliptic boundary value problems in 2D or
3D arising from a semi-discretization of the eddy currents equations. The method can be
derived from a mixed formulation of the given boundary value problem and involves a
Lagrange multiplier that is an approximation of the tangential traces of the primal vari-
able on the interfaces of the underlying triangulation of the computational domain. It is
shown that the IPDG-H technique can be equivalently formulated and thus implemented
as a mortar method. The mesh adaptation is based on a residual-type a posteriori er-
ror estimator consisting of element and face residuals. Within a unified framework for
adaptive finite element methods, we prove the reliability of the estimator up to a consis-
tency error. The performance of the adaptive symmetric IPDG-H method is documented
by numerical results for representative test examples in 2D.

AMS subject classifications: 65N30, 65N50, 78M10
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1. Introduction

Discontinuous Galerkin (DG) methods are widely used algorithmic schemes for the nu-
merical solution of partial differential equations (PDE). For a comprehensive description,
we refer to the survey article [24] and the references therein. As far as elliptic bound-
ary value problems are concerned, DG methods can be derived from a primal-dual mixed
formulation using local approximations of the primal and dual variables by polynomial
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scalar and vector-valued functions and appropriately designed numerical fluxes. Among
the most popular schemes are Interior Penalty DG (IPDG) and Local DG (LDG) meth-
ods which have been analyzed by means of a priori estimates of the global discretization,
e.g., in [3, 5, 23, 39]. For H(curl)-elliptic boundary value problems arising from a semi-
discretization of the eddy currents equations, symmetric IPDG methods have been studied
in [36]. The time-harmonic Maxwell equations have been addressed in [46].

On the other hand, the a posteriori error analysis and application of adaptive finite ele-
ment methods (FEM) for the efficient numerical solution of boundary and initial-boundary
value problems for PDE has reached some state of maturity as documented by a series of
monographs. There exist several concepts including residual and hierarchical type estima-
tors, error estimators that are based on local averaging, the so-called goal oriented dual
weighted approach, and functional type error majorants (cf. [2,6,7,30,44,49] and the ref-
erences therein). A posteriori error estimators for DG methods applied to second order el-
liptic boundary value problems have been developed and analyzed in [1,11,18,38,40,47].
In particular, a convergence analysis of adaptive symmetric IPDG methods has been pro-
vided in [12,34] and [41]. Residual- and hierarchical-type a posteriori error estimator for
H(curl)-elliptic problems have been studied in [8–10, 20, 37]. A convergence analysis for
residual estimators has been developed in [19] for 2D and in [35] for 3D problems.

From a computational point of view, DG methods suffer from a relatively huge amount
of globally coupled degrees of freedom (DOF) compared to standard FEM. Hybridization is
a technique that gives rise to a significant reduction of the globally coupled DOF. It has been
introduced for mixed FEM in [31] and further studied in [4,13,15,25,26]. Adaptive mixed
hybrid methods on the basis of reliable a posteriori error estimators have been considered
in [14, 45] and [50]. For DG methods, a survey of hybridized DG (DG-H) methods has
been provided in [26], whereas a unified analysis has been developed in [28]. However,
adaptive DG-H methods have not yet been investigated.

In this paper, we will derive and analyze a residual-type a posteriori error estimator
for hybridized symmetric IPDG (IPDG-H) methods applied to H(curl)-elliptic boundary
value problems in 3D. The analysis will be carried out within a unified framework pro-
vided for adaptive finite element approximations in [17, 18, 20–22]. The paper is orga-
nized as follows: In Section 2, we introduce some basic notation and present the class of
H(curl)-elliptic boundary value problems to be approximated by symmetric IPDG-H meth-
ods. Section 3 deals with the development of symmetric IPDG-H methods based on a
mixed formulation of the elliptic boundary value problems. We establish its relationship
with mortar techniques which allows the implementation as a mortar method. In section
4, we present the residual-type a posteriori error estimator and prove its reliability. Finally,
in section 5, we provide a detailed documentation of numerical results to illustrate the
performance of the symmetric IPDG-H methods.

2. Basic notations

Let Ω⊂ R3 be a simply connected polyhedral domain with boundary Γ = ∂Ω such that
Γ = ΓD∪ΓN ,ΓD∩ΓN = ;. We denote by D(Ω) the space of all infinitely often differentiable
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functions with compact support in Ω and by D′(Ω) its dual space referring to < ·, · > as the
dual pairing between D′(Ω) and D(Ω). We further adopt standard notation from Lebesgue
and Sobolev space theory. In particular, for a subset D ⊂ Ω, we refer to L2(D) and L2(D)

as the Hilbert spaces of scalar and vector-valued square integrable functions with inner
products (·, ·)0,D and associated norms ‖ · ‖0,D, respectively. Further, we denote by H1(D)

the Sobolev space of square integrable functions with square integrable weak derivatives
equipped with the inner product (·, ·)1,D and norm ‖·‖1,D. For Σ⊆ ∂ D, we refer to H1/2(Σ)

as the space of traces v|Σ of functions v ∈ H1(D) on Σ. We set

H1
0,Σ(D) :=
�

v ∈ H1(Ω)|v|Σ = 0
	

and refer to H−1
Σ (D) as the associated dual space.

For a simply connected polyhedral domain Ω with boundary Γ = ∂Ω which can be
split into J relatively open faces Γ1, · · · , ΓJ with Γ = ∪J

j=1Γ j, we refer to H(curl;Ω) as the
Hilbert space

H(curl;Ω) :=
�
u ∈ L2(Ω) | curl u ∈ L2(Ω)

	
,

equipped with the inner product

(u,v)curl ,Ω := (u,v)0,Ω + (curl u,curl v)0,Ω

and the associated norm ‖ · ‖curl ,Ω. We further refer to H(curl0;Ω) as the subspace of
irrotational vector fields. The space H(div;Ω) is defined by

H(div;Ω) :=
�
q ∈ L2(Ω) | div q ∈ L2(Ω)

	

which is a Hilbert space with respect to the inner product

(u,v)div,Ω := (u,v)0,Ω + (div u, div v)0,Ω,

and the associated norm ‖ · ‖div,Ω. For vector fields

u ∈ C∞(Ω̄)3 :=
�
u|Ω | u ∈ C∞(R3)

	
,

the normal component trace reads ηn(u)|Γ j
:= nΓ j

· u|Γ j
, j = 1, · · · , J with the exterior

unit normal vector nΓ j
on Γ j . The normal component trace mapping can be extended

by continuity to a surjective, continuous linear mapping ηn : H(div;Ω) → H−1/2(Γ)

(cf. [32]; Thm. 2.2). We define H0(div;Ω) as the subspace of vector fields with vanishing
normal components on Γ. In order to study the traces of vector fields q ∈ H(curl;Ω),
following [16], we introduce the spaces

L2
t (Γ) :=
�
u ∈ L2(Ω)
��ηn(u) = 0
	
,

H
1/2
− (Γ) :=
�
u ∈ L2

t (Γ)
��u|Γ j
∈ H1/2(Γ j) for all j = 1, · · · , J

	
.

For Γ j,Γk ⊂ Γ with j 6= k and E jk := Γ̄ j ∩ Γ̄k ∈ Eh, the set of edges, we denote by t j

and tk the tangential unit vectors along Γ j and Γk and by t jk the unit vector parallel to
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E jk such that Γ j is spanned by t j , t jk and Γk by tk, t jk (cf. Fig. 1). Let J := {( j, k) ∈
{1, · · · , J}2 | ∂ Γ j ∩ ∂ Γk = E jk ∈ Eh} and define

H
1/2
|| (Γ) :=
n

u ∈ H
1/2
− (Γ)
�� (t jk · u j)|E jk

= (t jk · uk)|E jk
for ( j, k) ∈ J
o

,

H
1/2
⊥ (Γ) :=
n

u ∈ H
1/2
− (Γ)
�� (t j · u j)|E jk

= (tk · uk)E jk
for ( j, k) ∈ J
o

.

We refer to H
−1/2
|| (Γ) and H

−1/2
⊥ (Γ) as the dual spaces of H

1/2
|| (Γ) and H

1/2
⊥ (Γ) with L2

t (Γ)

as the pivot space. For u ∈ D(Ω̄)3 we further define the tangential trace mapping

γt|Γ j
:= u∧ nΓ j

|Γ j
, for j = 1, · · · , J ,

and the tangential components trace

πt|Γ j
:= nΓ j

∧ (u∧ nΓ j
)|Γ j

, for j = 1, · · · , J .

Moreover, for a smooth function u ∈ D(Ω̄) we define the tangential gradient operator
∇Γ = grad|Γ as the tangential components trace of the gradient operator ∇, i.e.,

∇Γu|Γ j
:=∇Γ j

u= πt, j(∇u) = nΓ j
∧ (∇u∧ nΓ j

), for j = 1, · · · , J ,

which leads to a continuous linear mapping ∇Γ : H3/2(Γ) → H
1/2
|| (Γ) (cf. [16]). The

tangential divergence operator

divΓ : H
−1/2
|| (Γ)→ H−3/2(Γ)

is defined, with the respective dual pairings 〈·, ·〉, as the adjoint operator of −∇Γ, i.e.,

〈divΓu, v〉= −〈u,∇Γv〉 , v ∈ H3/2(Γ), u ∈ H
−1/2
|| (Γ).

Finally, for u ∈ C∞(Ω) we define the tangential curl operator curlΓ as the tangential trace
of the gradient operator

curlΓu|Γ j
= curlΓ j

u = γt, j(∇u) =∇u∧ n j, for j = 1, · · · , J . (2.1)
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The vectorial tangential curl operator is a linear continuous mapping

curlΓ : H3/2(Γ)→ H
1/2
⊥ (Γ).

The scalar tangential curl operator

curlΓ : H
−1/2
⊥ (Γ)→ H−3/2(Γ)

is defined as the adjoint of the vectorial tangential curl operator via curlΓ, i.e.,

〈curlΓu, v〉 = 〈u,curlΓv〉 for all v ∈ H3/2(Γ) and u ∈ H
−1/2
⊥ (Γ).

The range spaces of the tangential trace mapping γt and the tangential components trace
mapping πt on H(curl;Ω) can be characterized by means of the spaces

H−1/2(divΓ,Γ) :=
n
λ ∈ H

−1/2
|| (Γ)
�� divΓλ ∈ H−1/2(Γ)

o
,

H−1/2(curlΓ,Γ) :=
n
λ ∈ H

−1/2
⊥ (Γ)
�� curlΓλ ∈ H−1/2(Γ)

o
,

which are dual to each other with respect to the pivot space L2
t (Γ). We refer to ‖·‖−1/2,divΓ,Γ

and ‖ · ‖−1/2,curlΓ,Γ as the respective norms and denote by 〈·, ·〉−1/2,Γ the dual pairing (see,
e.g., [16] for details).

It can be shown that the tangential trace mapping is a continuous linear mapping

γt : H(curl;Ω) → H−1/2(divΓ,Γ) ,

whereas the tangential components trace mapping is a continuous linear mapping

πt : H(curl;Ω)→ H−1/2(curlΓ,Γ).

The previous results imply that the tangential divergence of the tangential trace and the
scalar tangential curl of the tangential components trace coincide: For u ∈ H(curl;Ω) it
holds divΓ(u∧ n) = curlΓ(n∧ (u∧ n)) = n · curl u. We define H0(curl;Ω) as the subspace
of H(curl;Ω) with vanishing tangential traces on Γ.

Given a polyhedral domain Ω⊂ R3 with boundary Γ = ∂Ω such that Γ = ΓD∪ΓN ,ΓD∩
ΓN = ;, we denote by TH(Ω) a shape-regular simplicial triangulation of Ω that aligns
with ΓD and ΓN . We assume TH(Ω) to be geometrically conforming, but note that the
subsequent analysis can be extended to cover geometrically nonconforming meshes with
hanging nodes as well. We refer to FH(Ω) as the set of interior faces F = T+ ∩ T−, T± ∈
TH(Ω), and to FH(Σ) as the set of faces located on the boundary Σ ⊆ Γ, while FH(Ω) :=
FH(Ω) ∪ FH(Γ) is the set of all faces. Further, EH(Σ) stands for the set of edges on Σ.
We denote by hT and hF the diameter of an element T ∈ TH(Ω) and a face F ∈ FH(Ω),
respectively. For two quantities A, B ∈ R+, we use the notation A ® B, if there exists
a constant C ∈ R+, independent of the mesh size of the triangulation TH(Ω), such that
A≤ CB.
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We refer to

Nd1(Ω;TH(Ω)) :=
n

vH ∈ H(curl;Ω)
�� vH |T ∈ ND1(T ), T ∈ TH(Ω)

o

as the curl-conforming edge element space, where ND1(T ) stands for the lowest order
edge element of Nédélec’s first family [43], and to

Nd1
0,ΓD

�
Ω;TH(Ω)
�

:=
n

vH ∈ Nd1(Ω;TH(Ω))
�� γt(vH) = 0 on ΓD

o

as its subspace of vanishing tangential trace components on ΓD.
For vector fields vH ∈

∏
T∈TH (Ω)

H(curl; T ), we can denote by ‖ · ‖curl ,H,Ω the mesh-
dependent norm

‖vH‖curl ,H,Ω :=



∑

T∈TH (Ω)

�
‖vH‖

2
0,T + ‖curlvH‖

2
0,T

�



1/2

.

Moreover, for such vector fields we set v±H |F := (vH |T±)|F along F = T+ ∩ T− ∈ FH(Ω) and
define

{vH} :=

¨
(v+H + v−H)/2, F ∈ FH(Ω),
vH , F ∈ FH(Γ),

[vH] :=

¨
v+H − v−H , F ∈ FH(Ω),
0, F ∈ FH(Γ),

as the averages and jumps of vH across the interior faces F of the triangulation. For scalar
functions vH ∈ L2(Ω), the averages {vH} and jumps [vH] are defined analogously.

The class of H(curl)-elliptic boundary value problems to be approximated by IPDG-H
methods is of the form

curl µ−1curl u+σu = f, in Ω, (2.2a)

γt(u) = g1, on ΓD, (2.2b)

πt(µ
−1curl u) = g2, on ΓN . (2.2c)

We assume that f ∈ L2(Ω),g1 ∈ L2(ΓD), and g2 ∈ H(curl0ΓN
;ΓN ). We further suppose that

µ is a symmetric, uniformly positive definite matrix-valued function µ = µ(x), x ∈ Ω, and
that σ is a scalar nonnegative function σ = σ(x), x ∈ Ω, that are elementwise constant
with respect to a given coarse simplicial triangulation TH(Ω) of the computational domain.

We note that the subsequent analysis also applies to H(curl)-elliptic problems in 2D as
given by

curl µ−1curl u+σu = f, in Ω, (2.3a)

tΓD
· u = g1, on ΓD, (2.3b)

µ−1curl u = g2, on ΓN , (2.3c)
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where curl u = ∂ u2/∂ x1 − ∂ u1/∂ x2 for u = (u1,u2)
T , whereas curl u = (∂ u/∂ x2,

−∂ u/∂ x1)
T for a scalar function u. Moreover, tΓD

stands for the tangential unit vector
on the Dirichlet part ΓD of the boundary. The data f, g1 and g2 have to be chosen accord-
ingly.

We will develop the IPDG-H method and perform the a posteriori error analysis only in
the 3D case. The necessary modifications for 2D problems are straightforward.

3. Hybridized IPDG methods

A mixed formulation of (2.2a)-(2.2c) can be derived by introducing p := µ−1curl u as
an additional variable. Setting

V :=
n

v ∈ H(curl;Ω)
�� γt(u) = g1 on ΓD

o
, Q := L2(Ω), (3.1a)

V0 :=
n

v ∈ H(curl;Ω)
�� γt(u) = 0 on ΓD

o
, (3.1b)

it amounts to the computation of (u,p) ∈ V×Q with

a(p,q)− b(u,q) = ℓ(1)(q), for all q ∈ Q, (3.2a)

b(v,p)+ c(u,v) = ℓ(2)(v), for all v ∈ V0. (3.2b)

The bilinear forms a, b and c and the functionals ℓ(1) ∈ Q∗,ℓ(2) ∈ V∗0 are given by

a(p,q) :=

∫

Ω

µ p · q d x , (3.3a)

b(u,q) :=

∫

Ω

curl u · q d x , (3.3b)

c(u,v) :=

∫

Ω

σ u · v d x , (3.3c)

ℓ(1)(q) := 0, (3.3d)

ℓ(2)(v) :=

∫

Ω

f · v d x +

∫

ΓN

g2 · γt(v) dτ. (3.3e)

The operator-theoretic framework involves the operatorA : (V×Q) → (V0×Q)∗ defined,
for all (u,p) ∈ V×Q and all (v,q) ∈ V0 ×Q by

�
A (u,p)
�
(v,q) := a(p,q)− b(u,q) + b(v,p) + c(u,v). (3.4)

Then, the system (3.2a)-(3.2b) can be written in compact form as

A (u,p) = ℓ, (3.5)

where ℓ(v,q) := ℓ(1)(q) + ℓ(2)(v) for all (v,q) ∈ V0 ×Q.
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Theorem 3.1. Under the assumptions on the data of (2.2a)-(2.2c), A is a continuous,

bijective linear operator. Hence, for any (ℓ(1),ℓ(2)) ∈ Q∗×V∗0, the system (3.2a)-(3.2b) admits

a unique solution (u,p) ∈ V×Q which continuously depends on the data, namely

‖(u,p)‖V×Q ® ‖ℓ
(1)‖Q∗ + ‖ℓ

(2)‖V ∗0 . (3.6)

Proof. The mapping properties are straightforward. If g1 6= 0, there exists a unique
ug1
∈ V such that for all v ∈ V0 (cf., e.g., [42])

�
A (ug1

,0)
�
(v,−µ−1curl v) =

∫

Ω

�
µ−1curl ug1

· curl v+σug1
· v
�

d x = 0,

and hence, we may restrict ourselves to the case of A : V0 ×Q→ (V0 ×Q)∗. Now, for any
(u,p) ∈ V0 ×Q we have

�
A (u,p)
�
(3u, 2p−µ−1curl u) =

�
A (3u, 2p+µ−1curl u)

�
(u,p)

=2µ‖p‖2
L2(Ω)

+ 3σ‖u‖2
L2(Ω)

+µ−1‖curl u‖2
L2(Ω)

.

This implies the inf-sup condition and the remaining degeneracy condition which implies
bijectivity. �

Given a simplicial triangulation TH(Ω), DG methods are based on the approximation
of the vector field u and p by elementwise polynomials, thus giving rise to the finite di-
mensional function spaces

VH :=
n

vH ∈ L2(Ω)
�� vH |T ∈ Πk(T ), T ∈ TH(Ω), γt(vH) = gH,1 on F ∈ FH(ΓD)

o
, (3.7a)

QH :=
n

qH ∈ L2(Ω)
�� qH |T ∈ Πk(T ), T ∈ TH(Ω)

o
. (3.7b)

Here and in the sequel, gH,1 ∈ Πk(F), F ∈ FH(ΓD) is some approximation of g1 and
Πk(T ), T ∈ TH(Ω), as well as Πk(F), F ∈ FH(Ω̄), stand for the sets of vector-valued func-
tions whose components are polynomials of degree at most k ∈ N.
DG methods amount to the computation of (pH ,uH) ∈ QH ×VH with

aH(pH ,qH)− bH(uH ,qH) + dH(ûH ,qH) =ℓ
(1)
H (qH) for all qH ∈ QH , (3.8a)

bH(vH ,pH)− dH(vH , p̂H) + cH(uH ,vH) =ℓ
(2)
H (vH) for all vH ∈ VH . (3.8b)

Here and throughout, ûH , p̂H are appropriate numerical flux functions and the mesh-
dependent bilinear forms aH , bH , cH , and dH are defined by means of

aH(pH ,qH) :=
∑

T∈TH (Ω)

∫

T

µpH · qH d x , (3.9a)
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bH(uH ,qH) :=
∑

T∈TH (Ω)

∫

T

curl uH · qH d x , (3.9b)

cH(uH ,vH) :=
∑

T∈TH (Ω)

∫

T

σuH · vH d x , (3.9c)

dH(uH ,qH) :=
∑

F∈FH (Ω)

〈γt(uH),πt(qH)〉. (3.9d)

The functionals ℓ(1)H and ℓ(2)H are given by

ℓ
(1)
H (qH) :=0, (3.10a)

ℓ
(2)
H (vH) :=
∑

T∈TH (Ω)

∫

T

f · vH d x +
∑

F∈FH (ΓN )

∫

F

g2 · γt(vH)dτ. (3.10b)

In case of Interior Penalty Discontinuous Galerkin (IPDG) methods, the numerical fluxes
read

γt(ûH) :=

¨ �
γt(uH)
	
, F ∈ FH(Ω),

0, F ∈ FH(Γ),
(3.11a)

πt(p̂H) :=

¨ �
πt(µ

−1curl uH)
	
−αh−1

F [γt(uH)], F ∈ FH(Ω),
0, F ∈ FH(Γ),

(3.11b)

with a suitable penalty parameter α > 0. The choice qH := µ−1curl vH in (3.8a) and
(3.11a), (3.11b) allow the elimination of pH from (3.8a), (3.8b).

The standard symmetric IPDG method is given by: Find uH ∈ VH such that

aI P(uH ,vH) = ℓI P(vH) for all vH ∈ VH . (3.12)

Here and in the sequel, the bilinear form aI P and the functional ℓI P read

aI P(uH ,vH) :=
∑

T∈TH (Ω)

∫

T

�
µ−1curluH · curlvH +σuH · vH

�
d x

−
∑

F∈FH (Ω)

∫

F

�
{πt(µ

−1curluH)} · [γt(vH)]+ [γt(uH)] · {πt(µ
−1curlvH)}
�

dτ

+α
∑

F∈FH (Ω)

h−1
F

∫

F

[γt(uH)] · [γt(vH)]dτ, (3.13a)

ℓI P(vH) :=
∑

T∈TH (Ω)

∫

T

f · vH d x +
∑

F∈FH (ΓN )

∫

F

g2 · γt(vH)dτ. (3.13b)
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The idea of hybridization is to enforce the continuity of the tangential component traces
of pH across the interior edges of the triangulation by a piecewise polynomial Lagrange
multiplier which is an approximation of the tangential traces of u. For this purpose, we
introduce the multiplier space

MH :=
n
µH ∈ L2(FH(Ω))

�� µH |F ∈ Πk(F), F ∈ FH(Ω)
o

. (3.14)

Choosing a numerical flux function p̂H , not necessarily the same as in (3.11b), the IPDG-H
method is to find

(pH ,uH ,λH) ∈ QH ×VH ×MH

with

aH(pH ,qH)− bH(uH ,qH) + dH(λH ,qH) = ℓ
(1)
H (qH), for all qH ∈ QH , (3.15a)

bH(vH ,pH)− dH(vH , p̂H) + cH(uH ,vH) = ℓ
(2)
H (vH), for all vH ∈ VH , (3.15b)

dH(µH , p̂H) = 0, for all µH ∈MH . (3.15c)

In IPDG-H methods, the penalty parameter α is typically chosen elementwise, i.e., α|T =
αT , T ∈ TH(Ω), so that on F ∈ FH(Ω) with

F = T+ ∩ T−, T± ∈ TH(Ω),

we have to distinguish between α+ := αT+
and α− := αT−

.
The advantage of hybridized methods is that the primal and dual variables uH and pH

can be eliminated from (3.15a)-(3.15c) which results in a global variational problem for
the Lagrange multiplier λH ∈MH of the form

a
(S)
H (λH ,µH) = ℓ

(S)
H (µH), for all µH ∈MH . (3.16)

Once λH ∈MH has been computed, the primal and dual variables can be computed by the
solution of low-dimensional, local problems. To this end, following the unified framework
from [28], we set

λH =

¨
uH , on ∂ T/ΓD,
0, on ∂ T ∩ΓD,

ḡH,1 =

¨
0, on ∂ T/ΓD,
gH,1, on ∂ T ∩ΓD,

ḡH,2 =

¨
0, on ∂ T/ΓN ,
gH,2, on ∂ T ∩ΓN ,

with an approximation gH,2 ∈ Πk(F), F ∈ FH(ΓN ), of g2. We define

(Spf,Suf) ∈ Πk(T )
2, (SpλH ,SuλH) ∈ Πk(T )

2,

(SpgH,1,SugH,1) ∈ Πk(T )
2, (SpgH,2,SugH,2) ∈ Πk(T )

2,
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as the solutions of the local problems

µSpf− curlSuf= 0, in T,
curlSpf+σSuf= f, in T,

γt(Suf) = 0, on ∂ T,
(3.17a)

µSpλH − curlSuλH = 0, in T,
curlSpλH +σSuλH = 0, in T,

γt(SuλH) = λH , on ∂ T,
(3.17b)

µSpḡH,1 − curlSuḡH,1 = 0, in T,
curlSpḡH,1 +σSuḡH,1 = 0, in T,

γt(SuḡH,1) = ḡH,1, on ∂ T,
(3.17c)

µSpḡH,2 − curlSuḡH,2 = 0, in T,
curlSpḡH,2 +σSuḡH,2 = 0, in T,

πt(SuḡH,2) = ḡH,2, on ∂ T.
(3.17d)

The numerical flux πt(p̂H) is given by means of local numerical fluxes

πt(p̂H) = Ŝpf+ ŜpλH + ŜpḡH,1 + ŜpḡH,2. (3.18)

In particular, for the IPDG-H method (3.15a)-(3.15c) we choose

Ŝpf=

¨
πt(µ

−1curl Suf)−αT h−1
F γt(Suf), on F ∈ FH(Ω∪ΓD),

πt(µ
−1curl Suf)−αT h−1

F πt(µ
−1curl Suf), on F ∈ FH(ΓN ),

(3.19a)

ŜpλH =





πt(µ
−1curl SuλH),

−αT h−1
F

�
γt(SuλH)−λH

�
, on F ∈ FH(Ω∪ΓD),

πt(µ
−1curl SuλH),

−αT h−1
F

�
πt(µ

−1curl SuλH)−λH

�
, on F ∈ FH(ΓN ),

(3.19b)

ŜpḡH,i =





πt(µ
−1curl SuḡH,i),

−αT h−1
F

�
γt(SuḡH,i)− ḡH,i

�
, on F ∈ FH(Ω∪ΓD),

πt(µ
−1curl SuḡH,i),

−αT h−1
F

�
πt(µ

−1curl SuḡH,i)− ḡH,i
�
, on F ∈ FH(ΓN ).

(3.19c)

For sufficiently large αT , T ∈ TH(Ω̄), both the local problems (3.17a)-(3.17d) and the
global variational problem (3.16) have unique solutions which can be shown along the
same lines of proof as in [28] for standard second order elliptic boundary value problems.
If λH ∈MH solves (3.16), then

pH = Spf+ SpλH + SpḡH,1 + SpḡH,2, (3.20a)

uH = Suf+ SuλH + SuḡH,1 + SuḡH,2 (3.20b)

defines the solution of (3.15a)-(3.15c).
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Theorem 3.2. Assume that the numerical flux p̂H is given by (3.18) and that (pH ,uH ,λH)

is the solution of (3.15a)-(3.15c). Then, the numerical flux p̂H and the multiplier λH satisfy

πt(p̂H) :=





ᾱ−1
�
α−πt(µ

−1
+ curl u+H) +α+πt(µ

−1
− curl u−H)

− α+α−h−1
F [γt(uH)]
�

, on F ∈ FH(Ω),

0, on F ∈ FH(ΓD),
0, on F ∈ FH(ΓN ),

(3.21a)

λH =





ᾱ−1
�
α+γt(u

+
H) + α− γt(u

−
H)

− hF [πt(µ
−1curl uH)]
�

, on F ∈ FH(Ω),

−α−1
T hF πt(µ

−1curl uH), on F ∈ FH(ΓD),
−α−1

T hF πt(µ
−1curl uH), on F ∈ FH(ΓN ),

(3.21b)

where ᾱ := α+ +α− on F = ∂ T+ ∩ ∂ T− for T± ∈ TH(Ω).

Proof. Let F ∈ FH(Ω). If we use (3.19a)-(3.19c) and (3.20a) in (3.18), we obtain

πt(p̂H) = πt(µ
−1curl uH)−αT h−1

F

�
γt(uH)−λH

�
, on F.

Hence, observing (3.17b), it follows that

[πt(p̂H)] =[πt(µ
−1 curl uH)] + (α+ +α−)h

−1
F λH

−
�
α+h−1

F γt(u
+
H) +α−h−1

F γt(u
−
H)
�

. (3.22)

The specification (3.14) of the multiplier space MH and Eq. (3.15c) imply [πt(p̂H)] = 0.
This results in (3.21b) due to (3.22). On the other hand,

πt(p̂
±
H) = πt(p

±
H)−α±h−1

F

�
γt(u

±
H)−λH

�
. (3.23)

We deduce (3.21a) by inserting (3.21b) into (3.23). The proof of (3.21a),(3.21b) for
F ∈ FH(ΓD) and F ∈ FH(ΓN ) follows from similar arguments. �

The representation (3.21b) of the Lagrange multiplier λH shows that it provides an
approximation of the tangential trace on the interfaces F ∈ FH(Ω) which reminds of mor-
tar methods for H(curl)-elliptic problems (cf., e.g., [20,51]). Indeed, the IPDG-H method
(3.15a)-(3.15c) can be equivalently formulated as a mortar method. To see this, choose
qH = µ

−1curl uH in (3.15a) and the numerical flux p̂H in (3.15a) according to (3.21a).
Then, by elimination of pH ,

λ̃H := λH − ᾱ
−1�α+γt(u

+
H) +α−γt(u

−
H)
�

satisfies

ãH(uH ,vH) + b̃H(λ̃H ,vH) = ℓ
(2)
H (vH), for all vH ∈ VH ,

b̃H(µH ,uH)− d̃H(λ̃H ,µH) = 0, for all µH ∈MH . (3.24)
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Here and throughout the following, the bilinear forms ãH , b̃H and d̃H read

ãH(uH ,vH) :=
∑

T∈TH (Ω)

∫

T

�
µ−1curl uH · curl vH +σuH · vH

�
d x

−
∑

T∈TH (Ω)

∫

∂ T∩Ω

ᾱ−1αTπt(µ
−1curl uH) · γt(vH)dτ

+
∑

T∈TH (Ω)

∫

∂ T∩Ω

ᾱ−1αTαT ′h
−1
F γt(uH) · γt(vH)dτ

−
∑

T∈TH (Ω)

∫

∂ T∩Ω

ᾱ−1αTγt(u
+
H) ·πt(µ

−1curl vH)dτ

+
∑

T∈TH (Ω)

∫

∂ T∩Γ

α−1
T hFπt(µ

−1curl uH) ·πt(µ
−1curl vH)dτ,

b̃H(λ̃H ,vH) := −
∑

F∈FH (Ω)

∫

F

λ̃H · [πt(µ
−1curl vH)]dτ,

d̃H(λ̃H ,µH) :=
∑

F∈FH (Ω)

∫

F

ᾱh−1
F λ̃H ·µH dτ.

The variational system (3.24) represents a symmetric saddle point problem which can be
solved as in the standard mortar approach. Denoting by ÃH , B̃H , D̃H the matrices and by bH

the vector associated with the bilinear forms and the right-hand side in the first equation
of (3.24), the algebraic form of the saddle point problem is

�
ÃH B̃H

B̃T
H −D̃H

��
uH

λ̃H

�
=

�
bH

0

�
. (3.25)

Static condensation of uH results in the equivalent Schur complement system
�

D̃H + B̃T
H Ã−1

H B̃H

�
λ̃H = B̃T

H Ã−1
H bH . (3.26)

4. A posteriori error analysis

The residual a posteriori error estimator for the symmetric IPDG-H method (3.15a)-
(3.15c) is given by

η :=



∑

T∈TH(Ω)

�
η2

T,1+η
2
T,2+η

2
T,3

�
+
∑

F∈FH (Ω)

�
η2

F,1+η
2
F,2

�
+
∑

F∈FH (ΓN )

�
η2

F,3+η
2
F,4

�



1
2

. (4.1)
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They consist of the element residuals

ηT,1 :=‖µpH − curl uH‖0,T , for all T ∈ TH(Ω), (4.2a)

ηT,2 :=hT‖f− curl pH −σuH‖0,T , for all T ∈ TH(Ω), (4.2b)

ηT,3 :=hT‖∇ · (f−σuH)‖0,T , for all T ∈ TH(Ω), (4.2c)

and the face residuals

ηF,1 :=h
1/2
F ‖[πt(pH)]‖0,F , for all F ∈ FH(Ω), (4.3a)

ηF,2 :=h
1/2
F ‖nF · [f−σuH]‖0,F , for all F ∈ FH(Ω), (4.3b)

ηF,3 :=h
1/2
F ‖g2 −πt(pH)‖0,F , for all F ∈ FH(ΓN ), (4.3c)

ηF,4 :=h
1/2
F ‖nF · (f−σuH)‖0,F , for all F ∈ FH(ΓN ). (4.3d)

The nonconformity of the symmetric IPDG-H method results in some consistency error

ξ := min
ṽH∈V



∑

T∈TH (Ω)

(‖uH − ṽH‖
2
0,T + ‖curl (uH − ṽH)‖

2
0,T )




1
2

(4.4)

with the unique minimizer ũH ∈ V of (4.4) and

ξ2 = ‖uH − ũH‖
2
0,Ω + ‖curl(uH − ũH)‖

2
0,Ω.

Theorem 4.1. Let (p,u) ∈ Q×V and (pH ,uH ,λH) ∈ QH×VH×MH be the solutions of (3.5)
and (3.15a)-(3.15c), let η and ξ be the residual error estimator and the consistency error of

(4.1) and (4.4). Then,

‖(u,p)− (uH ,pH)‖ :=
�
‖p− pH‖

2
Q + ‖u− uH‖

2
curl ,H,Ω

� 1
2
® η+ ξ. (4.5)

We will provide the proof of Theorem 4.1 by a series of lemmas. We assume (p̃H , ũH) ∈
Q×V to be some approximation of the solution (p,u) ∈ Q×V of the mixed problem (3.5)
obtained by means of the solution (pH ,uH ,λH) of the symmetric IPDG-H method (3.15a)-
(3.15c). It is an immediate consequence of Theorem 3.1 that the error (p− p̃H ,u − ũH)

satisfies

‖(p− p̃H ,u− ũH)‖Q×V ® ‖Res1‖Q∗ + ‖Res2‖V∗0 (4.6)

with residuals Res1 ∈ Q∗ and Res2 ∈ V∗0,

Res1(q) :=ℓ(1)(q)− a(p̃H ,q) + b(ũH ,q), for q ∈ Q, (4.7a)

Res2(v) :=ℓ(2)(v)− b(v, p̃H)− c(ũH ,v), for v ∈ V0. (4.7b)
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Lemma 4.1. Let (pH ,uH ,λH) ∈ QH × VH ×MH be the solution of (3.15a)-(3.15c) with the

numerical flux p̂H from (3.18). The choice of p̃H = pH and of ũH ∈ V as the unique minimizer

of (4.4) imply

‖Res1‖Q∗ ®



∑

T∈TH (Ω)

η2
T,1




1
2

+ ξ. (4.8)

Proof. In view of (4.7a) and (3.3a),(3.3b),(3.3d), we have

Res1(q) =
∑

T∈TH (Ω)

∫

T

�
curl uH −µpH) + curl(ũH − uH)

�
· q d x .

Straightforward estimation yields

|Res1(q)| ®



∑

T∈TH (Ω)

�
‖curluH −µpH‖

2
0,T + ‖curl(ũH − uH)‖

2
0,T

�



1/2

‖q‖0,Ω

≤



∑

T∈TH (Ω)

η2
T,1 + ξ

2




1/2

‖q‖0,Ω, (4.9)

which concludes the proof. �

Lemma 4.2. For p̃H = pH and some approximation ũH ∈ VH let the residual Res2 of (4.7b)
satisfy

Nd1
0;ΓD
(Ω;TH(Ω))⊂ Ker Res2. (4.10)

Then, it holds

‖Res2‖V ∗0 ®



∑

T∈TH(Ω)

�
η2

T,2+η
2
T,3

�
+
∑

F∈FH (Ω)

�
η2

F,1+η
2
F,2

�
+
∑

F∈FH (ΓN )

�
η2

F,3+η
2
F,4

�



1
2

+ξ. (4.11)

Proof. Given any v ∈ V0, Theorem 1 in [48] shows that there exist

vH ∈ Nd1
0;ΓD
(Ω;TH(Ω)), ϕ ∈ H1

0,ΓD
(Ω), and z ∈ (H1

0,ΓD
(Ω))3

such that
v− vH =∇ϕ+ z (4.12)

and with appropriate patches ωT and ωF

‖ϕ‖0,T ® hT‖v‖curl;ωT
, for T ∈ TH(Ω), (4.13a)

‖∇ϕ‖0,T ® ‖v‖curl;ωT
, for T ∈ TH(Ω), (4.13b)

h
−1/2
F ‖ϕ‖0,F ® ‖v‖curl;ωF

, for F ∈ FH(Ω∪ΓN ), (4.13c)

‖z‖0,T ® hT‖v‖curl;Ω, for T ∈ TH(Ω), (4.13d)

h
−1/2
F ‖γt(z)‖0,F ® ‖v‖0,ωF

, for F ∈ FH(Ω∪ΓN ). (4.13e)
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It is a consequence of (4.10) and (4.12) that

Res2(v) = Res2(v− vH) = Res2(∇ϕ) +Res2(z). (4.14)

The first term on the right-hand side in (4.14) reads

Res2(∇ϕ) =
∑

T∈TH (Ω)

∫

T

f · ∇ϕd x +
∑

F∈FH (ΓN )

∫

F

g2 · γt(∇ϕ)dτ

−
∑

T∈TH (Ω)

∫

T

σuH · ∇ϕd x −
∑

T∈TH (Ω)

∫

T

σ(ũH − uH) · ∇ϕd x . (4.15)

An application of Green’s formula gives

∑

T∈TH (Ω)

∫

T

(f−σuH) · ∇ϕd x = −
∑

T∈TH (Ω)

∫

T

∇ · (f−σuH)ϕd x

+
∑

F∈FH (Ω)

∫

F

nF · [f−σuH]ϕdτ+
∑

F∈FH (ΓN )

∫

F

nF · (f−σuH)ϕdτ. (4.16)

Observing

γt(∇ϕ)|F = curlFϕ on F ∈ FH(ΓN ),

and taking into account that curlF is the adjoint of curlF with respect to the L2-inner
product, we get

∑

F∈FH (ΓN )

∫

F

g2 · γt(∇ϕ) dτ

=
∑

F∈FH (ΓN )

∫

F

g2 · curlFϕ dτ=
∑

F∈FH (ΓN )

∫

F

curlF g2 ϕ dτ. (4.17)

Since g2 ∈ H(curl0ΓN
;ΓN ), we have

curlF g2 = 0, F ∈ FH(ΓN ),

and hence, (4.17) yields
∑

F∈FH (ΓN )

∫

F

g2 · γt(∇ϕ) dτ= 0. (4.18)
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With (4.16) and (4.18), (4.15) leads to

|Res2(∇ϕ)|®



∑

T∈TH (Ω)

h2
T‖∇ · (f−σuH)‖

2
0,T




1
2


∑

T∈TH (Ω)

h−2
T ‖ϕ‖

2
0,T




1
2

+



∑

F∈FH (Ω)

hF‖nF · [f−σuH]‖
2
0,F




1
2


∑

F∈FH (Ω)

h−1
F ‖ϕ‖

2
0,F




1
2

+



∑

F∈FH (ΓN )

hF ‖nF · (f−σuH)‖
2
0,F




1
2


∑

F∈FH (ΓN )

h−1
F ‖ϕ‖

2
0,F




1
2

+



∑

T∈TH (Ω)

‖ũH − uH‖
2
0,T




1
2


∑

T∈TH (Ω)

‖∇ϕ‖20,T




1
2

.

This and (4.13a)-(4.13c) imply

��Res2(∇ϕ)
��

®






∑

T∈TH (Ω)

η2
T,3




1
2

+



∑

F∈FH (Ω)

η2
F,2




1
2

+



∑

F∈FH (ΓN )

η2
F,4




1
2

+ ξ


‖v‖curl;Ω. (4.19)

On the other hand, the second term on the right-hand side of (4.14) reads

Res2(z) =
∑

T∈TH (Ω)

∫

T

f · zd x +
∑

F∈FH (ΓN )

∫

F

g2 · γt(z)dτ −
∑

T∈TH (Ω)

∫

T

pH · curl zd x

−
∑

T∈TH (Ω)

∫

T

σuH · zd x −
∑

T∈TH (Ω)

∫

T

σ(ũH − uH) · zd x . (4.20)

Since [γt(z)] = 0 on F ∈ FH(Ω), an application of Stokes’ theorem gives

∑

T∈TH (Ω)

∫

T

pH · curl z d x =
∑

T∈TH (Ω)

∫

T

curl pH · z d x +
∑

F∈FH (ΓN )

∫

F

πt(pH) · γt(z) dτ

+
∑

F∈FH (Ω)

∫

F

[πt(pH)] · γt(z) dτ.
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This and (4.20) lead to

Res2(z) =
∑

T∈TH (Ω)

∫

T

(f− curl pH −σuH) · z d x −
∑

T∈TH (Ω)

∫

T

σ(ũH − uH) · z d x

−
∑

F∈FH (Ω)

∫

F

[πt(pH)] · γt(z) dτ+
∑

F∈FH (ΓN )

∫

F

(g2−πt(pH)) · γt(z) dτ.

Hence, Res2(z) is bounded from above by

|Res2(z)| ®



∑

T∈TH (Ω)

h2
T‖f− curl pH −σuH‖

2
0,T




1
2


∑

T∈TH (Ω)

h−2
T ‖z‖

2
0,T




1
2

+



∑

F∈FH (Ω)

hF‖[πt(pH)]‖
2
0,F




1
2


∑

F∈FH (Ω)

h−1
F ‖γt(z)‖

2
0,F




1
2

+



∑

F∈FH (ΓN )

hF‖g2 −πt(pH)‖
2
0,F




1
2


∑

F∈FH (ΓN )

hF‖γt(z)‖
2
0,F




1
2

+



∑

T∈TH (Ω)

h2
T‖ũH − uH‖

2
0,T




1
2


∑

T∈TH (Ω)

h−2
T ‖z‖

2
0,T




1
2

.

This and (4.13d), (4.13e) result in

��Res2(z)
��®






∑

T∈TH(Ω)

η2
T,2




1
2

+



∑

F∈FH(Ω)

η2
F,1




1
2

+



∑

F∈FH (ΓN )

η2
F,3




1
2

+ ξ


‖v‖curl;Ω. (4.21)

The combination of (4.19) and (4.21) plus (4.14) concludes the proof. �

Lemma 4.3. For vH ∈ Nd1
0,ΓD
(Ω;TH(Ω)) it holds

Res2(vH) = cH(uH − ũH ,vH). (4.22)

Proof. We have

Res2(vH) = ℓ
(2)
H (vH)− bH(vH ,pH) − cH(ũH ,vH)

= ℓ
(2)
H (vH)−
�

bH(vH ,pH) + cH(uH ,vH)
�
+ cH(uH − ũH ,vH). (4.23)

Since vH ∈ Nd1
0,ΓD
(Ω;TH(Ω))⊂ VH is an admissible test function in (3.15b), it follows that

bH(vH ,pH) + cH(uH ,vH) = ℓ
(2)
H (vH) + dH(vH , p̂H). (4.24)
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Since (3.21a), the last term vanishes

dH(vH , p̂H) = 0. (4.25)

The combination of (4.23)-(4.25) concludes the proof. �

Proof of Theorem 4.1. In view of Lemma 4.2 we define

gRes2(·) := Res2(·)− cH(uH − ũH , ·). (4.26)

It follows that

‖Res2‖V ∗0 ® ‖
gRes2‖V ∗0 + ξ. (4.27)

In view of (4.22), we have Nd1
0,ΓD
(Ω;TH(Ω)) ⊂ KergRes2. Using the same arguments as in

the proof of Lemma 4.2 yields

gRes2


V ∗0
®



∑

T∈TH(Ω)

(η2
T,2+η

2
T,3) +
∑

F∈FH (Ω)

�
η2

F,1+η
2
F,2

�
+
∑

F∈FH (ΓN )

(η2
F,3+η

2
F,4)




1
2

+ξ. (4.28)

As in the case of the symmetric IPDG method (cf., e.g., [20, 37]), the consistency error
admits the upper bound

ξ ®



∑

F∈FH (Ω)

η2
F,5




1
2

, ηF,5 := h
−1/2
F

�γt(uH)
�

0,F . (4.29)

The combination of (4.8),(4.27)-(4.29) and the triangle inequality

(u,p)− (uH ,pH)
≤
(u,p)− (ũH ,pH)

+
uH − ũH


curl ,H,Ω

conclude the proof. �

Remark 4.1. The consistency error ξ is not necessarily of higher order. However, its upper

bound
�∑

F∈FH (Ω)
η2

F,5

�1/2 can eventually be controlled by the a posteriori error estimator
η. In particular, for standard IPDG applied to linear second order elliptic boundary value
problems it has been shown in [12] that

α



∑

F∈FH (Ω)

η2
F,5




1
2

® η,

provided the penalty parameter α is chosen sufficiently large.
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5. Numerical results

5.1. The adaptive cycle

The adaptive IPDG-H method is realized within an adaptive cycle with the basic steps
’SOLVE’, ’ESTIMATE’, ’MARK’, and ’REFINE’. ’SOLVE’ stands for the numerical solution of
the hybridized IPDG scheme with the mortar approach of Section 3 implemented in the
’nudg’ code from [33] for the solution of (3.24). The step ’ESTIMATE’ is devoted to the
computation of the element residuals ηT,i, 1 ≤ i ≤ 3, and the face residuals ηF,i , 1 ≤ i ≤ 4
(cf. (4.2a)-(4.2c) and (4.3a)-(4.3c)) as the basic constituents of the residual error estima-
tor η (cf. (4.1)). Moreover, the consistency error ξ (cf. (4.4)) is estimated by the additional
face residuals ηF,5 according to (4.29). The following step ’MARK’ deals with the marking
of elements and faces for refinement by a bulk criterion, also known as Dörfler mark-
ing [29]. In particular, given a universal constant 0 < θ < 1, setsMT ⊂ TH(Ω)× {1,2,3}
andMF ⊂FH(Ω̄)×{1,2,3,4,5} of almost minimal cardinality are determined such that

θ η2 ≤
∑

(T,i)∈MT

η2
T,i +
∑

(F,i)∈MF

η2
F,i . (5.1)

The bulk criterion (5.1) is implemented by a greedy algorithm. For sufficiently small θ ,
it is expected that the bulk criterion may yield asymptotic optimal complexity (cf., e.g.,
[12] in case of adaptive IPDG methods for standard second order elliptic boundary value
problems). The final step ’REFINE’ takes care of the practical realization of the adaptive
refinement. Elements T ∈ TH(Ω) and faces F ∈ FH(Ω̄) such that (T, i) ∈ MT for some
1≤ i ≤ 3 and (F, i) ∈MF for some 1≤ i ≤ 5 are refined by bisection.

5.2. Numerical examples

For the illustration of the performance of the residual a posteriori error estimator we
consider two examples of H(curl)-elliptic boundary value problems in 2D from (2.3a)-
(2.3c). Both examples feature solutions in H(curl;Ω) with components in Hs(Ω) for some
0 < s < 1. The first one has an irrotational solution on an L-shaped domain with a singu-
larity at the reentrant corner and the second one exhibits a solenoidal solution on a circle
with a cut out wedge having a singularity at the origin. For both problems, the penalty
parameters in the IPDG-H method have been chosen according to α± := κ(k+ 1)2/2 with
κ= 100.

Example 1: We consider the L-shaped domain Ω := (−1,+1)2 \ [0,+1]× [−1,0] with
Dirichlet boundary ΓD := (0× (0,1) ∪ (0,1)× 0), Neumann boundary ΓN := Γ \ ΓD and
data µ = σ = 1. The right-hand sides f, g1, g2 in (2.3a)-(2.3c) are chosen such that

u = grad
�

r2/3 sin(
2

3
ϕ)
�

is the exact solution (in polar coordinates). The solution is in H(curl;Ω) ∩H2/3−ǫ(Ω) for
any ǫ > 0 and exhibits a singularity at the reentrant corner.
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Figure 2: Example 1: The initial mesh (left) and the meshes after 8 (middle) and 18 (right) adaptivere�nement steps (k = 4 and Θ= 0.1).
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Fig. 2 shows the initial mesh (left) and the meshes obtained after 8 (middle) and
18 (right) refinement steps of the adaptive algorithm in case k = 4 and θ = 0.1. We
observe a pronounced refinement in a vicinity of the reentrant corner. Fig. 3 displays the
global discretization error ‖(u,p)− (uH ,pH)‖ (cf. (4.5)) as a function of the number of
degrees of freedom (DOF) on a logarithmic scale for both uniform refinement and adaptive
refinement in case k = 1 (left) and k = 4 (right). The results of the adaptive refinement are
shown for various values of the constant θ in the bulk criterion (5.1). Both for k = 1 and
k = 4 the benefits of adaptive versus uniform refinement can be clearly seen. In case k = 1,
we observe a dependence of the convergence rate on the parameter θ which is much less
pronounced in case k = 4. According to the theory for IPDG methods applied to standard
second order elliptic boundary value problems (cf. [12] and the numerical results in [34]),
we see that the optimal decay rate (line · − ·−) is asymptotically achieved for small θ .

Example 2: The domain Ω is the unit circle with a cut out wedge (see Fig. 4). We assume
µ = σ = 1 and Neumann boundary conditions on Γ = ∂Ω. The data f and g2 are chosen
such that u = curl(r4/7 sin(4

7
ϕ)) is the exact solution (in polar coordinates). The solution
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Figure 4: Example 2: The initial mesh (left) and the meshes after 6 (middle) and 14 (right) adaptivere�nement steps (k = 4 and Θ= 0.1).
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is in H(curl;Ω)∩H4/7−ǫ(Ω) for any ǫ > 0 and exhibits a singularity at the origin. We use
isoparametric elements for a proper resolution of the curved part of the boundary.

As for the previous example, Figs. 4 and 5 display the history of the refinement process.
We basically observe a similar behavior with asymptotically optimal convergence for small
θ . However, in the pre-asymptotic regime, the decrease of the discretization error is less
pronounced. The reason is that there are two main sources for the error: the singularity at
the origin and the resolution of the curved boundary. Since the error is dominated by the
singularity, the greedy algorithm realizing the bulk criterion (5.1) picks the corresponding
residuals first until those associated with the boundary resolution are taken into account.
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