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Abstract. We consider two player electromagnetic evasion-pursuit games where each

player must incorporate significant uncertainty into their design strategies to disguise

their intension and confuse their opponent. In this paper, the evader is allowed to make

dynamic changes to his strategies in response to the dynamic input with uncertainty

from the interrogator. The problem is formulated in two different ways; one is based

on the evolution of the probability density function of the intensity of reflected signal

and leads to a controlled forward Kolmogorov or Fokker-Planck equation. The other

formulation is based on the evolution of expected value of the intensity of reflected

signal and leads to controlled backward Kolmogorov equations. In addition, a number

of numerical results are presented to illustrate the usefulness of the proposed approach

in exploring problems of control in a general dynamic game setting.
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1. Introduction

In an electromagnetic evasion-interrogation game, the evader wishes to minimize the

intensity of the reflected signal to remain undetected in carrying out his mission while the

interrogator wishes to maximize the intensity of reflected signal to detect the attacker. It

was demonstrated in [9] that it is possible to design ferroelectric materials with appropri-

ate dielectric permittivity and magnetic permeability to significantly attenuate reflections

of electromagnetic interrogation signals from highly conductive targets such as airfoils and

missiles. These results were further sharpened and illustrated in [10] where a series of

different material designs were considered to minimize over a given set of input design

frequencies the maximum reflected field from input signals. In addition, it was shown
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that if the evader employed a simple counter interrogation design based on a fixed set

(assumed known) of interrogating frequencies, then by a rather simple counter-counter

interrogation strategy (use of an interrogating frequency little more than 10% different

from the assumed design frequencies), the interrogator can easily defeat the evader’s ma-

terial coatings counter interrogation strategy to obtain strong reflected signals. From the

combined results of [9,10] it is thus rather easily concluded that the evader and the inter-

rogator must each try to confuse the other by introducing significant uncertainty in their

design and interrogating strategies, respectively.

Static two-player non-cooperative games with uncertainty were considered in [6]. In

these problems, the evader and the interrogator are each subject to uncertainties as to the

actions of the other. The evader wants to choose a best coating design (i.e., best dielectric

permittivities and magnetic permeabilities) while the interrogator wants to choose best

angles of interrogation and interrogating frequencies for input signals. Each player must

act in the presence of incomplete information about the other’s action. Partial informa-

tion regarding capabilities and tendencies of the adversary can be embodied in probability

distributions for the choices to be made. That is, one may formalize this by assuming

the evader may choose (with an as yet to be determined set of probabilities) dielectric

permittivity and magnetic permeability parameters from given admissible sets while the

interrogator chooses angles of interrogation and interrogating frequencies from appropri-

ate admissible sets . The formulation in [6] is based on the mixed strategies proposals of

von Neumann [2, 30, 31] and the ideas can be summarized as follows. The evader does

not choose a single coating, but rather has a set of possibilities available for choice. He

only chooses the probabilities with which he will employ the materials on a target. This, in

effect, disguises his intentions from his adversary. By choosing his coatings randomly (ac-

cording to a best strategy to be determined in, for example, a minmax game), he prevents

adversaries from discovering which coating he will use–indeed, even he does not know

which coating will be chosen for a given target. The interrogator, in a similar approach,

determines best probabilities for choices of frequency and angle in the interrogating sig-

nals. Note that such a formulation tacitly assumes that the adversarial relationship persists

with multiple attempts at evasion and detection.

The problems are mathematically formulated in [6] as two sided optimization prob-

lems over spaces of probability measures, i.e., minmax games over sets of probability mea-

sures. That work demonstrates the feasibility and the potential usefulness of developing

theories for problems with uncertainty. In this paper, we move toward a more realistic

dynamic modeling by introducing time dynamics into the problem for single evasion at-

tempts. Specifically, we allow a single evader to make dynamic changes to his dielectric

permittivity strategies in response to feedback entailing measures of the reflection signals

based on dynamic information with uncertainty about the interrogator’s choices. Thus, this

new formulation is more in the spirit of the deterministic dynamical differential games as

formulated, for example, in [20] except here uncertainties of the two players’ actions are

a major feature as in the static games of [6,31]. The remainder of this paper is organized

as follows. We begin in Section 2 by presenting a description of our problem formulation.

We then outline a theoretical and computational framework in Section 3 that provides a
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foundation for our solution methods. A number of computational results are presented in

Section 4. We conclude the paper by some summary remarks and proposed future research

efforts in Section 5.

2. Problem description

In this section, we will use a capital italic letter to denote a random variable unless

otherwise indicated, and use the corresponding small letter to denote its realization.

We formulate a minimization problem with cost functional in terms of some reflection

coefficient dependent on the evader’s dielectric permittivity ε as well as the interrogator

frequency ω. This reflection coefficient could be based on a simple planar geometry us-

ing Fresnel’s formula for a perfectly conducting half plane which has a coating layer of

thickness d with dielectric permittivity ε and interrogating frequency ω as detailed in [6].

This expression can be derived directly from Maxwell’s equation by considering the ratio

of reflected to incident wave for example in the case of parallel polarized (T Ex) incident

wave (see [9,25]).

An alternative and much more computationally intensive approach, which may be ne-

cessitated by some target geometries (e.g., missiles), employs the far field pattern for re-

flected waves computed directly using Maxwell’s equations. In two dimensions, for a re-

flecting body with a given coating layer with an interrogating plane wave E(i), the scattered

field E(s) satisfies the Helmholtz equation [18] as detailed in [6].

Throughout we assume for simplicity that the magnetic permeability for the evader is

fixed as is the angle of incidence of the interrogating signal. We assume that the evader has

the ability to choose the dielectric parameter ε he uses in order to thwart detection, and

the parameter ε is changed adaptively depending on the frequency w that the interrogator

is using (or rather depending on the reflections produced by the interrogator’s frequency

choices). In addition, we assume that the interrogator frequency process {Wt : t ≥ 0} is an

Itô diffusion process (Chapter 7 of [29]) satisfying the stochastic differential equation

dWt = µ(Wt)d t +σ(Wt)dBt , (2.1)

where both µ and σ are non-random functions that are Lipschitz continuous, and Bt de-

notes the standard Brownian motion.

Below we will consider two different formulations, one is based on the evolution of the

probability density function of the intensity of reflected signal, and the other is based on

the evolution of expected value of the intensity of reflected signal.

2.1. Evolution of probability density function of intensity

Let Yt = ϕ(Wt), where ϕ is some chosen measure of intensity of the reflected signal

for a given material dielectric parameter (for example, ϕ can be chosen as the magni-

tude of the reflection coefficient). In addition, we assume that ϕ is twice continuously
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differentiable. Then by Itô’s formula we find that

dYt =

�

ϕ′(Wt)µ(Wt) +
1

2
ϕ′′(Wt)σ

2(Wt)

�

d t +ϕ′(Wt)σ(Wt)dBt .

If we further assume that ϕ−1 exists, then we can rewrite the right-hand side of the above

equation in terms of Yt given by

dYt =ϕ
′(ϕ−1(Yt))σ(ϕ

−1(Yt))dBt

+

�

ϕ′(ϕ−1(Yt))µ(ϕ
−1(Yt)) +

1

2
ϕ′′(ϕ−1(Yt))σ

2(ϕ−1(Yt))

�

d t.

If ϕ is chosen such that functions ϕ′(ϕ−1(y))µ(ϕ−1(y)) + 1

2
ϕ′′(ϕ−1(y))σ2(ϕ−1(y)) and

ϕ′(ϕ−1(y))σ(ϕ−1(y)) are both Lipschitz continuous, then {Yt : t ≥ 0} is also an Itô dif-

fusion process. Let ρ(t, y) denote the probability density function of the random variable

Yt . Then it is well known that ρ satisfies Fokker-Planck equation (e.g., see [23, p. 118])

∂ ρ(t, y)

∂ t
+
∂

∂ y

��

ϕ′(ϕ−1(y))µ(ϕ−1(y)) +
1

2
ϕ′′(ϕ−1(y))σ2(ϕ−1(y))

�

ρ(t, y)

�

=
1

2

∂ 2

∂ y2

h
�

ϕ′(ϕ−1(y))σ(ϕ−1(y))
�2
ρ(t, y)
i

. (2.2)

For our illustration here, we choose ϕ to be a first-order approximation of the chosen

measure of intensity of the reflected signal, that is, ϕ(w) = c1w + c0 (i.e., y = c1w + c0),

where c0 and c1 are constants. Then (2.2) can be simplified as

∂ ρ(t, y)

∂ t
+ c1

∂

∂ y

�

µ(ϕ−1(y))ρ(t, y)
�

=
1

2
c2
1

∂ 2

∂ y2

�

σ2(ϕ−1(y))ρ(t, y)
�

. (2.3)

Let ̺(t, w) = ρ(t, y). Then we have

∂ ̺

∂ t
=
∂ ρ

∂ t
,

∂

∂ y
=

1

c1

∂

∂ w
,

∂ 2

∂ y2
=

1

c2
1

∂ 2

∂ w2
.

Hence, we can rewrite (2.3) in terms of w as follows

∂ ̺(t, w)

∂ t
+
∂

∂ w

�

µ(w)̺(t, w)
�

=
1

2

∂ 2

∂ w2

�

σ2(w)̺(t, w)
�

. (2.4)

To allow for evader control of the system (2.4), we introduce some input of the form

−λr

�

̺(t, w)− u(t,ε)
�

into the system (2.4), that is,

∂ ̺(t, w)

∂ t
+
∂

∂ w

�

µ(w)̺(t, w)
�

=
1

2

∂ 2

∂ w2

�

σ2(w)̺(t, w)
�

−λr

�

̺(t, w)− u(t,ε)
�

, (2.5)



Dynamic Evasion-Interrogation Games with Uncertainty in the Context of Electromagetics 363

where λr is the relaxation constant of the material. We note from (2.5) that once we

introduce feedback controls into this system, ̺ is no longer a probability density function

(indeed we are trying to drive it to zero on most of its support).

Here we consider a generalized control u, which is defined by

u(t, w) =

∫

E
r(w,ε)dU (t,ε), (2.6)

where r(w,ε) is some given real-valued function of the reflection coefficient with given

frequency w and dielectric parameter ε, and U is a time-dependent distribution of possi-

ble dielectric settings ε in E . The motivation for introducing distributional or generalized

controls is two fold. First, this is natural when one is extending the static theory of [6]

where the uncertainty in controls is embodied in probability measures on the static con-

trol parameters such as dielectric permittivities and interrogating frequencies. A second

compelling motivation is prompted by a rich literature on closure theorems in the calcu-

lus of variations and optimal control associated with distinguished contributors such as

Young [37, 38], McShane [26–28], Filippov [21], and Warga [33–35], among others. In

some variational and control problems (and especially in two player differential games-see

for example the discussions in [20] and the counter example of Berkovitz [16]), it has

been known since the years of L. C. Young that one must often introduce generalized or

relaxed controls (also called sliding regimes [21] or chattering controls) in order to obtain

well posed optimization problems. In anticipation of treating these two player dynamical

games where both the evader and interrogator have time dependent controllers, here we

use generalized controls for the evader which thus introduces uncertainty in the evader

controls as well as uncertainty in the interrogation frequencies via the stochastic dynamics

(2.1).

We remark that the use of generalized controls has arisen naturally in a number of other

modern applications including in smart materials with smoothed Preisach controls [12–14]

where hysteretic control influence operators representing smart material actuators can be

used to guarantee well posedness as well as to develop efficient computational algorithms.

One of the main benefits of relaxed controls is that the optimal relaxed controller can

be approximated by “real controls” and we shall do that here. Indeed, for computational

purposes, we will approximate the control u(t, w) with delta approximations (rigorous

justification for such approximations in the context of the Prohorov [32] or weak∗ (metric)

topology on spaces of probability distributions [4, 17, 24] can be found in [3–5] as well

as in the closure theories from [26–28, 33–35, 37, 38]. We restrict the set E to a finite set

{ε∗j }Mj=1, thus obtaining the collection of choices of materials available to the evader

U (t,ε) ≈
M
∑

j=1

ε j(t)∆ε∗
j
(ε),

dU (t,ε) ≈
M
∑

j=1

ε j(t)δε∗
j
(ε)dε,
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where ε j(t) denotes the time-dependent weighings for the material with dielectric permit-

tivity ε∗j that the evader may choose, and ∆ and δ are the Dirac distribution and density,

respectively. Let b j(w) = r(w,ε∗j ), j = 1,2, · · · , M . Then (2.6) can be rewritten as

u(t, w) ≈
∫

E
r(w,ε)

M
∑

j=1

ε j(t)δε∗
j
(ε)dε=

M
∑

j=1

ε j(t)r(w,ε∗j ) = b(w)ε(t), (2.7)

where b(w) =
�

b1(w), b2(w), · · · , bM (w)
�

and ε(t) =
�

ε1(t),ε2(t), · · · ,εM (t)
�T

. Thus,

using the control (2.7) we can write (2.5) as

∂ ̺(t, w)

∂ t
+
∂

∂ w

�

µ(w)̺(t, w)
�

=
1

2

∂ 2

∂ w2

�

σ2(w)̺(t, w)
�

−λr

�

̺(t, w)−b(w)ε(t)
�

, (2.8)

which is a controlled forward Kolmogorov or Fokker-Planck equation [1, 22]. A reason-

able linear quadratic regulator (LQR) control problem might involve minimizing the cost

functional

J(ε̄) =

∞
∫

0

w
∫

w

|̺(t, w)|2dwd t +

∞
∫

0

β |ε̄(t)|2d t, (2.9)

subject to (2.8). Here [w, w] is the admissible range of interrogator frequencies.

2.2. Evolution of expected value of intensity

We next discuss an alternative formulation for our problem. Assuming that Wt satisfies

(2.1) and for a given the material dielectric parameter value εt at time t, we define

ṽ(t, w) = E

�∫ t

0

λeλs r̃(Ws,εs) ds+ v0(Wt) |W0 = w

�

,

where E[ · | · ] denotes the conditional expectation, r̃(w,ε) again represents some scalar

valued controlled intensity for the reflected signal (e.g., the magnitude of the reflection

coefficient) depending on incoming frequency w and dielectric parameter ε, and λ > 0 is

now a discount parameter. Following a standard technique [29, Section 10.3] for treating

integrals, we next define

Zt =

∫ t

0

λeλs r̃(Ws,εs) ds.

Then the process X t = (Wt , Zt)
T satisfies

d

�

Wt

Zt

�

=

�

µ(Wt)

λeλt r̃(Wt ,εt)

�

d t +

�

σ(Wt)

0

�

dBt

and

ṽ(t, w) = g
�

t, (w, 0)
�

, for g(t, (w, z)) ≡ E[Zt + v0(Wt) | X0 = (w, z)T ].
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Here the generator of the Itô diffusion process {X t : t ≥ 0} is

Lφ(w, z) = µ(w)
∂

∂ w
φ(w, z) +

1

2
σ2(w)

∂ 2

∂ w2
φ(w, z) +λeλt r̃(w,εt )

∂

∂ z
φ(w, z).

It then follows from Section 8.1 in [29] that g satisfies the backward Kolmogorov equation

∂

∂ t
g =L g, g(0, (w, z)) = z + v0(w). (2.10)

A discussion of the relationship between this state and the semigroup generated by L can

be found in [19]. Since g = ṽ + z is the solution to (2.10), it follows that ṽ satisfies

∂

∂ t
ṽ(t, w) = µ(w)

∂

∂ w
ṽ(t, w) +

1

2
σ2(w)

∂ 2

∂ w2
ṽ(t, w) +λeλt r̃(w,εt),

ṽ(0, w) = v0(w).

Now let v(t, w) = e−λt ṽ(t, w). It is easy to show that v satisfies

∂

∂ t
v(t, w) = µ(w)

∂

∂ w
v(t, w) +

1

2
σ2(w)

∂ 2

∂ w2
v(t, w) +λ
�

r̃(w,εt)− v(t, w)
�

,

v(0, w) = v0(w). (2.11)

We note that the state v in this formulation is

v(t, w) = E

�∫ t

0

λe−λ(t−s) r̃(Ws,εs) ds+ e−λt v0(Wt) |W0 = w

�

,

the expected value of a measure of the reflected intensity.

In this formulation, the controlled reflection index r̃(w,ε) can be extended to gener-

alized controls as in (2.6), (2.7) where r = r̃. Thus we can rewrite Eq. (2.11) using the

generalized control from Eq. (2.7) as follows

∂

∂ t
v(t, w) = µ(w)

∂

∂ w
v(t, w) +

1

2
σ2(w)

∂ 2

∂ w2
v(t, w)−λ�v(t, w)− b(w)ε̄(t)

�

. (2.12)

Note that the control for this formulation is the same as the control for the formulation

in Section 2.1 although this is a controlled backward Kolmogorov equation [1, 22]. The

primary difference is that for this latter formulation the control was naturally a part of the

dynamics equation and we did not have to artificially introduce a control into the system

as we did in Section 2.1. Thus, this second formulation is somewhat more direct and hence

perhaps more desirable from an intuitive perspective. Moreover, the backward Kolmogorov

equation of this formulation usually presents less formidable computational challenges.
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2.3. Special case

For our presentation of theoretical, approximation and computational results for the

above two control problems, we consider without loss of generality a special case where the

above problems are the same. Specifically, from (2.8) and (2.12), we see that if we choose

µ ≡ 0 and σ to be a positive constant function, then (2.8) and (2.12) are reduced to the

same controlled system, a controlled diffusion equation. The choice of µ = constant > 0

is a more physically relevant case (resulting in a convection-diffusion equation with either

positive or negative convective flow depending on which dynamics are chosen from above),

but all that we present below applies to these cases albeit with more technical detail in the

theoretical and approximation frameworks. In particular, the inclusion of the convective

term can greatly complicate the computational problem in the forward Kolmogorov formu-

lation. Thus, for our demonstration purposes here and for the sake of simplicity, we will

consider the reduced controlled system given by

∂ v

∂ t
= η

∂ 2v

∂ w2
−λ�v − b(w)ε̄(t)

�

, (2.13)

where η = σ2/2 > 0. We further suppose that the frequencies that the interrogator is

capable of transmitting are in the range of [w, w], i.e., the support of the interrogator

probability density is finite. Then the boundary and initial conditions are given respectively

by

v(t, w) = v(t, w) = 0,

v(0, w) = v0(w). (2.14)

In the context of the LQR control problem we thus must minimize the cost function

J(ε̄) =

∫ ∞

0

∫ w

w

|v(t, w)|2dwd t +

∫ ∞

0

β |ε̄(t)|2d t, (2.15)

subject to (2.13) and (2.14). We remark here that β is a design parameter which is chosen

to balance the relative merits of reduction of reflection intensity versus control costs in the

control objectives.

3. Sesquilinear forms: theory and numerical approximations

A fundamental framework for theory, approximation and computation for (2.15) sub-

ject to (2.13)–(2.14) is available in the context of an abstract control problem as developed

in [7,8] with a accessible summary given in [15]. For convenience and following standard

conventions, we use an over dot ( ˙ ) to denote the derivative with respect to the time

variable t. While the results presented below can readily be given for both general Kol-

mogorov formulations, for brevity we only consider the canonical case described in the

previous section where µ ≡ 0.
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3.1. Sesquilinear forms

We first present theoretical underpinnings for our control calculations in a real Hilbert

space setting. All of the results given here are summarized in more detail in [15]. Let the

Hilbert spaces H and V be defined by H = L2(w, w) and V = H1
0(w, w). We denote the

topological dual space of V by V ∗ = H−1(w, w). If we identify H with its dual H∗ then

V ,→ H = H∗ ,→ V ∗ is a Gelfand triple [15,36].

Define the linear operator A : V → V ∗ by

Aφ = η∂
2φ

∂ w2
−λφ, φ ∈ V,

where as usual derivatives are interpreted in the weak or distributional sense. We may

now write (2.13) in the following abstract form

v̇(t) =A v(t) +B ε̄(t), v(0) = v0, (3.1)

where v(t) is used as the shorthand notation for the function v(t, ·) (this shorthand nota-

tion will be used throughout the remainder of this section), and the operatorB : RM → V ∗

is defined by

Bξ(w) = λb(w)ξ, for all ξ ∈ RM .

In the particular case studied here we actually have b ∈ L2 so that B : RM → L2 ⊂ V ∗. It

is easy to argue that the adjointB∗ of B is given by

B∗φ = �〈b1,φ〉, 〈b2,φ〉, · · · , 〈bM ,φ〉�T , for all φ ∈ V.

Using integration by parts, we obtain

〈Aφ,ψ〉V ∗,V =
w
∫

w

�

η
∂ 2φ(w)

∂ w2
−λφ(w)
�

ψ(w)dw

=−
w
∫

w

η
∂ φ(w)

∂ w

∂ψ(w)

∂ w
dw −

w
∫

w

λφ(w)ψ(w)dw,

where 〈·, ·〉V ∗,V denotes the usual duality product [15, 36]. We then define a sesquilinear

form a on V × V by a(φ,ψ) = 〈−Aφ,ψ〉V ∗,V , that is,

a(φ,ψ) =

w
∫

w

η
∂ φ(w)

∂ w

∂ ψ(w)

∂ w
dw+

w
∫

w

λφ(w)ψ(w)dw. (3.2)

We see immediately that a is symmetric, and hence the adjoint A ∗ of A defined by

a(φ,ψ) = 〈φ,−A ∗ψ〉V,V ∗ is equal to A . Now we may rewrite (3.1) in weak form as:

v(t) ∈ V for all t is the solution of



v̇(t),ψ
�

V ∗,V + a(v(t),ψ) = 〈B ε̄(t),ψ〉V ∗,V , v(0) = v0, (3.3)
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for all ψ ∈ V . By (3.2) and Poincaré’s inequality, we find that there exists some positive

constant c such that

|a(φ,ψ)| ≤ (cλ+η)‖φ‖V ‖ψ‖V ,

holds for any φ,ψ ∈ V . Similarly for all φ ∈ V

a(φ,φ) = η‖φ‖2V +λ‖φ‖2H ≥ η‖φ‖2V .

One can then establish estimates and arguments as in [7,8] to argue thatA generates an

analytic semigroup on H, V and V ∗. Furthermore, this semigroup is exponentially stable

on H, V and V ∗.
Turning next to the control problem for the abstract dynamics (3.1), we find that the

above results along with Theorem 3.4 in [8] implies that the algebraic Riccati equation

(A ∗Π+ΠA −ΠBβ−1B∗Π+I )ψ= 0, for allψ ∈ V (3.4)

has a unique nonnegative solution Π ∈L (V ∗, V ) and

A −Bβ−1B∗Π

generates an exponentially stable semigroup on H, V and V ∗. Moreover, the optimal feed-

back solution that minimizes cost functional (2.15) subject to (3.1) is given by

ε̄opt(t) = −
1

β
B∗Πv(t).

3.2. Numerical approximation

Our goal in this section is to present computational methods for solution of the feed-

back control systems under investigation here. We do this in the context of the abstract

formulation developed in [7, 8, 15] and summarized above. We briefly outline a method

based on a standard finite element approach. For the convenience, we use (′) for the

derivative with respect to the space variable w.

We define the mesh points wN
j , j = 0, · · · , N + 1 as wN

0 = w, wN
j = wN

j−1 + h, for

j = 1, · · · , N , and wN
N+1 = w where h = (w −w)/(N + 1). Next we let V N be a sequence

of finite dimensional subspaces of V . In particular, V N = span{lN
1 (w), lN

2 (w), · · · , lN
N (w)} ⊂

V = H1
0(w, w) where the piecewise linear basis elements {lN

j (w)} are defined as follows

for j = 1, · · · , N :

lN
j (w) =























w −wN
j−1

wN
j
−wN

j−1

, wN
j−1 ≤ w < wN

j ,

wN
j+1 −w

wN
j+1
−wN

j

, wN
j ≤ w < wN

j+1,

0, otherwise.

(3.5)
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We next define the operator A N : V N → V N (which approximates A ) by restriction of a

to V N × V N ; this yields

〈−A Nφ,ψ〉 = a(φ,ψ), for all φ,ψ ∈ V N .

For givenB : RM → V ∗, we define its approximation BN : RM → V N by

〈BNξ,ψ〉 = 〈ξ,B∗ψ〉, for all ξ ∈ RM and ψ ∈ V N .

For this family of approximations, the corresponding N th approximate problem in V N

entails the minimization of the cost functional

J N (ε̄) =

∫ ∞

0

∫ w

w

|vN(t, w)|2dwd t +

∫

_0∞β |ε̄(t)|2d t, (3.6)

subject to
dvN(t)

d t
=A N vN(t) +BN ε̄(t), vN(0) =P N v0. (3.7)

Here vN (t) is the notation for vN (t, ·), and the operator P N denotes the usual orthogonal

projection of H onto V N . That is, for φ ∈ H, we have P Nφ ∈ V N is defined by

〈P Nφ,ψ〉 = 〈φ,ψ〉, for all ψ ∈ V N . (3.8)

The weak form of (3.7), i.e., the approximate problem corresponding to (3.3), can then

be formulated as finding vN (t) ∈ V N which satisfies

®

dvN(t)

d t
,ψ

¸

+ a(vN (t),ψ) = 〈BN ε̄(t),ψ〉, ψ ∈ V N ,

vN (0) =P N v0. (3.9)

It is well-known [11] that for any φ ∈ V , there exist a sequence φN ∈ V N such that

|φN − φ|V → 0 as N → ∞. Thus we can be assured that these approximations vN (t)

will approach v(t) for N sufficiently large. To obtain the matrix representations for the

operators A N andBN in terms of the piecewise linear spline basis, we substitute

v(t)≈ vN (t) =

N
∑

j=1

νN
j (t)l

N
j

into (3.9) and let ψ = lN
i

for i = 1,2, · · · , N . We obtain the vector system

N
∑

j=1

ν̇N
j (t)
D

lN
j , lN

i

E

+η

N
∑

j=1

νN
j (t)〈(lN

j )
′, (lN

i )
′〉+λ

N
∑

j=1

νN
j (t)〈lN

j , lN
i 〉 = λ

M
∑

k=1

εk(t)〈bk, lN
i 〉.

We note that the above equation can be written in the matrix form

F N ν̇N +ηQNνN +λF NνN = λGN ε̄, (3.10)
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where νN (t) = (νN
1 (t),ν

N
2 (t), · · · ,νN

N (t))
T , F N and QN are N × N matrices with their

(i, j)th elements defined by

〈lN
i , lN

j 〉=















2

3
h, if i = j,

1

6
h, if |i − j| = 1,

0, otherwise,

and 〈(lN
i )
′, (lN

j )
′〉=















2

h
, if i = j,

−1

h
, if |i− j| = 1,

0, otherwise,

respectively, and GN is an N ×M matrix with its (i, j)th element being defined by 〈b j , lN
i 〉.

Note that (3.10) can be simplified as follows

ν̇N (t) = ANνN (t) + BN ε̄(t), (3.11)

where

AN = −(F N )−1(ηQN +λF N ), BN = λ
�

F N
�−1

GN ,

are the matrix representations for operators A N and BN , respectively. We consider the

approximation vN (0) to the initial condition v(0). To do this, we substitute

v(0)≈ vN (0) =P N v0 =

N
∑

j=1

νN
0, j l

N
j

into (3.8) with φ = v0, and let ψ= lN
i for i = 1,2, · · · , N , and we find

N
∑

j=1

νN
0, j〈lN

j , lN
i 〉 = 〈v0, lN

i 〉, i = 1,2, · · · , N .

Let νN
0 = (ν

N
0,1, · · · ,νN

0,N )
T . Then from the above equation we have

νN
0 = (F

N )−1















〈v0, lN
1 〉

〈v0, lN
2 〉

...

〈v0, lN
N 〉















. (3.12)

We now solve (3.6) subject to (3.7) to obtain approximations to the optimal ε̄opt de-

noted by ε̄N
opt. Note that the injection from V to H is compact. Hence, by Theorem 4.8

in [8], for N sufficiently large, there exists a unique nonnegative self-adjoint solution ΠN

to the algebraic Riccati equation in V N

(A N )∗ΠN +ΠNA N −ΠNBNβ−1(BN )∗ΠN +I = 0, (3.13)

and the convergence of the Riccati and control operators are also obtained. In addition,

the feedback system operatorA−Bβ−1(BN )∗ΠN (i.e., the approximate feedback controls
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used in the original infinite dimensional system) generates an exponential stable analytic

semigroup on H and for v0 ∈ H

|J(ε̄N
opt)− J(ε̄opt)| ≤ γ(N)‖v0‖2H ,

where ε̄N
opt(t) = − 1

β
(BN )∗ΠN vN (t), and γ(N)→ 0 as N →∞. In terms of matrix repre-

sentation, ε̄N
opt is given by

ε̄N
opt(t) = −

1

β
(BN )TπNνN (t),

where πN is an N×N matrix representation of the operator ΠN given by the corresponding

matrix representation for algebraic Riccati equation (3.13), i. e.,

(AN)TπN +πN AN −πN BNβ−1(BN )TπN + I = 0.

We can easily solve for πN using the built in MATLAB function are or other available

software.

We have thus gathered all of the information needed to solve for νN . At this time recall

Eq. (3.11) with the optimal ε̄N
opt is given by

ν̇N (t) =

�

AN − 1

β
BN (BN )TπN

�

νN (t)

with initial conditions νN (0) = νN
0 defined by (3.12). We use these approximations in the

numerical results presented below.

4. Numerical results

In this section, a number of simulations are carried out to investigate the proposed

approach and illustrate its usefulness in exploring questions of control in a dynamic player

game study. All of the computational results presented in this section are obtained with

η = 6 and λ = 1. We use the piecewise linear approximations presented in the previous

section. In the examples given here, we typically used N = 50 basis elements. The number

of basis elements used was arrived at after simulations studies to ascertain values of N

required to insure convergence.

For the intensity function r(w,ε) of (2.7) we used the magnitude of Fresnel reflec-

tion coefficient based on planar layer geometry [6] given by r(w,ε) = |(a+ b)/(1+ ab)|,
where

a =
ε−pεµ
ε+
p
εµ

and b = e4iπ
p
εµwd/c , (4.1)

with magnetic layer permeability µ = 1, layer thickness d = 2.5 mm and speed of light

c = 3× 108 m/sec. We chose E = {ε∗j }Mj=1 by taking M = 50 equal partition points ε∗j in

the dielectric permittivity interval 1 ≤ ε ≤ 1000, and interrogator frequency range [w, w]

with w = 0.4 GHz and w = 1 GHz.
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4.1. Single carrier frequency input

Our design parameter is chosen to be β = 0.25 for all the results obtained in this part.

Our first attempt for the initial condition v0 is a truncated normal (Gaussian) distribution.

The plots for the numerical approximations of vN(t, w) and the control uN (t, w) are illus-

trated in Fig. 1. This reveals that when the most emphasis in interrogating frequencies is

placed on frequencies around 0.7 GHz, that the best controls are ones corresponding to

materials effective around the frequency 0.7 GHz.
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Figure 1: Numerial results obtained with initial ondition v0 given by a trunated normal distri-bution. (left): vN (t, w); (right): uN (t, w).
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Figure 2: Numerial results obtained with initial ondition v0 given by a trunated Gammadistribution. (left): vN (t, w); (right): uN (t, w).
In the next two trials, we choose distributions concentrated at the extreme frequencies

for an initial choice for v0. Specifically, the numerical results illustrated in Fig. 2 are

obtained with a truncated Gamma distribution. We see from Fig. 2 that when the most

emphasis is placed on frequencies around 0.4 GHz, that the best controls (materials) are

ones effective around the frequency 0.4 GHz as well as some measure of control is exhibited

at frequencies around 1 GHz. This agrees with what was observed in [6] in that a material

that nulls well at 0.4 GHz also has some ability to null at 1 GHz.
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Fig. 3 illustrates the numerical results obtained with a truncated Beta input. From this

figure we see that when the most emphasis is placed on frequencies around 1 GHz, that

the best materials to use are ones effective around the frequency 1 GHz. This illustrates

what was seen in the static examples of [6] with a material that cloaks well at 1GHz.
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Figure 3: Numerial results obtained with initial ondition v0 given by a trunated Beta distri-bution. (left): vN (t, w); (right): uN (t, w).
4.2. Multiple carrier frequency inputs

In this section, the numerical results are obtained with β = 0.25. The input is chosen

from different distributions in a sequence of interrogating pulses. That is, the interrogator

uses one distribution which is unknown to the evader to sample for interrogating pulse,

then switches to choosing from a second distribution and then a third. This is done in

an effort to confuse the evader in his choice of surface permittivities. These simulations
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Figure 4: Numerial results obtained with a sequene of onseutive initial onditions v0 givenby trunated normal�trunated Gamma�trunated Beta distributions. (left): vN (t, w); (right):
uN (t, w).
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are thus a rudimentary example of the situation where the interrogator also has a (non-

feedback) time dependent control for the input frequency distributions. We simulate this by

presenting graphs of responses to a sequence of consecutive initial condition inputs v0. As

we can see from a variety of different combinations in Figs. 4–6, the computational results

demonstrate that the evader control quickly switches in time to accommodate the new

choices in the interrogator frequency distributions. This suggests some level of robustness

in the evader’s response to changing interrogator frequencies.
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Figure 5: Numerial results obtained with a sequene of onseutive initial onditions v0 givenby trunated normal�trunated normal�trunated normal distributions. (left): vN (t, w); (right):
uN (t, w).
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Figure 6: Numerial results obtained with a sequene of onseutive initial onditions v0 givenby trunated Beta�trunated Gamma�trunated Beta distributions. (left): vN (t, w); (right):
uN (t, w).
4.3. Effect of design parameter on the overall control

Finally, we consider how the choice of the design parameter β affects the overall control

effectiveness. All the numerical results in this section are obtained with a truncated normal

initial condition v0. We note from Figs. 7–9 as β increases (i.e., the control gain decreases)

the feedback control action is less effective and rapid.
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Figure 7: Numerial results obtained with β = 2.5× 10−4. (left): vN (t , w); (right): uN (t , w).
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Figure 8: Numerial results obtained with β = 0.25. (left): vN (t , w); (right): uN (t , w).
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Figure 9: Numerial results obtained with β = 25000. (left): vN (t , w); (right): uN (t , w).
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5. Conclusion and future research efforts

In this paper, we consider a dynamic evasion-interrogation games with uncertainty in

the context of electromagnetics. Two different formulations are considered: one is based

on the probability density function of the intensity of the reflected signal, and the other is

based on the expected value of the intensity of the reflected signal. We should note that we

anticipate that the ideas presented here can be readily implemented in a number of other

modern non-cooperative adversarial situations such as information warfare and network

security.

There are several efforts we plan to pursue in the near future. One is to extend the

ideas in this paper to include a stochastic process for the evader to obtain a true two player

min-max dynamic differential game for the evader-interrogator problem. The other efforts

include investigation of other means to introduce uncertainty in the dynamic two player

games.
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