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Abstract. In this paper, we present an efficient time-splitting Fourier spectral method

for the quintic complex Swift-Hohenberg equation. Using the Strang time-splitting tech-

nique, we split the equation into linear part and nonlinear part. The linear part is solved

with Fourier Pseudospectral method; the nonlinear part is solved analytically. We show

that the method is easy to be applied and second-order in time and spectrally accurate

in space. We apply the method to investigate soliton propagation, soliton interaction,

and generation of stable moving pulses in one dimension and stable vortex solitons in

two dimensions.
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1. Introduction

Swift-Hohenberg equation was proposed by J. Swift and P. C. Hohenberg in 1977 along

with the arising interest in stable spatially localized states [18–20]. It has been viewed as

a model equation for a large class of higher-order parabolic model equations arising in a

wide range of applications, such as the extended Fisher-Kolmogorov equation in statistical

mechanics and the perturbed diffusion equation in phase field models [9,14].

It is undoubtedly convenient if one can use just a single equation to explain a compli-

cated phenomena in various systems. Initially, a single quintic complex Ginzburg-Landau

(QCGL) equation was known to be able to do this for a laser with a fast saturable absorber.

Its quintic nonlinearity is essential to ensure the stability of soliton-like pulses overcom-

ing something that the cubic Ginzburg-Landau equation could not achieve. However, this
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model is restricted to a second-order term and a spectral response with a single maximum,

which is not the case in many experiments. In order to make the model more realistic. the

addition of a fourth-order spectral filtering term into the QCGL equation is needed and this

is how the quintic complex Swift-Hohenberg equation emerged.

The quintic complex Swift-Hohenberg equation has a wide range of applications. It

has been used to study instabilities and pattern formation phenomena in cases of Rayleigh-

Bernard convection [4] and oscillating chemical reactions. In optics, this equation has been

considered in relation to spatial structures in large aspect lasers [19] and synchronously

pumped optical parametric oscillators [20, 29]. It is also important for describing pulse

generation processes in passively mode-locked lasers with fast saturable absorbers [30].

The problem which we study numerically is the quintic complex Swift-Hohenberg

(QCSH) equation [15,19,20,22–24,28], expressed as follows

i
∂ψ

∂ t
= aψ+ b|ψ|2ψ+ c|ψ|4ψ+ d△ψ+ f△2ψ, x ∈ Rd , t ≥ 0, (1.1)

where the function ψ = ψ(x, t) is a complex wave function with respect to time variable

t and space variable x, and a, b, c, d , and f are complex. f is also usually called viscous

term in the equation.

Eq. (1.1) covers many nonlinear equations arising in various applications. For exam-

ple, when a, b, c, d , and f are pure imaginary, it is the real Swift-Hohenberg equation. It

has been used to study the collection between subcritical square patterns and oscillons

in vertically vibrated granular layers [10] and to describe a wide range of patterns from

Ravleigh-Benard convection to wide-area lasers [4]. When f = 0, i.e. excluding the

viscous term, it collapses to the QCGL equation, which has been studied in many areas,

such as fluid dynamics [17], chemical oscillations [18], and nonlinear optics [1]. Fur-

thermore, if all the parameters in the QCGL equation are pure imaginary, it becomes the

real Ginzburg-Landau equation. It has been used to examine the interaction of fronts in

localized traveling wave pulses in binary liquid mixtures [16]. On the contrary, if the pa-

rameters are all real, the equation reduces to the nonlinear Schrödinger equation, which

has been used for modeling for example, superfluidity or Bose-Einstein condensation [7].

There has been a lot of studies conducted for the QCSH equation without the viscous

term i.e., f = 0. For example, stable pulse solutions, namely plain pulse which has the

standard soliton shape, narrow composite pulse, and wide composite Pulse, have been

found numerically for a wide range of parameters well beyond the region where analytical

solutions exist [3]. The interactions between the more complicated structure of the com-

posite pulses have been studied, too. Through numerical simulation, collision of counter-

propagating pulses and vortices was studied by Sakaguchi et al. [26]. The results showed

that the acceleration occurs at the collisions of two counter-propagating one-dimensional

pulse and two dimensional vortices. For a fixed set of parameters, it was observed that the

moving pulses are accelerated and the energy increases at the moment of collision.

Unlike the QCSH equation described above, numerical simulations conducted specifi-

cally for the QCSH equation with the viscous term are still very limited. We review several

numerical results with regards to this equation in the following.
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A study was conducted using the Euler method to examine the dynamics of the dislo-

cations in the aligned ordering striped system of the ordering kinetics for a 2D anisotropic

Swift-Hohenerg model [24]. Numerical measurements showed that the average speeds

for the motion of the dislocations obey power laws in time with different amplitudes but

the same exponents. Moreover, the position and velocity distribution functions are only

weakly anisotropic. In addition, the effect of viscosity for the motion of pulses was studied

in [25, 27, 28]. It was found that the viscous term f determined the velocity of pulses.

Motivated by the observation of localized circular (oscillations), Crawford and Riecke nu-

merically investigated an extension of a Swift-Hohenberg model that exhibits a subcritical

transition to square patterns [10]. Localized oscillon-type solutions were studied numeri-

cally using a pseudospectral code by first performing a weakly nonlinear analysis to obtain

the periodic solutions. They concluded that oscillon-type structures are indeed a general

feature in systems where the transition to squares is subcritical and the basic state Is suf-

ficiently stable. The dissipative effects, namely the role of higher-order terms in spectral

filtering in the case of passively mode-locked lasers modeled by the QCSH equation was

explained in [30]. First, the QCSH equations with viscous terms has a greater variety of

solutions than the QCSH equations without viscous terms. Second, its composite station-

ary and moving pulses are generated for a wider range of parameters due to the more

complicated spectral response. Finally. three different types of bound soliton states were

also found namely: plain pulses, composite pulse, and narrow composite pulse.

As we noted earlier on, there has been considerable interest whether the stable spa-

tially localized states could be found in the QCSH equation ever since this property was

previously observed in the subcritical complex Ginzburg-Landau equation. Thus it is very

important to have an efficient and accurate numerical method that can explain this phe-

nomena. To our knowledge, there are not many numerical simulation results presented

so far that can explain the effect of the additional viscous term and the behavior of lo-

calized states observed in the QCSH equation. Very few numerical studies are directed at

the QCSH equation (we note that a finite difference scheme has been proposed for the

Swift-Hohenberg equation with strict implementation of Lyapunov Functional in [11]).

We therefore propose an efficient solver for the equation–the time splitting Fourier pseu-

dospectral method in order to examine this. Our numerical method is based on discretizing

the spatial derivatives by the Fourier pseudospectral method and applying the second-order

Strang splitting method for the time derivatives. The method has been demonstrated to be

very efficient and accurate for solving the nonlinear Schrödinger-type equations (see for

example [5–7] and their reference inside). In this paper we want to show that the method

is also an efficient solver for the QCSH equation.

The rest of the paper is organized as follows: In Section 2, we investigate some dynam-

ical properties of the QCSH equation. In Section 3, we propose two different time-splitting

Fourier pseudospectral methods to numerically solve the QCSH equation. In Section 4, we

show the method’s numerical accuracy both in time and space. We also apply the method to

study one-soliton dynamics and two-soliton dynamics. Generated of stable moving pulses

in one dimension (1D) and stable vortex solitons in two dimensions (2D) are reported.

Finally conclusions are drawn in Section 5.
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2. Dynamical properties of the Swift-Hohenberg equation

There are many important quantities in studying the QCSH equation (1.1). One of

them is the norm defined as

N(t) =

∫

|ψ(x, t)|2dx, t ≥ 0. (2.1)

Taking the derivative with respect to time t gives us

dN

d t
= 2Im

�∫

�

a|ψ|2+ b|ψ|4+ c|ψ|6 − d |∇ψ|2+ f |△ψ|2
�

dx

�

. (2.2)

If the parameters a, b, c, d , e, and f are real, then the norm N is conserved since dN

d t
= 0;

if the parameters b, c, d , e, and f are real, then the norm N will increase ( decrease) with

respect to time t when a is a positive (negative) imaginary number.

Another quantity is the momentum defined as

P = i

∫

�

ψ̄∇ψ−ψ∇ψ̄
�

dx= 2Im

�∫

ψ∇ψ̄ dx

�

, t ≥ 0. (2.3)

From the QCSH equation, we have

dP

d t
= 4Im

�∫

�

[aψ+ b|ψ|2ψ+ c|ψ|4ψ+ d△ψ+ f△2ψ]∇ψ̄
�

dx

�

. (2.4)

When a, b, c, d , f are real variable, the energy defined as follows is also an important

quantity governed by the QCSH equation with real coefficients:

E(ψ) =

�∫ �

a|ψ|2+
b|ψ|4

2
+

c|ψ|6

3
− d |∇ψ|2+ f |△ψ|2

�

dx

�

. (2.5)

It is conserved since dE

d t
= 0.

When f = 0, the QCSH equation collapses into the QCGL as we noted earlier. We have

the following lemma for the QCGL equation:

Lemma 2.1. Suppose that φ0(x) is a solution of the equation

ωφ = aφ + b|φ|2φ + c|φ|4φ + d△φ. (2.6)

Then the QCSH equation (1.1) with f = 0 admits a soliton solution

φ0(x+ d t~v)ei~v(x+d t~v)−iωt , (2.7)

where ω is some constant and ~v, the moving velocity of the soliton is some constant vector.

One can easily get the proof of this Lemma by substituting (2.7) into the QCSH equa-

tion (1.1) with f = 0. Though it is difficult to construct a soliton-like solution as (2.7)

for the QCSH equation, Maruno et al. obtain many exact soliton solutions for the one-

dimensional Swift-Hohenberg equation. In Section 4, we will present some numerical

simulations on soliton dynamics. In the next section, we develop an efficient numerical

method for solving the QCSH (1.1).
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3. Numerical methods for the Swift-Hohenberg equation

In this section, we present a time-splitting Fourier pseudospectral method to study the

time evolution of the QCSH equation. For simplicity of notation, the method is introduced

for the case of one space dimension. Generalizations to higher dimensions are straightfor-

ward for tensor product grids and the results remain valid without modifications. For d=1,

the problems becomes

i
∂ ψ

∂ t
= aψ+ b|ψ|2ψ+ c|ψ|4ψ+ d∂x xψ+ f ∂x x x xψ, p ≤ x ≤ q, t > 0, (3.1)

ψ(x , t = 0) =ψ0(x), p ≤ x ≤ q, ψ(p, t) =ψ(q, t) = 0, t ≥ 0, (3.2)

with |p| and q sufficiently large.

We choose the spatial mesh size as△x = (q− p)/M > 0, with M being an even positive

integer, and the time step △t > 0. The grid points and time sequence can be defined as

x j = p+ j△x , j = 0,1, · · · , M ; tn = n△t, n= 0,1,2, · · · . (3.3)

We denote ψn
j

be the numerical approximation of ψ(x j, tn).

3.1. A three-step splitting method

From time t = tn to t = tn+1, Eq. (3.1) can be solved in two splitting steps. One first

solves

i
∂ ψ

∂ t
= aψ+ d∂x xψ+ f ∂x x x xψ (3.4)

for one time step, followed by solving

i
∂ ψ

∂ t
= b|ψ|2ψ+ c|ψ|4ψ (3.5)

for another time step.

To solve Eq. (3.4), we assume that

ψ(x , t) =

M/2−1
∑

l=−M/2

ψ̂l(t)e
iµl (x j−p), (3.6)

where ψ̂l(t) is the Fourier coefficient for the l th mode, and

µl =
2πl

q− p
, l = −

M

2
, · · · , 0, · · · ,

M

2
− 1.

Plugging (3.6) into Eq. (3.4), we obtain

dψ̂l(t)

d t
= ψ̂l(t)
�

−i(a− dµ2
l + f µ4

l
)
�

, l = −
M

2
, · · · , 0, · · · ,

M

2
− 1. (3.7)
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Solving the above equation gives us

ψ̂l(t) = ψ̂l(tn)exp
�

−i(a− dµ2
l + f µ4

l
)(t − tn)
�

, (3.8)

and then plugging (3.8) into (3.6), we get the solution of (3.4) as

ψ(x j, t) =

M/2−1
∑

l=−M/2

ψ̂l(tn)exp
�

−i(a− dµ2
l + f µ4

l
)(t − tn)
�

eiµl (x j−p). (3.9)

For t ∈ [tn, tn+1], multiplying (3.5) by ψ(x , t) we get

iψtψ(x , t) = b|ψ(x , t)|4+ c|ψ(x , t)|6. (3.10)

Taking conjugate on both sides, the above equation becomes

−iψtψ(x , t) = b̄|ψ(x , t)|4+ c̄|ψ(x , t)|6. (3.11)

Subtracting (3.11) from (3.10) and multiplying by -i, we get the following ordinary

differential equation for ρ = |ψ(x , t)|2:

∂tρ = 2[Im(b)ρ+ Im(c)ρ2]ρ = 2g(ρ)ρ (3.12)

with the function g(ρ) = Im(b)ρ+ Im(c)ρ2.

To solve (3.12), we define

r(s) =

∫

1

sg(s)
ds, h(s,τ) =

¨

r−1(r(s)− 2τ), s > 0,τ ≥ 0,

0, s = 0,τ ≥ 0.
(3.13)

If g(s)≥ 0 for s ≥ 0, we find

0≤ h(s,τ)≤ s, for s ≥ 0,τ ≥ 0,

and the solution of the ordinary differential equation (3.12) can be expressed by

0≤ ρ(t) := |ψ(x , t)|2 = h(|ψ(x , t)|2, t − tn)

≤ ρ(tn) := |ψ(x , tn)|
2, tn ≤ t ≤ tn+1. (3.14)

Combining (3.12) and (3.14), we obtain for t ∈ [tn, tn+1],

iψt = bh(|ψ(x , tn)|
2, t − tn)ψ(x , t) + c[h(|ψ(x , tn)|

2, t − tn)]
2ψ(x , t). (3.15)

Integrating (3.15) from tn to t, we find

ψ(x , t) =ψ(x , tn)exp
�

− i
�

F(|ψ(x , tn)|
2, t − tn) + G(|ψ(x , tn)|

2, t − tn)
�

�

, (3.16)
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where we have defined

F(s, r) =

∫ r

0

bh(s,τ) dτ≥ 0, G(s, r) =

∫ r

0

c[h(s,τ)]2 dτ. (3.17)

From t = tn to t = tn+1, we combine the splitting steps via the second-order Strang

splitting method, and we obtain the following three-step time-splitting Fourier pseudospec-

tral method for the problem. The detailed algorithm of the method is given by

ψ∗j =ψ
n
j exp{−i[F(|ψn

j |
2,△t/2) + G(|ψn

j |
2,△t/2)]}, (3.18)

ψ∗∗j =

M/2−1
∑

l=−M/2

ψ̂∗ l exp
�

−i(a− dµ2
l + f µ4

l
)(t − tn)
�

eiµl (x j−p), (3.19)

ψn+1
j
=ψ∗∗j exp{−i[F(|ψ∗∗j |

2,△t/2) + G(|ψ∗∗j |
2,△t/2)]}, (3.20)

j = 0,1, · · · , M − 1.

For Eq. (3.12), if both Im(b) and Im(c) are zero, then we can find that

F(s, r) = sr, G(s, r) = s2r.

If Im(b) = 0 and Im(c) 6= 0, then we can find that

F(s, r) =
−b

Im(c)

�

�

s−2 − 4Im(c)r
�1/2
− s−1
�

, G(s, r) =
−c

4Im(c)
ln |s−2 − 4Im(c)r|.

If Im(b) 6= 0 and Im(c) = 0, then we can find that

F(s, r) = −
b

2Im(b)
ln |1− 2Im(b)sr|, G(s, r) = −

cs2r

1− 2Im(b)sr
.

However, if both Im(b) and Im(c) are nonzero, we cannot find the analytical form for

the function h(s,τ) in (3.14) and, furthermore, we cannot get the explicit formulation for

F(s, r) and G(s, r) in (3.16). Thus, in practice, we may use the fourth-order Runge-Kutta

method to numerically solve the ordinary differential equation (3.12). In the following,

we propose a new time-splitting method to solve the problem.

3.2. A five-step splitting method

As mentioned above, when both Im(b) and Im(c) are nonzero, Eq. (3.12) cannot be

solved analytically. Therefore, we introduce another method which solves (3.1) in three

splitting steps, i.e.,

i
∂ ψ

∂ t
= aψ+ d∂x xψ+ f ∂x x x xψ, (3.21)

i
∂ ψ

∂ t
= b|ψ|2ψ. (3.22)

i
∂ ψ

∂ t
= c|ψ|4ψ. (3.23)
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The solution of (3.21) is given by (3.6), while for (3.22) and (3.23), we can use the

similar procedure to get their exact solutions. For (3.22), we have for t ∈ [tn, tn+1],

ψ(t) =























ψn exp{−iRe(b)|ψn|2(t − tn)}, Im(b) = 0,

ψn

p

|1− 2Im(b)|ψn|2(t − tn)|
otherwise.

×exp

�

i
Re(b)

2Im(b)
ln |1− 2Im(b)|ψn|2(t − tn)|

�

,

(3.24)

Similarly, solving (3.23) gives us

ψ(t) =























ψn exp{−iRe(b)|ψn|4(t − tn)}, Im(b) = 0,

ψn

|1− 4Im(b)|ψn|4(t − tn)|1/4
otherwise.

×exp

�

i
Re(b)

4Im(b)
ln |1− 4Im(b)|ψn|4(t − tn)|

�

,

(3.25)

Thus we can combine (3.6), (3.24) and (3.25) by the second-order Strang splitting

method, we get the following five-step splitting method, i.e., from time t = tn to t = tn+1,

(i) evolve (3.24) for half time step △t/2 with the initial data ψn given at t = tn;

(ii) evolve (3.25) for half time step △t/2 with the new data obtained in (i);

(iii) evolve (3.6) for the time step △t with the new data obtained in (ii);

(iv) evolve (3.25) for half time step △t/2 with the new data obtained in (iii);

(v) evolve (3.24) for half time step △t/2 with the new data obtained in (iv) and obtain

ψn+1.

The detailed algorithm is as follows:

ψ
(1)

j
=







ψn
j
exp{−iRe(b)|ψn

j
|2△t/2}, Im(b) = 0,

ψn

Æ

|1− Im(b)|ψn
j
|2△t|

exp

�

i
Re(b)

2Im(b)
ln |1− Im(b)|ψn

j
|2△t|
�

, otherwise.

ψ
(2)

j
=







ψn exp{−iRe(b)|ψ(1)
j
|4△t/2}, Im(b) = 0,

ψn

|1− 2Im(b)|ψ(1)
j
|4△t|1/4

exp

�

i
Re(b)

4Im(b)
ln |1− 2Im(b)|ψ(1)

j
|4△t|
�

, otherwise.

ψ
(3)

j
=

M/2−1
∑

l=−M/2

ψ̂(2) l exp
�

−i(a− dµ2
l
+ f µ4

l
)(t − tn)
�

eiµl (x j−p),
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ψ
(4)

j
=







ψn exp{−iRe(b)|ψ(3)
j
|4△t/2}, Im(b) = 0,

ψn

|1− 2Im(b)|ψ(3)
j
|4△t|1/4

exp

�

i
Re(b)

4Im(b)
ln |1− 2Im(b)|ψ(3)

j
|4△t|
�

, otherwise.

ψn+1
j
=







ψn
j
exp{−iRe(b)|ψ(4)

j
|2△t/2}, Im(b) = 0,

ψn

q

|1− Im(b)|ψ(4)
j
|2△t|

exp

�

i
Re(b)

2Im(b)
ln |1− Im(b)|ψ(4)

j
|2△t|
�

, otherwise.

j = 0,1, · · · , M − 1. (3.26)

4. Numerical results

In this section we apply the proposed time-splitting Fourier pseudospectral method

(3.26) to solve the one-dimensional and two-dimensional QCSH equations respectively.

First, we test the numerical accuracy of the method. Second, we study how the viscous

term f affects the dynamics of moving solitons. Finally, we investigate stable moving pulses

and vortex solitons governed by the QCSH equation.

4.1. Accuracy tests in 1D

To examine the numerical accuracy of our numerical method in 1D, we use it to solve

the 1D QCSH equation. The parameters are chosen as: a = −0.075i, b = −1+2i, c = 0.5,

d = −0.2− 0.05i, and f = −0.025i. The initial conditions is taken to be ψ(x , t = 0) =
1

2
sech(x).

We solve the problem in the interval [−64,64], i.e. p = −64 and q = 64 with a

homogenous boundary condition.We compute a numerical solution with a very fine mesh,

e.g. △x = 128

4096
, and a very small time step △t = 0.0001, as the ‘exact’ solution ψe. Let

ψ△x ,△t denote the numerical solution under mesh size △x and time step △t.

Firstly we test the spectral accuracy of the TSFP method in space. Table 1 shows the

errors ||ψe(t)−ψ△x ,△t ||l2 at t = 1.0 with △t = 0.0001 for different △x .Table 1: Spatial error analysis for TSFP: errors ||ψe(t)−ψ△x ,△t ||l2 at t = 1.0 with △t = 0.0001.
△x 1 1/2 1/4 1/8 1/16

Error 0.1763 6.6405E-4 9.7748E-8 1.8626E-8 3.3886E-13Table 2: Temporal error analysis for TSFP: errors ||ψe(t)−ψ△x ,△t ||l2 at t = 1.0 with △x = 1/32.
△t 1

32

1

64

1

128

1

256

1

512

Error 2.1385E-4 5.4085E-5 1.3595E-5 3.4048E-6 8.4976E-7
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Subsequently, we test the accuracy of TSFP in time. Table 2 shows the errors ||ψ(t)−
ψ△x ,△t ||l2 at t = 1.0 with M = 4096 for different △t.

From Tables 1 and 2, we can conclude that the numerical method–TSFP has spectral

order accuracy for spatial derivatives and the second-order accuracy for time derivatives

in 1D.

4.2. Dynamics of one soliton in 1D

In this subsection, our goal is to observe the effect of the additional viscous term f in

the dynamics of one soliton. In the examples presented below, the values of the parameters

used are a = −0.04i, b = −1+ 0.04i, c = −0.008i, and d = −0.5. The initial condition

is set to be ψ(x , t = 0) = 1.5sech[1.5(x − x0)]e
iv0 x . We study three cases: Case I: x0 = 0

(a) (b) (c)Figure 1: The dynamis of one soliton for ase I. (a) f = 0; (b) f =−0.05i; () f = 0.0025.
(a) (b) (c)Figure 2: The dynamis of one soliton for ase II. (a) f = 0; (b) f =−0.05i; () f = 0.0025.
(a) (b) (c)Figure 3: The dynamis of one soliton for ase III. (a) f = 0; (b) f =−0.05i; () f = 0.0025.
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and v0 = 0; Case II: x0 = −10 and v0 = 1; Case III: x0 = 10 and v0 = −1.

In the numerical experiments, we set one soliton centered at the origin (x0 = 0) with

zero velocity v0 = 0 initially in case I. When the viscous term f is zero, a moving soliton

comes out, which has been shown in Fig. 1(a). We set one soliton centered at the position

(x0 = −10) with velocity v0 = 1 initially in case II. In this case we have rightward-moving

soliton, as shown in Fig. 2(a). We set one soliton centered at the position (x0 = 10) with

velocity v0 = −1 initially in case III. In this case we have leftward-moving soliton, as shown

in Fig. 3(a).

However, when the viscous term f becomes a negative imaginary number, the moving

soliton may varnish, as shown in Fig. 1(b) or Fig. 2(b) or Fig. 3(b). When the viscous term

f becomes a positive real number, the moving soliton keeps its form, as what can be seen

in Fig. 1(c) or Fig. 2(c) or Fig. 3(c).

From the numerical results shown in Figs. 1, 2 and 3, two observations can be made:(1)

The stable moving solitons can be found from the dynamics governed by the QCSH equa-

tion; (2) the viscous term f can tune the moving soliton on and off.

4.3. Dynamics of two solitons in 1D

In this subsection, our goal is to observe the effect of the additional viscous term f in

the dynamics of two soliton. In the examples below, the values of the parameters used are

a = −0.04i, b = −1+ 0.04i, c = −0.008i, and d = −0.5. The initial condition is set to be

ψ(x , t = 0) = 1.5sech[1.5(x− x1)]e
iv1 x +1.5sech[1.5(x− x2)]e

iv2 x . We study three cases:

Case I, x1 = −18 and v1 = 2.5; x2 = −10 and v2 = 0.5; Case II, x1 = −18 and v1 = 0.5;

x2 = −10 and v2 = 2.5; Case III, x1 = −8 and v1 = 1; x2 = 8 and v2 = −1.

We consider collisions between two moving solitons. With this in mind, in case I we

prepare the initial condition with one soliton set at the position x = −18 with the velocity

v1 = 2.5, and the other one placed at x = −10 with the velocity v2 = 0.5. The soliton

placed at x = −18 moves rightward with larger velocity than the soliton placed at x = −10.

In case II, we prepare the initial condition with one soliton set at the position x = −18 with

the velocity v1 = 0.5, and the other one placed at x = −10 with the velocity v2 = 2.5. The

soliton placed at x = −18 moves rightward with slower velocity than the soliton placed

at x = −10. In this case the two solitons do not interact with each other. In case III, we

prepare the initial condition with one soliton set at the position x = −10 with the velocity

v1 = 1, and the other one placed at x = 10 with the velocity v2 = −1. The soliton placed

at x = −10 moves rightward while the soliton placed at x = 10 moves leftward.

When the viscous term f is zero or f is purely positive, two moving soliton with velocity

2.5 and 0.5, interact with each other and move on with its original form, as what have been

shown in Fig. 4(a) and Fig. 4(c) respectively. However, when the viscous term f becomes

a negative imaginary number, these interacting solitons go on until they varnish, as what

have been shown in Fig. 4(b). Similar observations can be found for case II and case III,

as shown in Fig. 5 and Fig. 6, respectively, though we prepare different initial conditions

with two solitons placed at different positions.
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(a) (b) (c)Figure 4: The dynamis of two moving solitons for ase I. (a) f = 0; (b) f =−0.05i; () f = 0.0025.
(a) (b) (c)Figure 5: The dynamis of two moving solitons for ase II. (a) f = 0; (b) f =−0.05i; () f = 0.0025.
(a) (b) (c)Figure 6: The dynamis of two moving solitons for ase III. (a) f = 0; (b) f =−0.05i; () f = 0.0025.

4.4. Generation of stable moving pulses in 1D

In this subsection, our goal is to observe stable moving pulses. In the examples pre-

sented below, the values of the parameters used are a = −0.05i, b = −1+1.6i, c = −0.1i,

and f =−0.05i.

Two different kinds of plain moving pulse are observed in Figs. 7(a) and 7(b). A

composite moving pulse and wide composite moving pulse can be seen in Figs. 8(a) and

8(b), respectively. Similar observations were also obtained in [30,31].

Subsequently, we test the accuracy of TSFP in time. Table 4 shows the errors ||ψ(t)−
ψ△x ,△y,△t ||l2 at t = 1.0 with M = 4096 for different △t.
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(a) (b)Figure 7: The dynamis of plain moving pulses with d = −0.5+ 0.05i. (a) prepared with initial data
2.5sech(2.5x); (b) prepared with initial data 2.5sech(2.5x)ei x .

(a) (b)Figure 8: The dynamis of omposite moving pulses with d = −0.5− 0.05i. (a) prepared with initialdata 2.5sech(2.5x); (b) prepared with initial data 2.5sech(2.5x)ei x .
4.5. Accuracy tests in 2D

To examine the numerical accuracy of our numerical method in 2D, we use it to solve

the 2D QCSH equation. The parameters are chosen as: a = −0.04i, b = −1 + 0.04i,

c = −0.008i, d = −0.5, and f = −0.05i. The initial conditions is taken to be ψ(x , y, t =

0) = 2.25sech(1.5x)sech(1.5y).

We solve the problem in the interval [−8,8]× [−8,8]. We compute a numerical solu-

tion with a very fine mesh, e.g. △x = △y = 1

32
, and a very small time step △t = 0.0001,

as the ‘exact’ solution ψe. Let ψ△x ,△y,△t denote the numerical solution under mesh size

△x , △y and time step △t.Table 3: Spatial error analysis for TSFP: errors ||ψe(t)−ψ△x ,△y,△t ||l2 at t = 1.0 with △t = 0.0001.
△x =△y 1 1/2 1/4 1/8

Error 0.5054 1.7822E-4 3.6684E-7 9.2770E-8Table 4: Temporal error analysis for TSFP: errors ||ψe(t)−ψ△x ,△y,△t ||l2 at t = 1.0 with △x =△y = 1/16.
△t 1

40

1

80

1

160

1

320

1

640

Error 0.0010 2.5388E-4 6.3537E-5 1.5877E-5 3.9577E-6
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Firstly we test the spectral accuracy of the TSFP method in space. Table 3 shows the

errors ||ψe(t)−ψ△x ,△y,△t ||l2 at t = 1.0 with △t = 0.0001 for different △x .

From Tables 3 and 4, we can conclude that the numerical method–TSFP has spectral

order accuracy for spatial derivatives and the second-order accuracy for time derivatives

in 2D.

4.6. Generation of stable vortex solitons in 2D

Stable vortex solitons had been observed in the two-dimensional Ginzburg-Landau

equation In this subsection, our goal is to observe whether we can observe the stable
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vortex solitons in the QCSH. In the examples below, the values of the parameters used are

a = −0.5i, b = −1 + 2.5i, c = 0.1 − i, d = −0.5+ 0.05i and f = −0.05. We investi-

gate three cases: Case I, ψ(x , y, t = 0) = 1.6e−(x
2+y2)/25eiθ ; Case II, ψ(x , y, t = 0) =

1.6e−(x
2+y2)/25ei2θ ; Case III, ψ(x , y, t = 0) = 1.6e−(x

2+y2)/25ei3θ with θ = arctan(y/x).

Stable vortex solitons are observed in Fig. 9, Fig. 11 and Fig. 12 respectively. In Fig. 10,

we plot time evolution of the density of the wave function, i.e, |ψ(x , 0, t)| at different

times. From these figures, we can conclude that stable vortex solitons can be found in the

two-dimensional QCSH equation.

5. Conclusions

We presented an efficient numerical method—the time-splitting Fourier pseudospectral

method to discretize the quintic complex Swift-Hohenberg equation and showed that this

method is very efficient and of spectral accuracy in space and second order accuracy in

time for our problem as proven in our numerical accuracy test. We applied our numerical

method to study the effect of the viscous term f in the quintic complex Swift-Hohenberg

equation through the dynamics of one soliton and the interaction of two solitons. We found

stable moving pulses and vortex solitons governed by the quintic complex Swift-Hohenberg

equation.
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