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Abstract. This paper aims to develop a power penalty method for a linear parabolic

variational inequality (VI) in two spatial dimensions governing the two-asset Ameri-

can option valuation. This method yields a two-dimensional nonlinear parabolic PDE

containing a power penalty term with penalty constant λ > 1 and a power parameter

k > 0. We show that the nonlinear PDE is uniquely solvable and the solution of the PDE

converges to that of the VI at the rate of order O (λ−k/2). A fitted finite volume method

is designed to solve the nonlinear PDE, and some numerical experiments are performed

to illustrate the usefulness of this method.
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1. Introduction

An option is a contract tradable in a financial market which gives to its owner the right

to buy (call option) or to sell (put option) a fixed quantity of a specified asset or stock at

a fixed price (exercise or strike price) on (European option) or before (American option)

a given date (expiry date). The market prices of the rights to buy and to sell are called

call prices and put prices, respectively. Clearly, the price of an option is dependent on the

market price(s) of its underlying stock(s). How to valuate an option has long been a hot

topic for financial engineers, economists and mathematicians. In the case of a European

type option on a single asset, it was shown by Black and Scholes (cf. [4]) that the price

satisfies a second-order partial differential equation with respect to the time horizon t

and the underlying asset price x , known as the Black-Scholes equation. The value of an
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American option is determined by a linear complementarity problem involving the Black-

Scholes operator [19]. Since this complementarity problem is, in general, not analytically

solvable, numerical approximation to the solution is normally sought in practice. Various

numerical techniques have been proposed for the numerical solution of the single-asset

American option pricing problem. Among them, lattice method [6], explicit method [13],

projected successive over relaxed method (PSOR) [14], linear programming method [7],

Monte-Carlo method [5], and penalty method [2, 8, 9, 19–21] are the most popular ones

in both practice and research.

A linear penalty approach to the linear complementarity problem was proposed and

analyzed in [3] which has been used in [9,21]. Compared with other methods mentioned

above, the penalty method possesses several advantages. First, a desirable accuracy in

the approximate solution can be achieved by a judicious choice of the penalty parameter.

Second, the resulting penalized PDE is of a simple form that is easy to discretize in any

dimensions on both structured and unstructured meshes. Finally, the penalty method can

easily be extended to other option models such as those of American options with stochastic

volatilities and/or transaction costs.

In the application of the penalty approach to American option pricing, a penalty term

is added to the Black-Scholes equation. In [9], an l1 penalty method is used, resulting in a

convergence rate of order O (λ−1/2), where λ > 1 denotes the penalty parameter. A power

penalty method is proposed and analyzed in [19, 20], of which the convergence rate is

shown to be of order O (λ−k/2) for any power parameter k > 0. This contains the l1 case

as the special one when k = 1 and provides an exponential convergence rate when k > 1.

For a single asset American option, it has been shown in [1,9,19,20] that the solution

to the penalized equation converges to that of the original problem. To our best knowledge,

there are no advances in the use of penalty methods for two dimensional problems in the

open literature except for the quadratic and l1 penalty methods for solving the American

option pricing problem with stochastic volatility (cf. [21]) period. On the other hand, it

has been shown in [20] that the penalty methods are superior to other methods such as

PSOR mentioned above.

The main purpose of this paper is to develop a power penalty method for the linear

complementarity problem arising from the two-dimensional American option valuation,

which comes from many models, such as stochastic volatility model, interest rate model,

basket options model, and so on (cf. [17]). Without loss of generality, in this paper we

put our focus on the two-asset basket option model. We will approximate the linear com-

plementarity problem by a nonlinear parabolic PDEs in two spatial dimensions with an lk
penalty term. We will then show that the solution to the nonlinear PDE converges to that

of the original complementarity problem at the rate of order O (λ−k/2). To solve the penal-

ized nonlinear equation, the fitted finite volume method is proposed, based on the results

in [12,18–20]. Numerical results will be presented to verify our theoretical findings.

The paper is organized as follows. In the next section, the pricing of two-asset Ameri-

can options will be formulated as a linear complementarity problem. This complementarity

problem will, in Section 3, be reformulated as a variational inequality problem in a func-

tional setting, and its unique solvability will be established as well. The power penalty
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problem approximating the complementarity problem will be posed in Section 4. In Sec-

tion 5, we will present a convergence analysis of the power penalty method. In Section 6,

a fitted volume method for the discretization of the penalized PDE is proposed. Numeri-

cal experiments, performed to illustrate the usefulness of the power penalty method and

confirm the theoretical results, will be presented in Section 7.

2. The mathematical model

Let x and y denote the market prices of two assets, respectively. They follow respec-

tively the following geometric Brownian motion processes

d x = µ1 x d t +σ1 x dW1 and d y = µ2 y d t +σ2 y dW2,

where µ1 and µ2 are the drift rates, σ1 and σ2 are the deterministic local volatilities, and

W1 and W2 are the Brownian motions correlated by ρ.

Let V (x , y, t) represent the value of an American put option on the two assets with

expiry date T . If we define

LV = −
∂ V

∂ t
−

1

2

�

σ2
1 x2
∂ 2V

∂ x2
+ 2ρσ1σ2 x y

∂ 2V

∂ x∂ y
+σ2

2 y2
∂ 2V

∂ y2

�

− r

�

x
∂ V

∂ x
+ y
∂ V

∂ y

�

+ rV, (2.1)

with r being the risk free interest rate, then it is well known that V satisfies the following

partial differential complementarity problem:







LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

(2.2)

for (x , y, t) ∈ (0, X )× (0, Y )× ([0, T ) with the boundary conditions

V (0, y, t) = g1(y, t), V (x , 0, t) = g2(x , t),

V (X , y, t) = 0, V (x , Y, t) = 0,
(2.3)

and terminal condition

V (x , y, t = T ) = V ∗(x , y), (2.4)

where

V ∗(x , y) =max(K −w1 x −w2 y, 0)

is the payoff function, K > 0 is the striking price, w1, w2 ≥ 0 are the weights of the assets

x and y, respectively, and X , Y and T are given positive constants. We assume that X ≫ K

and Y ≫ K . Here, g1 and g2 are given functions that provide suitable boundary conditions.
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Typically, g1 and g2 are determined via solving the associated one-dimensional American

put option problems (cf. [12,17]).

For convenience of theoretical analysis, we rewrite (2.1) as the following conservative

form

LV = −Vt −∇ ·
�

A∇V + bV
�

+ cV, (2.5)

where

A=

�

a11 a12

a21 a22

�

=

�

1

2
σ2

1 x2 1

2
ρσ1σ2 x y

1

2
ρσ1σ2 x y 1

2
σ2

2 y2

�

, (2.6a)

b =

�

b1

b2

�

=

�

r x −σ2
1 x − 1

2
ρσ1σ2 x

r y −σ2
2 y − 1

2
ρσ1σ2 y

�

, (2.6b)

c = 3r −
�

σ2
1 +σ

2
2 +ρσ1σ2

�

. (2.6c)

For discussion convenience, we transform (2.2)-(2.4) into an equivalent form satisfying

homogeneous Dirichlet boundary conditions. Note that this transformation is needed only

for the theoretical discussion, but not necessary in computations.

Let V0(x , y) be a twice differentiable function satisfying the boundary conditions in

(2.3). We introduce a new function

u(x , y, t) = eβ t(V0 − V ), (2.7)

where β = 1

2
(σ2

1 +σ
2
2 + ρσ1σ2). Taking LV0 away from both sides of the first inequality

of (2.2) and transforming V in (2.2)-(2.4) into the new function u, we have







L u ≤ f ,

u− u∗ ≤ 0,

(L u− f ) · (u− u∗) = 0,

(2.8)

where

L u = −ut −∇ · (A∇u+ bu) + cu,

c = c + β , u∗ = eβ t(V0 − V ∗), f (x , y, t) = eβ t LV0.
(2.9)

It is easy to see that under the transformation, the boundary and terminal conditions in

(2.3)-(2.4) become, respectively,

u(0, y, t) = 0= u(X , y, t), ∀t ∈ [0, T] and y ∈ [0, Y ],

u(x , 0, t) = 0= u(x , Y, t), ∀t ∈ [0, T] and x ∈ [0, X ],

and u(x , y, T ) = u∗(x , y, T ).
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3. Reformulation of the problem

In this section, we will reformulate (2.8) as a variational inequality problem in an

appropriate functional setting. Before proceeding, let us first introduce some standard

notation to be used in the paper.

Let Ω = (0, X ) × (0, Y ) and let Γ denote the boundaries of Ω. For 1 ≤ p ≤ ∞, let

Lp(Ω) denote the space of all p-integrable functions on Ω with the norm ‖ · ‖Lp(Ω), and let

Hm,p(Ω) denote the usual Sobolev space with the norm ‖ · ‖(m,p,Ω). When p = 2, we simply

use Hm(Ω) and ‖ · ‖(m,Ω) to denote Hm,2(Ω) and ‖ · ‖(m,2,Ω), respectively. We define the

weighted Sobolev space H1
̟(Ω) as follows:

H1
̟(Ω) = {v : v, x vx , yvy ∈ L2(Ω)}

with its norm denoted by ‖ · ‖1,̟. We put

H1
0,̟(Ω) = {v : v ∈ H1

̟(Ω), v|Γ = 0},

K (t) =
n

v(t) : v(t) ∈ H1
0,̟(Ω), v(t)≤ u∗(t), a.e. in (0, T )

o

,

where u∗(t) is defined by (2.9). It is easy to verify that K is a convex and closed subset of

H1
0,̟(Ω). Finally, for any Hilbert space H(Ω), the norm of Lp(0, T ; H(Ω)) is denoted by

‖v(·, t)‖Lp(0,T ;H(Ω)) =
�

∫ T

0

‖v(·, ·, t)‖pH d t
�1/p

.

Obviously, Lp(0, T ; Lp(Ω)) = Lp(Ω × (0, T )) = Lp(Θ). In what follows, we will simply

write v(t) when we regard v(·, ·, t) as an element of H1
0,̟(Ω). We will also suppress the

independent time variable t (or τ), when it causes no confusion in doing so.

Now, we define the following variational inequality problem.

Problem 3.1. Find u ∈K such that, for all v ∈K ,
�

−
∂ u

∂ t
, v − u

�

+ B(u, v − u; t) ≥ ( f , v − u), a.e. in (0, T ), (3.1)

where B(u, v; t) is a bilinear form defined by

B(u, v; t) = (A∇u+ bu,∇v)+ (cu, v), u, v ∈ H1
0,̟(Ω). (3.2)

For this variational inequality problem, we have the following theorem.

Theorem 3.1. Problem 3.1 is the variational form of the complementarity problem (2.8).

The proof of Theorem 3.1 is standard (cf. [3,10,11]), we omit it here.

In order to establish the unique solvability of Problem 3.1, we study the properties of

the operator B(u, v; t). Let |v|1,̟ be the functional on H1
0,̟(Ω) define by

|v|21,̟ ¬

∫

Ω

h

x2v2
x +ρ

�

x vx + yvy

�2
+ y2v2

y

i

dΩ, (3.3)
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for any v ∈ H1
0,̟(Ω). It is easy to verify that | · |1,̟ is a weighted semi-norm on H1

0,̟(Ω).

Using this semi-norm, we define ‖v‖1,̟ by

‖v‖21,̟ ¬ |v|
2
1,̟+ ‖v‖

2
0,̟.

It is easy to check ‖ · ‖1,̟ is a weighted energy norm on H1
0,̟(Ω). With these definitions

and a stand argument (cf. [3]), we have the following lemma.

Lemma 3.1. There exist positive constants C and M, independent of v and w, such that for

any v, w ∈ H1
0,̟(Ω),

B(v, v; t) ≥ C‖v‖21,̟,

|B(v, w; t)| ≤ M‖v‖1,̟‖w‖1,̟.

Using Lemma 3.1 and the theory for abstract variational inequality problems in [3,11],

we establish the unique solvability of Problem 3.1 in the following theorem.

Theorem 3.2. There exists a unique solution to Problem 3.1.

4. The power penalty approach

To derive the power penalty approach, we first consider the following nonlinear varia-

tional inequality problem:

Find uλ ∈ H1
0,̟(Ω) such that, for all v ∈ H1

0,̟(Ω),

�

−
∂ uλ

∂ t
, v − uλ

�

+ B(uλ, v − uλ; t) + j(v)− j(uλ)≥ ( f , v − uλ), a.e. in (0, T ), (4.1)

where

j (v) =
λk

k+ 1

�

v− u∗
�

k+1

k

+ , k > 0, λ > 1, (4.2)

and [z]+ =max{0, z} for any z.

The unique solvability of this problem is guaranteed by the coerciveness and continuity

of the bilinear operator B and the lower semi-continuity of j, see [10]. It is easy to show by

virtue of Lemma 3.1 and (4.2), that all the required conditions are satisfied by the bilinear

form B. Hence, (4.1) is uniquely solvable.

From (4.2), we can see that j(v) is differentiable. Thus, (4.1) is equivalent to the

following problem.

Problem 4.1. Find uλ ∈ H1
0,̟(Ω) such that, for all v ∈ H1

0,̟(Ω),

�

−
∂ uλ

∂ t
, v

�

+ B(uλ, v; t) + ( j′(uλ), v) = ( f , v), a.e. in (0, T ), (4.3)

where

j′(v) = λ[v − u∗]
1/k
+ . (4.4)
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We remark that (4.1)-(4.4) is a penalized variational equation corresponding to (3.1).

The strong form of (4.1)-(4.4), which defines the penalized equation approximating (2.8),

is given by

L uλ +λ[uλ − u∗]
1/k
+ = f , (x , y, t) ∈Θ, (4.5)

with the given boundary and final conditions

uλ(x , y, t)|Γ = 0 and uλ(x , y, T ) = u∗(x , y, T ). (4.6)

If k = 1

2
, this penalty approach corresponds to the quadratic penalty approach. While

k = 1, the typical l1 penalty approach is obtained. When k > 1, it is the so-called lower

order penalty approach [16, 19]. In the next section, we will investigate the convergence

rates of uλ to u as λ→∞.

5. Convergence analysis

We now show that, as λ→∞, the solution to Problem 4.1 converges to that of Problem

3.1 at the rate of order O (λ−k/2) in a proper norm. We start this discussion by the following

Lemma.

Lemma 5.1. Let uλ be the solution to Problem 4.1. If uλ ∈ Lp(Θ), then there exists a positive

constant C, independent of uλ and λ, such that

‖[uλ − u∗]+‖Lp(Θ) ≤
C

λk
, (5.1a)

‖[uλ − u∗]+‖L∞(0,T ;L2(Ω)) + ‖[uλ − u∗]+‖L2(0,T ;H1
0,̟(Ω))

≤
C

λk/2
, (5.1b)

where k is the power of the power penalty function and p = 1+ 1/k.

Proof. Assume that C is a generic positive constant, independent of uλ and λ. To

simplify the notation, we let φ = [uλ − u∗]+. Obviously, φ ∈ H1
0.̟(Ω) a.e. in (0, T ).

Setting v = φ in (4.3) and (4.4), we have

�

− ∂ uλ
∂ t

,φ
�

+ B(uλ,φ; t) +λ(φ1/k,φ) = ( f ,φ), a.e. in (0, T ), (5.2a)
�

−
∂ (uλ−u∗)
∂ t

,φ

�

+ B((uλ − u∗),φ; t) +λ(φ1/k,φ)

= ( f ,φ) +
�

∂ u∗

∂ t
,φ
�

− B(u∗,φ; t). (5.2b)

Integrating both sides of (??) from t to T and using the coerciveness property of the
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operator B and Holder’s inequality, we get

1

2
(φ(t),φ(t)) +

∫ T

t

||φ(τ)||2Bdτ+λ

∫ T

t

(φ1/k,φ)dτ

≤

∫ T

t

( f (τ),φ(τ))dτ+ β

∫ T

t

eβτ(V0 − V ∗,φ(τ))dτ−

∫ T

t

B(u∗,φ(τ);τ)dτ

≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

+ β

∫ T

t

eβτ(V0 − V ∗,φ(τ))dτ−

∫ T

t

B(u∗,φ(τ);τ)dτ.

(5.3)

Noting that
�

�V0 − V ∗
�

� is uniformly bounded and β = σ2
1 +σ

2
2 +

1

2
ρσ1σ2, we have

1

2
(φ(t),φ(t)) +

∫ T

t

||φ(τ)||2Bdτ+λ

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

−

∫ T

t

B(u∗,φ;τ)dτ. (5.4)

Since B(u, v; t) = (A∇u+ bu,∇v)+ (cu, v), it follows that

−

∫ T

t

B(u∗,φ(τ);τ)dτ= −

∫ T

t

(A∇u∗+ bu∗,∇φ(τ))dτ−

∫ T

t

(cu∗,φ(τ))dτ. (5.5)

Furthermore, by Green’s theorem, we obtain

−

∫ T

t

�

bu∗,∇φ(τ)
�

dτ =

∫ T

t

∫

Ω

∇ · bu∗φ(τ)dΩdτ−

∫ T

t

∫

Γ

u∗ · nφ(τ)dΓdτ. (5.6)

Let Ω1 = {0 < x < K/w1, 0 < y < K/w2, K − w1 x − w2 y > 0} and Ω2 = Ω \Ω1. We also

let Γ0 denote the interface of Ω1 and Ω2. Therefore, Γ0 has two opposite orientations: Γ+
0

when it is orientated in the same direction as ∂Ω1, and Γ−0 when it is orientated in the same

direction as ∂Ω2. Consider only the integrand (A∇u∗,∇φ) in (5.5). For φ ∈ H1
0.̟(Ω), note

that φ = 0 on Γ, we have

−
�

A∇u∗,∇φ
�

= −

∫

Ω

�

A∇u∗
�T ∇φdΩ = −

∫

Ω1

�

A∇u∗
�T ∇φdΩ−

∫

Ω2

�

A∇u∗
�T ∇φdΩ

= −

∫

Γ+0

A∇u∗ · nφds+

∫

Ω1

∇ ·
�

A∇u∗
�

φdΩ−

∫

Γ−0

A∇u∗ · nφds+

∫

Ω2

∇ ·
�

A∇u∗
�

φdΩ

= −

∫

Γ+0

�

A∇u∗−− A∇u∗+

�

· nφds+

∫

Ω

∇ ·
�

A∇u∗
�

φdΩ, (5.7)



210 K. Zhang, S. Wang, X. Q. Yang and K. L. Teo

where n denotes the unit outward normal direction of the boundary segments and ∇u∗−
and ∇u∗+ denote, respectively, the values of ∇u∗ evaluated on the left and right sides of

Γ+0 . From u∗ = eβ t
�

V0 − V ∗
�

and (2.6), it is easy to see that

∇u∗ = eβ t
�

∇V0 −∇V ∗
�

.

Since V0 ∈ H2(Ω), ∇V0 is continuous on Ω, as mentioned before,

∇u∗−−∇u∗+ = eβ t[(∇V0 −∇V ∗)−− (∇V0 −∇V ∗)+]

= eβ t(∇V ∗− −∇V ∗+) = eβ t(−w1,−w2)
T .

Furthermore, the unit outward-normal vector to Γ+0 is

n=
∇(K −w1 x −w2 y)

‖∇(K −w1 x −w2 y)‖
=
(−w1,−w2)

T

p

w2
1 +w2

2

.

Therefore, estimate (5.7) becomes

−
�

A∇u∗,∇φ
�

= −

∫

Γ+0

eβ t (w1,w2)AT(w1,w2)
T

(w2
1+w2

2)
1/2 φds+

∫

Ω

∇ ·
�

A∇u∗
�

φdΩ ≤ C

∫

Ω

φ(τ)dΩ,

as A is positive definite, φ is non-negative and ∇ · (A∇u∗) is bounded above on Ω. Thus,

−

∫ T

t

(A∇u,∇φ(τ))dτ≤ C

∫ T

t

∫

Ω

φ(τ)dΩdτ≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

. (5.8)

Also, from (5.6), it follows that

−

∫ T

t

�

bu∗,∇φ(τ)
�

dτ≤ C

∫ T

t

∫

Ω

φ(τ)dΩdτ≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

, (5.9)

because ∇ · bu∗ is bounded above on Ω.

Thus, from (5.3) to (5.9), it follows that

1

2

�

φ(t),φ(t)
�

+

∫ T

t

||φ(τ)||2Bdτ+λ

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

, (5.10)

which implies that

λ

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

, a.e. in (0, T ).
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From this, it follows that

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

≤
C

λ1/(p−1)
=

C

λk
, where p = 1+ 1/k. (5.11)

Now, from (5.10) and (5.11), we have

1

2

�

φ(t),φ(t)
�

+

∫ T

t

||φ(τ)||2Bdτ≤ C

 

∫ T

t

||φ(τ)||p
Lp(Ω)

dτ

!1/p

≤
C

λk
,

from which, it follows that

�

φ(t),φ(t)
�

1

2 +

 

∫ T

t

||φ(τ)||2Bdτ

!
1

2

≤
C

λk/2
, a.e. in (0, T ).

Clearly, by replacing φ with [uλ − u∗]+, we obtain readily (5.1). �

Using Lemma 5.1, we are able to show that the solution to Problem 4.1 converges to

that of Problem 3.1 at the rate of order λ−k/2, as stated in the next theorem.

Theorem 5.1. Let u and uλ be the solutions to Problem 3.1 and Problem 4.1, respectively. If

uλ ∈ Lp(Θ) and ∂ u

∂ t
∈ Lk+1(Θ), then there exists a positive constant C, independent of uλ and

λ, such that


u− uλ




L∞(0,T ;L2(Ω))
+


u− uλ




L2(0,T ;H1
0,̟(Ω))

≤
C

λk/2
, (5.12)

where k is the power of the power penalty function.

Proof. We still use the notation of Lemma 5.1. Setting v− = −min(v, 0) and Rλ =

u− u∗ + [uλ − u∗]−, it follows that

u− uλ = Rλ −ϕ,
�

ϕα, [uλ − u∗]−
�

=
�

uλ − u∗
�α
+ [uλ − u∗]− ≡ 0, α > 0.

(5.13)

Set v = u− Rλ in (3.1) and v = Rλ in (4.3) respectively, we obtain

�

−
∂ u

∂ t
,−Rλ

�

+ B
�

u,−Rλ; t
�

≥
�

f (t) ,−Rλ
�

, (5.14)

�

−
∂ uλ

∂ t
,Rλ

�

+ B
�

uλ,Rλ; t
�

+λ(φ1/k,Rλ) = ( f (t),Rλ). (5.15)

Combining (5.14) and (5.15) gives

�

−
∂ (uλ − u)

∂ t
,Rλ

�

+ B
�

uλ − u,Rλ; t
�

+λ(φ1/k,Rλ)≥ 0.



212 K. Zhang, S. Wang, X. Q. Yang and K. L. Teo

It follows from u≤ u∗ and φ ≥ 0 that

(φ1/k,Rλ) = (φ
1/k,u− u∗) + (φ1/k, [uλ − u∗]−) = (φ

1/k,u− u∗)≤ 0.

Therefore,
�

−
∂ (u− uλ)

∂ t
,Rλ

�

+ B(u− uλ,Rλ; t) ≤ 0.

From (5.13), it follows that

�

−
∂ Rλ

∂ t
,Rλ

�

+ B(Rλ,Rλ; t) ≤
�

−
∂ φ(t)

∂ t
,Rλ

�

+ B
�

φ,Rλ; t
�

.

Integrating both sides of the above from τ = t to τ = T and then using Cauchy-Schwarz

inequality and (ϕ, [uλ − u∗]−) = 0, we obtain

1

2

�

Rλ(t),Rλ(t)
�

+

∫ T

t

B
�

Rλ,Rλ;τ
�

dτ

≤

∫ T

t

�

− ∂φ
∂ τ

,Rλ

�

dτ+

∫ T

t

B
�

φ,Rλ;τ
�

dτ

≤
�

φ,Rλ
�

+

∫ T

t

�

φ,
∂ Rλ
∂ τ

�

dτ+

∫ T

t

B(φ,Rλ;τ)dτ

≤ (φ,Rλ) +

∫ T

t

B
�

φ,Rλ;τ
�

dτ+

∫ T

t

�

φ, ∂ u

∂ τ

�

dτ

≤ ||φ||L∞(0,T ;L2(Ω))||Rλ||L∞(0,T ;L2(Ω)) + C ||φ||L2(0,T ;H1
0,̟(Ω))

||Rλ||L2(0,T ;H1
0,̟(Ω))

+ C ||φ||Lp(Θ)

�






∂ u

∂ t







Lq(Θ)
+ ||V0 − V ∗||Lq(Θ)

�

(5.16)

where p = 1+ 1/k, and 1/p+ 1/q = 1.

Since uλ ∈ Lp(Θ), and ∂ u

∂ t
∈ Lk+1(Θ), it follows from (5.1) that

||φ||Lp(Θ)

�






∂ u

∂ t







Lq(Θ)
+ ||V0 − V ∗||Lq(Θ)

�

≤
C

λk
. (5.17)

Using the coerciveness property of the operator B, we have

1

2

�

Rλ(t),Rλ(t)
�

+

∫ T

t

B
�

Rλ,Rλ;τ
�

dτ

≥ 1

2
||Rλ||L∞(0,T ;L2(Ω)) + C ||Rλ||L2(0,T ;H1

0,̟(Ω))
. (5.18)
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Therefore, from (5.16)-(5.18), we have

(||Rλ||L∞(0,T ;L2(Ω)) + ||Rλ||L2(0,T ;H1
0,̟(Ω))

)2

≤ C(1

2
||Rλ||L∞(0,T ;L2(Ω)) + ||Rλ||L2(0,T ;H1

0,̟(Ω))
)

≤ C
h

(||φ||L∞(0,T ;L2(Ω)) + ||φ||L2(0,T ;H1
0,̟(Ω))

)(||Rλ||L∞(0,T ;L2(Ω))

+ ||Rλ||L2(0,T ;H1
0,̟(Ω))

) +λ
1

k

i

≤ C
h

λ−k/2(||Rλ||L∞(0,T ;L2(Ω)) + ||Rλ||L2(0,T ;H1
0,̟(Ω))

) +λ−k
i

.

Clearly, the above inequalities imply that

||Rλ||L∞(0,T ;L2(Ω)) + ||Rλ||L2(0,T ;H1
0,̟(Ω))

≤
C

λk/2
.

Using the triangle inequality and (5.1), also noting that u− uλ = Rλ −ϕ, we finally have

||u− uλ||L∞(0,T ;L2(Ω)) + ||u− uλ||L2(0,T ;H1
0,̟(Ω))

≤
�

||Rλ||L∞(0,T ;L2(Ω)) + ||Rλ||L2(0,T ;H1
0,̟(Ω))

�

+
�

||φ||L∞(0,T ;L2(Ω)) + ||φ||L2(0,T ;H1
0,̟(Ω))

�

≤
C

λk/2
.

This completes the proof of the theorem. �

Remark 5.1. It is worth noting that the analysis of Sections 2-5 is not restricted to the

two-asset option pricing problem. Essentially, there is no intrinsic difficulty in the analysis

for treating higher dimensional problems.

6. Discretization

The power penalty approach to the complementarity problem (2.8) yields a nonlinear

parabolic partial differential equation (4.5). In this section, we will present the fitted finite

volume method for (4.5). This method was first proposed in [18] and has been used for

solving single-asset and stochastic volatility option pricing problem [12, 19]. The idea of

this method is based on a finite volume formulation coupled with a fitted approximation

technique. This fitting technique is to approximate the flux of a given function locally by

a constant, yielding a locally nonlinear approximation to the function. Some results on

error estimation for this method can be found in [1]. In what follows, we will give a brief

account for the method applied to (4.5). More details can be found in [12] for a different,

but related problem.

It is easy to show that, under the inverse of the transformation (2.7), (4.5)–(4.6) can

be rewritten as equation

−Vt −∇ ·
�

A∇V + bV
�

+ cV −λ
�

V ∗− V
�1/k
+ = 0,

�

x , y, t
�

∈Θ, (6.1)
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with the boundary and final conditions

V
�

x , y, t
�

|Γ = 0 and V
�

x , y, T
�

= V ∗
�

x , y
�

.

To discretize this equation, we first partition Ix := (0, X ) into Nx sub-intervals Ixi
:=

(x i, x i+1), i = 0, · · · , Nx − 1, with 0= x0 < x1 < · · ·< xNx
= X . We also let

x i−1/2 =
1

2
(x i−1+ x i) and x i+1/2 =

1

2
(x i + x i+1),

for each i = 1,2, · · · , Nx−1. These mid-points form a second partition of (0, X ) if we define

x−1/2 = x0 and xNx+1/2 = xNx
. For each i = 0,1, · · · , Nx − 1, we put hxi

= x i+1/2 − x i−1/2.

Similar to the above, we define a partition on I y = (0, Y ). Combining these partitions

we obtain a mesh for Ω := Ix× I y . Also, the mid-points form a second partition of Ω, which

is called boxes which is a dual mesh to the original partition.

6.1. Boundary conditions

Before deriving the fitted finite volume method for (6.1), we first show how to de-

termine the boundary condition functions g1(y, t) and g2(x , t) for a put option, as given

below.

1. On the boundary x = 0, the boundary condition g1(y, t) = V (y, t)/w2 is determined

by solving







− ∂ V (y,t)

∂ t
− 1

2
σ2

2 y2 ∂
2V (y,t)

∂ y2 − r y
∂ V (y,t)

∂ y
+ rV (y, t)−λ[V ∗ − V ]

1/k
+ = 0,

V (0, t) = K/w2, V (Y, t) = 0,

V (y, T ) = V ∗(0, y) =max(K/w2 − y, 0).

(6.2)

2. On the boundary y = 0, the boundary condition g2(x , t) = V (x , t)/w1 is given by

the solution of







− ∂ V (x ,t)

∂ t
− 1

2
σ2

1 x2 ∂
2V (x ,t)

∂ x2 − r x
∂ V (x ,t)

∂ x
+ rV (x , t)−λ[V ∗ − V ]

1/k
+ = 0,

V (0, t) = K/w1, V (X , t) = 0,

V (x , T ) = V ∗(x , 0) =max(K/w1 − x , 0).

(6.3)

Both of the above cases fall into the framework of a single-asset American option prob-

lem which can be discretized by the scheme in [18].

6.2. The fitted finite volume method

As mentioned before, a two-dimensional version of the fitted finite volume method is

developed in [12] for a linear equation. The difference between (4.5) and the equation

in [12] is the nonlinear term on the left-hand size of (4.5). Since the discretization of this
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nonlinear term is simple, we omit the lengthy discussion of the scheme and only present

the resulting discretized form. Further details of the discretization can be found in [12].

Let Vi, j = V (x i, y j , t), V ∗
i, j
= V ∗(x i, y j) and Ri, j = (x i+1/2 − x i−1/2)× (y j+1/2 − y j−1/2),

for all admissible (i, j). The application of the fitted finite volume method (6.1) yields

−
∂ Vi, j

∂ t
Ri, j + e

i, j

i−1, j
Vi−1, j + e

i, j

i, j−1
Vi, j−1 + e

i, j

i, j
Vi, j + e

i, j

i, j+1
Vi, j+1

+ e
i, j

i+1, j
Vi+1, j −λ[V

∗
i, j − Vi, j]

1

k
+Ri j = 0, (6.4)

for i = 1, · · · , Nx − 1 and j = 1, · · · , Ny − 1. Here

e
i, j

i−1, j
= −hy j

bi−1/2, j x i−1/2
x
αi−1, j

i−1

x
αi−1, j

i
− x

αi−1, j

i−1

, e
i, j

i, j−1
= −hxi

bi, j−1/2 y
j−1/2

y
αi, j−1

j−1

y
αi, j−1

j
− y

αi, j−1

j−1

, (6.5a)

e
i, j

i, j
= hy j

� bi+1/2, j x i+1/2
x
αi, j

i

x
αi, j

i+1
− x

αi, j

i

+
bi−1/2, j x i−1/2

x
αi−1, j

i

x
αi−1, j

i
− x

αi−1, j

i−1

+ d i, j

�

+ hxi

� bi, j+1/2 y
j+1/2

y
αi, j

j

y
αi, j

j+1
− y

αi, j

j

+
bi, j−1/2 y

j−1/2
y
αi, j−1

j

y
αi, j−1

j
− y

αi, j−1

j−1

+ di, j

�

+ c i, jRi, j, (6.5b)

e
i, j

i, j+1
= −hxi

� bi, j+1/2 y
j+1/2

y
αi, j

j+1

y
αi, j

j+1
− y

αi, j

j

+ di, j

�

, e
i, j

i+1, j
= −hy j

� bi+1/2, j x i+1/2
x
αi, j

i+1

x
αi, j

i+1
− x

αi, j

i

+ d i, j

�

.

(6.5c)

for i = 1 · · ·Nx − 1, j = 1 · · ·Ny − 1 and e
i, j
m,n = 0 if m 6= i− 1, i, i + 1 and n 6= j− 1, j, j+ 1,

where
b = r −σ2

1 −
1

2
ρσ1σ2, a = 1

2
σ2

1, d = 1

2
ρσ1σ2 y,

bi, j+1/2 = b(x i, y j+1/2), αi, j = bi, j+1/2/a, di, j = d(x i, y j),

and
b = r −σ2

2 −
1

2
ρσ1σ2, a = 1

2
σ2

2, d = 1

2
ρσ1σ2 x ,

bi, j+1/2 = b(x i, y j+1/2), αi, j = bi, j+1/2/a, d i, j = d(x i, y j).

Defining

Ei, j = (0, · · · , 0, e
i, j

i−1, j
, 0, · · · , 0, e

i, j

i, j−1
, e

i, j

i, j
, e

i, j

i, j+1
, 0, · · · , 0, e

i, j

i+1, j
, 0, · · · , 0)

for i = 2, · · · , Nx − 1, j = 2, · · · , Ny − 1, and

V = (V1,1, · · · , V1,Ny−1, V2,1, · · · , V2,Ny−1, · · · , VNx−1,1, · · · , VNx−1,Ny−1)
T

with Vi,0, i = 1, · · · , Nx and V0, j , j = 1, · · · , Ny in (6.4) being equal to the given boundary

conditions, we can rewrite (6.4) as:

−
∂ Vi, j

∂ t
Ri, j + Ei, jV+ p

�

Vi, j

�

= 0, (6.6)
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where

p
�

Vi, j

�

= −λRi, j[V
∗

i, j − Vi, j]
1/k
+ . (6.7)

This is a system of (Nx − 1)2 × (Ny − 1)2 linear ordinary differential equations for (Nx −
1)× (Ny − 1) unknown values.

Now, we discretize the time by choosing a set of points t i (i = 0,1, · · ·M) be a set of

partition points on [0, T] satisfying T = t0 > t1, · · · ,> tM = 0. Apply the two-level implicit

time-stepping method with a splitting parameter θ ∈ [0,1/2] to (6.6) on this mesh, we

get the following full discrete system

�

θEm+1 + Gm
�

Vm+1 + θD(Vm+1) = (Gm− (1− θ) Em)Vm− (1− θ)D(Vm), (6.8)

where

Vm = (V m
1,1, · · · , V m

1,Ny−1, V m
2,1, · · · , V m

2,Ny−1, · · · , V m
Nx−1,1, · · · , V m

Nx−1,Ny−1)
T , (6.9a)

Em = (Em
1,1, · · · , Em

1,Ny−1, Em
2,1, · · · , Em

2,Ny−1, · · · , Em
Nx−1,1, · · · , Em

Nx−1,Ny−1)
T , (6.9b)

Gm = diag(−R1,1/(△tm), · · · ,−RNx−1,Ny−1/(△tm)), (6.9c)

D(Vm) = (p(V m
1,1), · · · , p(V m

Nx−1,Ny−1))
T , (6.9d)

for m = 0,1, · · · , m−1, where△tm = tm+1− tm < 0, where Vm denotes the approximation

of V at t = tm and Em
i, j = Ei, j

�

tm

�

.

6.3. Solution of the discrete system

To solve the nonlinear discrete system (6.8), we use the standard Newton method.

Note that when k > 1, from (6.7) it is easy to see that p′(V m
i, j
)→∞ as V ∗i, j − Vi, j → 0+. To

remedy this, we use the technique proposed in [19] to smooth (6.7), yielding the following

approximation to p(V m
i, j
):

p(V m
i, j )

−λRi, j

(6.10)

=

(

[V ∗i, j − V m
i, j]

1/k
+ , V ∗i, j − V m

i, j ≥ ǫ,

ǫ
1

k
−n+1(n− 1

k
)[V ∗i, j − V m

i, j]
n−1
+ + ǫ

1

k
−n(1

k
− n+ 1)[V ∗i, j − V m

i, j]
n
+, V ∗i, j − V m

i, j < ǫ,

for k > 0 and positive integer n, where 1 ≫ ǫ > 0 is a transition parameter. It has

been shown in Corollary 5.1 of [19] that when n ≥ 3 and k ≥ 1/n, (6.10) is smooth and

increasing on (−∞,+∞).
Applying Newton’s method to (6.8) gives

�

θEm+1 + Gm+ θ JD(̟
l−1)
�

δ̟l

= [Gm − (1− θ)Em]Vm− (1− θ)D(Vm)− (θEm+1 + Gm)̟l − θD(̟l−1), (6.11a)

̟l =̟l−1+ γ · δ̟l (6.11b)
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for l = 1,2, · · · , with ̟0 being a given initial guess, where JD(̟) denotes the Jacobian of

the column vector D(̟) and γ ∈ (0,1] denotes a damping parameter. We then choose

Vm+1 = lim
l→∞
̟l .

It is easy to show that the system matrix of (6.11) is an M -matrix, as given in the following

theorem.

Theorem 6.1. For any given m = 1,2, · · · , M − 1, if |△tm| is sufficiently small and c ≥ 0,

then the system matrix of (6.11) is an M-matrix.

Proof. From the definition of D(V) in (6.9), it is easy to see that its Jacobian is the

following diagonal matrix

JD(̟
l) = diag

�

p′(V m
1,1), · · · , p′(V m

Nx−1,Ny−1)
�

.

From (6.10), we have p′(V m
i, j ) ≥ 0 for all i = 1, · · · , Nx − 1 and j = 1, · · · , Ny − 1. Thus, to

show that the system matrix of (6.11) is an M -matrix, it suffices to show that θEm+1+Gm

is an M -matrix.

First, we note that e
i, j
m,n ≤ 0 for all m 6= i, n 6= j since

bi+1/2, j

x
αi, j

i+1
− x

αi, j

i

=
a αi, j

x
αi, j

i+1
− x

αi, j

i

> 0,
bi, j+1/2

y
αi, j

j+1
− y

αi, j

j

=
a αi, j

y
αi, j

j+1
− y

αi, j

j

> 0, (6.12)

for all i = 1, · · · , Nx − 1, j = 1, · · · , Ny − 1 and all bi+1/2, j 6= 0, bi, j+1/2 6= 0. (6.12) also

holds when bi+1/2, j → 0, bi, j+1/2 → 0. Furthermore, from (6.5), it follows that, when

ci, j ≥ 0, for all i = 1, · · · , Nx − 1, j = 1, · · · , Ny − 1,

�

e
i, j

i, j

�m+1

≥
�

�

�(e
i, j

i−1, j
)m+1

�

�

�+

�

�

�(e
i, j

i, j−1
)m+1

�

�

�+

�

�

�(e
i, j

i, j+1
)m+1

�

�

�+

�

�

�(e
i, j

i+1, j
)m+1

�

�

�+ cm+1
i, j

Ri, j

=

Nx−1
∑

p=1

Ny−1
∑

q=1

�

�

�(ei, j
p,q)

m+1
�

�

�+ cm+1
i, j

Ri, j,

since d and d are all non-negative. Therefore, Em+1 is diagonally dominant with respect to

its columns. Hence, form the above analysis, we see that for all admissible i, j, Em+1 is a

diagonally dominant matrix with positive diagonal elements and non-positive off-diagonal

elements. This implies that Em+1 is an M -matrix.

For the second part, we first note that Gm of the system matrix (6.11) is a diagonal

matrix with positive diagonal entries. When
�

�△tm

�

� is sufficiently small, we also have

θ c i, j +
Ri, j

−△tm

> 0.

So, θEm+1 + Gm is an M -matrix. �

Theorem 6.1 implies that the fully discrete system (6.8) satisfies the discrete maximum

principle and the discretization is monotone.
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7. Numerical experiments

In this section, we demonstrate the efficiency and usefulness of the above penalty and

numerical methods by solving the following test model problem with different values of k

and λ. Throughout this section, the model parameters in Table 1 are used.Table 1: Data used for two-asset model.
Parameter values

r 0.1 ω1 1.0

σ1 0.2 ω2 1.0

σ2 0.2 K 1.0

ρ 0 T 0.25

In order to perform simulations, we choose an upper limit for the solution domain,

that is a domain of which option values outside are regarded worthless. For our model, we

choose X = Y = 4.

To compare the numerical performance of different power penalty methods, we con-

sider three power penalty approaches: k = 1/2,1 and 2. When k = 1/2, the nonlinear

system (6.8) is smooth, for which the classical Newton’s method is used. When k = 1,

the nonlinear system (6.8) is semismooth. In this case we use the semismooth Newton’s

method [15]. However, for k = 2, this nonlinear system becomes nonsmooth. Hence, the

smoothing technique (6.10) is adopted and the Newton’s method is used for the resulting

system.

For time discretization, we choose the time step splitting parameter θ = 1, i.e. the

Backward Euler time-stepping method. All the implementations of our numerical method

are done under Matlab 7.0 environment.

First, we investigate the order of the convergence of the fitted finite volume method by

numerical experiments. To achieve this, we use a sequence of uniform meshes as listed in

the column ‘Grid(Nx × Ny)’ in Table 2, where the l1 penalty method with λ = 500 is used

and the number of time steps is fixed to 200. The results are presented in Table 2. From

Table 2 it is clear that the computed rates of convergence for the method are very close to

O (h) in the discrete maximum norm.Table 2: Values of a put option at x = 1, y = 0, t = T and x = 1, y = 0, t = 0 under grid re�nement,using the �tted �nite volume method ombined with the impliit sheme, data as in Table 1. l1 penaltymethod with λ = 500 is used. �Ratio� is the ratio of hanges on suessive grids.
Grid(Nx × Ny) x = 1.0, y = 0, t = 0 x = 0.5, y = 0.5, t = 0

V Ratio V Ratio

40× 40 0.0287 0.0180

80× 80 0.0298 0.0189

160× 160 0.0303 1.8 0.0193 1.5

320× 320 0.0305 2.5 0.0195 2.0

640× 640 0.0306 2.0 0.0196 2.0
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λi ‖Vλ − V‖ Rate Average Iteration

λ1 = 16 0.00045 1.8

λ2 = 256 0.00022 1.9

λ3 = 4096 0.00012 0.23 2.0

λ4 = 65536 0.00008 0.25 2.0

λ5 = 1048576 0.00006 0.25 2.3Table 4: Results omputed by l1 penalty method with a sequential penalty parameter λi , data as inTable 1. �Rate� is de�ned by (7.1). Grid:640× 640, time steps= 200.
λi ‖Vλ − V‖ Rate Average Iteration

λ1 = 16 0.00034 1.9

λ2 = 64 0.00019 2.0

λ3 = 256 0.00010 0.47 2.0

λ4 = 1024 0.00006 0.49 2.0

λ5 = 4096 0.00004 0.50 2.3Table 5: Results omputed by l2 penalty method with a sequential penalty parameter λi , data as inTable 1. �Rate� is de�ned by (7.1). Grid:640× 640, timesteps= 200.
λi ‖Vλ − V‖ Rate Average Iteration

λ1 = 2 0.00022 3.5

λ2 = 4 0.00013 4.2

λ3 = 8 0.00008 0.98 5.5

λ4 = 16 0.00004 0.98 6.7

λ5 = 32 0.00002 0.99 7.4

Second, we verify the rate of convergence of the penalty approach with respect to the

penalty parameter λ. To do so, we choose a sequence of penalty parameters as listed

in the column ‘λi ’ in Tables 3, 4 and 5, where the number of time steps is fixed to 200

and the Nx × Ny grid is chosen to be 640× 640. We use the solution with the greatest

penalty parameter as the ‘exact solution (V )’. Then, we compute the following ratios of

the numerical solutions of the consecutive penalty parameters λi:

Ratio(‖ · ‖) =
‖Vλi+1

− V‖

‖Vλi
− V‖

in the solution domain, where Vλi
denotes the computed solution with the ith penalty pa-

rameter λi, ‖·‖ denotes the corresponding discrete form of ‖·‖L∞(0,T ;L2(Ω))+‖·‖L2(0,T ;H1
0,̟(Ω))

.

The numerical order of convergence is then defined by

Rate = logλi+1/λi
Ratio. (7.1)

It is easy to see that for lk penalty method ‘Rate= k/2’ is consistent with the theoretical

convergence result (5.12). As is observed, the columns ‘Rate’ in Tables 3, 4 and 5 clearly
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show the rates of convergence for l1/2 (k = 1/2), l1 (k = 1) and l2 (k = 2) penalty methods

are O (λ−1/4), O (λ−1/2) and O (λ−1) respectively, which confirms the theoretical results as

stated in Section 5.

As different Newton nonlinear iterations are employed for l1/2, l1 and l2 penalty meth-

ods, we also investigate the numerical performance of these different Newton’s methods.

In doing so, we calculate the average number of Newton iteration for each time step with

each penalty parameter. The columns ‘Average Iterations’ in Tables 3, 4 and 5 show the

computational costs of different Newton’s methods. It can be seen that with the same

level of accuracy the l1/2 and l1 penalty methods need the least computational cost while

the l2 penalty method needs the most expensive computational cost. This is due to the

nonsmoothness (hence singularity) of the l2 penalty function, which causes much more

iterations for Newton’s method with smoothing technique. At the same time, the l1/2
and l1 penalty functions are smooth and semismooth respectively, both of which possesses

quadratic convergence rate if classical Newton’s method and semismooth Newton’s method

are used respectively without any smoothing technique (cf. [9]). Moreover, Tables 3, 4 and

5 show that there is a trade-off between the penalty methods, penalty parameters and the

computational costs: for the same level of accuracy the higher the penalty power (k) be-

comes, the less penalty parameter and the more expensive computational cost are required.

In our example, the l1(k = 1) penalty method is a moderate choice, given the balance of

computational efficiency and accuracy.

We now investigate numerically the influence of the penalty parameter λ on the ac-

curacy of the option value and its first and second derivatives with respect to x , de-

noted respectively by Delta and Gamma. To observe the influence, we use the l2 penalty

method with the sequence λ = 4,16 and 64. The number of time steps is 200 and the

Nx × Ny = 640× 640. For brevity, we compute the option value V , Delta ∂ V/∂ x and

Gamma ∂ 2V/∂ x2 at t = 0 on the cross-section y = 0. The results are depicted in Figs. 1,

2 and 3 from which it can be seen that while the computed option prices are close to each

other for the different values of λ, the differences in Delta and Gamma are significant. It

can be also seen that the larger the value of λ is, the more accurate the option value and

its derivatives are.

Finally, we depicts in Figs. 4 and 5 the option value V and V − V ∗ on a cross-section of

a fixed t with the parameters given in Table 1. From the figure we see that the constraint

is always (up to a tolerance) satisfied. To finish this section, we have the following remark

on the use of the smoothing parameter ǫ.

Remark 7.1. As mentioned before, when k > 1 in the penalty method, the smoothing

technique (6.10) needs to be used in order that Newton’s method applies. In this case, the

convergence rate of the method is of order O (λ−k/2) when V ∗i, j − V m
i, j ≥ ǫ, but it reduces to

a much lower order than this when 0 < V ∗i, j − V m
i, j < ǫ. On the other hand, the Jacobian

of the penalty function is close to singular when V ∗i, j − V m
i, j
= ǫ. Therefore, when choosing

ǫ, we need to balance the tolerances of singularity and convergence rate. For the above

numerical experiments, ǫ was chosen to be 10−3.
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λ=4 Figure 1: Amerian put option value at t = 0,omputed by l2 penalty method with three penaltyparameter λ = 4, 16, 64, data as in Table 1. Grid:

640× 640, time steps = 200.
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Figure 2: Amerian put option Delta at t = 0,omputed by l2 penalty method with three penaltyparameter λ = 4, 16, 64, data as in Table 1. Grid:
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Figure 3: Amerian put option Gamma at t = 0,omputed by l2 penalty method with three penaltyparameter λ = 4, 16, 64, data as in Table 1. Grid:
640× 640, time steps = 200.
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8. Conclusions

In this paper, we presented the power penalty method for the two-asset American op-

tion pricing problem and applied the fitted volume method to the resulting nonlinear pe-

nalized parabolic PDE. The rate of convergence of the power penalty method was obtained

in an infinite dimensional space. We showed some numerical results to confirm the theo-

retical findings.
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