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Abstract. In this paper, we present a smoothing Newton-like method for solving non-

linear systems of equalities and inequalities. By using the so-called max function, we

transfer the inequalities into a system of semismooth equalities. Then a smoothing

Newton-like method is proposed for solving the reformulated system, which only needs

to solve one system of linear equations and to perform one line search at each iteration.

The global and local quadratic convergence are studied under appropriate assumptions.

Numerical examples show that the new approach is effective.
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1. Introduction

In this paper, we present a smoothing Newton-like method for the numerical solution

of nonlinear systems of equalities and inequalities defined by

¨

ci(x) = 0, i ∈ E = {1,2, · · · , me},
ci(x)≤ 0, i ∈ I = {me + 1, · · · , m},

(1.1)

where ci(x) : Rn→ R, i = 1, · · · , m are continuously differentiable. Throughout this paper,

we assume that the solution set of (1.1) is nonempty.

Systems of nonlinear equalities and inequalities appear in a wide variety of problems

in applied mathematics. These systems play a central role in the model formulation design
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and analysis of numerical techniques employed in solving problems arising in optimiza-

tion, power system, nonlinear complementarity and variational inequalities, etc. Many

researchers considered the problem, especially for the numerical methods, see, e.g., [1–8].

Daniel in [4] considered Newton’s methods for solving the problem ; Polyak in [5] dis-

cussed a gradient method; Burke and Han in [6] presented a Gauss-Newton approach to

solve generalized inequalities; Dennis et al. firstly presented trust-region methods for solv-

ing (1.1) and proved the global convergence under certain conditions in [7]; Tong-Zhou

in [8] also studied another trust-region method for the problem and proved the global

convergence under general conditions.

In the last decade, a class of popular numerical methods, namely, the so-called semis-

mooth Newton methods, has been studied extensively for solving semismooth equations,

see, e.g., [9–11, 16] and references therein. The typical characteristic of the semismooth

Newton is twofold: it extends the classical Newton method for nonsmooth equations; it

enjoys the same convergent property such as the locally superlinear convergence. The

semismooth Newton method was firstly presented by Qi-Sun in [16]. Then it is studied ex-

tensively and used for solving many mathematical problems, such as large scale nonlinear

complementarity, variational inequalities and the KKT system of optimization problems,

etc (see [10]). Following the semismooth Newton methods, another related numerical

method, called the smoothing Newton method, is also presented to help the calculation

of generalized derivative of nonsmooth functions, see, e.g., [12–15, 18]. The key idea of

smoothing Newton method is to approximate the nonsmooth function F(x) by a smooth

function f (x ,ǫ), where ǫ is called smoothing parameter. Then the generalized derivative

∂ F(x) is approximated by f ′(x ,ǫ) with respect to the variable x . The main advantage of

the smoothing Newton methods is that it still retains the nice convergence property. There

are two kinds of smoothing methods. One is to handle ǫ as a parameter, which is updated

step by step in iterations (see [12]). The other one is to handle ǫ as a variable. Then an

extended system of equations is set and solved by Newton-type methods. Both smoothing

Newton methods are proved to have nice convergence property.

We note that the methods proposed in [7,8] are based on the least-squares approach,

which implies that the system (1.1) is solved by optimization methods. As we all know,

compared with the optimization-based methods, solving a system of equations is much

easier and it has less calculating cost. Furthermore, the solution of the optimization-based

method is the stationary point of the optimization problem, and may not be the solution of

(1.1). Therefore, our aim in this paper is to set a system of equations for solving (1.1). To

this end, we only consider the case that m ≤ n. We transfer (1.1) into a system of semis-

mooth equations firstly, then a smoothing algorithm is presented for solving the equivalent

system. Now we introduce the transformation of (1.1). Denote the maximal function by

max{0, ci(x)}. The inequalities

ci(x)≤ 0, i ∈ I

can be changed equivalently into the following equations:

max{0, ci(x)}= 0, i ∈ I .
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Therefore problem (1.1) is equivalent to the following problem:

F(x) =

¨

ci(x) = 0, i ∈ E,

max{0, ci(x)}= 0, i ∈ I .
(1.2)

Note that the system (1.2) is a system of semismooth equations due to the semismooth

property of the maximal function.

The remainder of this paper is organized as follows. In Section 2, we construct a

smoothing approximation function and study some related properties. In Section 3, we

present a smoothing Newton algorithm and state some preliminary results. In Section 4,

we study the global and local quadratic convergence of the proposed algorithm. Numerical

results and final conclusions are given in Section 5.

The following notations will be used throughout this paper. ‖.‖ denotes the 2-norm;

R++ and R+ represent the sets {x ∈ R, x > 0} and {x ∈ R, x ≥ 0} respectively.

2. The smoothing function and the related properties

In this section, we construct the smoothing approximation function p(u, x) for

max{0, ci(x)}, i ∈ I

by Chen-Mangasarian’s smoothing approach in [14], where

pi(u, x) = q(ui, ci(x)), i ∈ I , (2.1a)

q(µ,ω) =

¨

φ(|µ|,ω), µ 6= 0,

max{0, ω}, µ = 0,
(2.1b)

φ(µ,ω) =

∫ ∞

−∞

max{0, ω−µs}ρ(s)ds, µ ∈ R++. (2.1c)

Let

supp(ρ) = {s ∈ R : ρ(s)> 0}.

We select the kernel function

ρ(s) =
e−s

(1+ e−s)2
,

with
∫ ∞

−∞

ρ(s)ds = 1, k :=

∫ ∞

−∞

|s|ρ(s)ds = 2 ln2<∞.

Then the corresponding smoothing function is

φ(µ,ω) = µ ln(1+ eω/µ), (µ,ω) ∈ R++×R. (2.2)

Let φ0(ω) :=max{0, w}. We can get the following result easily.
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Lemma 2.1. For any (µ,ω) ∈ R++ ×R, we have

lim
µ→0

φ(µ,ω) = φ0(ω).

For the sake of convenience, for any given µ ∈ R++, let φµ(ω) : R→ R be defined by

φµ(ω) := φ(µ,ω), ω ∈ R. (2.3)

Lemma 2.2. For any given µ > 0, the mapping φµ(ω) is continuously differentiable with

φ′µ(w) =
eω/µ

1+ eω/µ
∈ (0,1). (2.4)

Proof. For any given µ > 0, we can get (2.4) by directly calculating the derivative of

φµ(ω) with respect to ω. �

Lemma 2.3. The mapping q(µ,ω) is Lipschitz continuous on R2 with Lipschitz constant

L := 4 ln 2.

Proof. Suppose that (µ1,ω1) and (µ2,ω2) are two arbitrary points of R2. Then we have

|q(µ1,ω1)− q(µ2,ω2)|

=

�

�

�

�

�

∫ ∞

−∞

max{0,ω1 − |µ1|s}ρ(s)ds−

∫ ∞

−∞

max{0,ω2 − |µ2|s}ρ(s)ds

�

�

�

�

�

≤

∫ ∞

−∞

|max{0,ω1 − |µ1|s} −max{0,ω2 − |µ2|s}|ρ(s)ds

≤

∫ ∞

−∞

|(ω1− |µ1|s)− (ω2− |µ2|s)|ρ(s)ds

≤

∫ ∞

−∞

|ω1−ω2|ρ(s)ds+

∫ ∞

−∞

|µ1−µ2||s|ρ(s)ds

= |ω1 −ω2|+ k|µ1−µ2|

≤ 2 max{1, k}‖(µ1,ω1)− (µ2,ω2)‖

= 4 ln2‖(µ1,ω1)− (µ2,ω2)‖,

which completes the proof of the lemma. �

In the following, we set the smoothing system of equations of (1.2). Let z = (u, x) ∈
R×Rn, define a mapping H : Rn+1→ Rm+1 by

H(z) :=







u

cE(x)

p(u, x)






, (2.5)
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where cE(x) represents all ci(x), i ∈ E, p(u, x) = (pme+1(u, x), · · · , pm(u, x))T is the smooth-

ing approximation function of max{0, ci(x)}, i ∈ I .

From Lemma 2.1, we know that (1.2) is equivalent to the following equation

H(z) = 0.

Then we have the following result for the smoothing system (2.5).

Theorem 2.1. Let the smoothing function be (2.2). Then H(z) is continuously differentiable

at any z = (u, x) ∈ R++×R
n, and

H ′(z) =







1 01×n

0me×1 ∇cE(x)

p′u(u, x) p′x(u, x)






, (2.6)

where ∇cE(x) is the Jacobi matrix of ci(x) = 0, i ∈ E,

p′u = (u, x) =

�

∂ pme+1(u, x)

∂ u
, · · · ,

∂ pm(u, x)

∂ u

�T

, (2.7)

p′x(u, x) =











∂ pme+1(u,x)

∂ x1
· · ·

∂ pme+1(u,x)

∂ xn

...
...

∂ pm(u,x)

∂ x1
· · · ∂ pm(u,x)

∂ xn











, (2.8)

where

∂ pi(u, x)

∂ x j

=
eci(x)/u

1+ eci(x)/u
·
�∂ ci(x)

∂ x j

�

, i ∈ I , j = 1, · · · , n.

3. Smoothing Newton-like methods

We now give our smoothing Newton-like algorithm for solving (1.1). Choose ū ∈
R++,γ ∈ (0,1), such that γū< 1, Let z̄ := (ū,0) ∈ R++ ×R

n.

Define the merit function ψ : Rn+1→ R+ by

ψ(z) := ‖H(z)‖2. (3.1)

Define β : Rn+1→ R+ by

β(z) = γmin{1,ψ(z)}. (3.2)

Let Ω := {z = (u, x) ∈ R×Rn|u≥ β(z)ū}. Thus it ensures z0 = (ū, x) ∈ Ω for any x ∈ Rn.
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Algorithm 3.1. (Smoothing Newton-like method)

Step 0: Choose constants δ ∈ (0,1),σ ∈ (0,0.5), let z0 = (u0, x0),u0 := ū, x0 ∈ Rn be

an arbitrary point and k := 0;

Step 1: If ‖H(zk)‖= 0 then stop. Otherwise, let βk := β(zk).

Step 2: Compute ∆(zk) := (∆uk,∆x k) ∈ R×Rn by

H(zk) +H ′(zk)∆zk = βkz̄. (3.3)

Step 3: Let λk be the largest value in the set {δi/i = 0,1, · · · } such that the inequality

is satisfied

ψ(zk + δi∆zk)≤ [1− 2σ(1− γū)δi]ψ(zk). (3.4)

Define zk+1 := zk +λk∆zk.

Step 4: Replace k by k+ 1 and go to Step 1.

Remark 3.1. (i) Algorithm 3.1 is a modified version of the smoothing Newton method

developed in [13]. When m = n, Algorithm 3.1 is well-defined if the Jacobi matrix of

H ′(z) is nonsingular. When m < n, H(z) is a underdetermined system which we can use

the generalized inverse proposed in [22] to solve it, i.e.,

∆zk = H ′(zk)+(−H(zk) + βkz̄), (3.5)

where H ′(zk)+ is the Moore-Penrose inverse.

(ii) Suppose that the sequence {zk = (uk, x k)} ∈ Rn+1 is generated by Algorithm 3.1.

From the first equation of (3.3) it follows that

uk+1 = uk +λk∆uk = (1−λk)u
k +λkūβ(zk)> 0,

which indicates that uk > 0 for all k ≥ 0. Consequently, H(z) is continuously differentiable

at any zk. From (i), we can know that Eq. (3.3) is solvable for all k ≥ 0 and if H ′(zk) is

of full rank m+ 1. Then the solution is unique. On the other hand, just like the proof of

Lemma 5 in [13], we can get that for any α ∈ [0,1],

ψ(zk +α∆zk)≤ [1− 2(1− γū)α]ψ(zk) + o(α). (3.6)

Thus the line search (3.4) is well defined in Algorithm 3.1.

(iii) From (3.4), (3.6), it is easy to see that the sequence {ψ(zk)} is monotonically

decreasing, which also implies that the sequence {β(zk)} is monotonically decreasing.

So we get the following result.

Lemma 3.1. Let the smoothing function be (2.2) and for any zk = (uk, x k) ∈ R++ × R
n,

assume rank(H ′(zk)) = m+ 1, then Algorithm 3.1 is well-defined and generates an infinite

sequence {zk} with uk ∈ R++, {zk} ∈ Ω, for all k ≥ 0.
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Proof. From Remark 3.1(ii), we can know Algorithm 3.1 is well-defined at the k-th

iteration. And if z0 = (ū, x0), ū ∈ R++, rank(H ′(z0)) = m+1, then from (3.6) we can get a

point z1 = (u1, x1) ∈ R++ ×R
n which satisfies (3.4) in Algorithm 3.1. On the other hand,

for any x ∈ Rn, z0 = (ū, x) ∈ Ω, we have

u1 − β(z1)ū= (1−λ0)u
0 +λ0β(z

0)ū−β(z1)ū

≥ (1−λ0)β(z
0)ū+λ0β(z

0)ū− β(z1)ū

= (β(z0)− β(z1))ū≥ 0.

It means that z1 ∈ Ω,u1 ∈ R++. Then by induction it yields that an infinite sequence {zk}
is generated by Algorithm 3.1, and uk ∈ R++, {zk} ∈ Ω. �

4. Convergence analysis

In this section, we analyze the global and local convergence of Algorithm 3.1. We make

the following basic hypothesis throughout this paper.

Assumption 4.1. The level set L(z0) = {z ∈ R+ ×R
n : ‖H(z)‖ ≤ ‖H(z0)‖} is bounded.

Assumption 4.2. For any (x ,u) ∈ L(z0),∇cE(x),∇cI(x) are Lipschitz continuous and

cE(x), cI(x),∇cE(x),∇cI(x) are all bounded in norm.

From these assumptions, we can know that for any x , y ∈ L(z0), there exist constants

b1, b2, b3, b4, rE , rI > 0 satisfying

‖cE(x)‖ ≤ b1, ‖cI (x)‖ ≤ b2, ‖∇cE(x)‖ ≤ b3, ‖∇cI (x)‖ ≤ b4,

‖∇cE(x)−∇cE(y)‖ ≤ rE‖x − y‖, ‖∇cI(x)−∇cI (y)‖ ≤ rI‖x − y‖.

In order to analyze the local convergence of Algorithm 3.1, we also need the concept of

semismoothness for vector value functions. The concept of semismoothness was originally

introduced by Mifflin [21] for functions and extended by Qi and Sun [16] for vector-valued

functions. Convex functions, smooth functions and piecewise linear functions are examples

of semismooth function. The composition of semismooth functions is still a semismooth

function [21].

Let F : Rn→ Rm be a locally Lipschitz continuous mapping. Then, from Rademacher’s

theorem, F is differentiable almost everywhere and the generalized Jacobian [17] is well-

defined such that

∂ F(x) = Co

¨

lim
xk→x ,xk∈DF

∇F(x k)T

«

,

where Co denotes a convex hull and DF denotes a set of points at which F is differentiable.

The function F is called semismooth at x ∈ Rn, if

lim
V∈∂ F(x+th′),h′→h,t↓0

{V h′}
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exists for any h ∈ Rn. The function F is further said to be strongly semismooth at x if F is

semismooth at x and for any V ∈ ∂ F(x + h),h→ 0,

F(x + h)− F(x)− Vh= O (‖h‖2).

Now we give some important properties of the semismooth functions as follows.

Lemma 4.1 ([5]). Suppose that G : Rn→ Rm is a locally Lipschitz function. Then

(i) G(.) has generalized Jacobian ∂ G(x) as in Clarke [17]. Also G′(x ; h), the directional

derivative of G at x in the direction h, exists for any h ∈ Rn if G is semismooth at x. More-

over, G : Rn → Rm is semismooth at x ∈ Rn if and only if all its component functions are

semismooth at x ∈ R.

(ii) G(.) is semismooth at x if and only if for any V ∈ ∂ G(x + h),h→ 0,

‖V h− G′(x ; h)‖= o(‖h‖),

‖G(x + h)− G(x)− G′(x ; h)‖= o(‖h‖).

(iii) G(.) is strongly semismooth at x if and only if for any V ∈ ∂ G(x + h),h→ 0,

‖V h− G′(x ; h)‖= O (‖h‖2),

‖G(x + h)− G(x)− G′(x ; h)‖= O (‖h‖2).

Then we can get the following result for the smoothing function (2.1).

Lemma 4.2. q(µ,ω)is a strongly semismooth function on R2.

Proof. It is easy to see that if ρ(s) = e−s(1+ e−s)−2, then

supp(ρ) = R, lim sup
s→∞

ρ(s) · |s|3 = 0<∞.

So from the Proposition 3.1(vii) in [18], we can know that q(µ,ω) is a strongly semismooth

function on R2. �

Theorem 4.1. Let the smoothing function be (2.2) and assume that Assumption 4.2 hold.

Then

(i) H(z) is Lipschitz continuous at any z := (u, x) ∈ R+×R
n.

(ii) H(z) is strongly semismooth at any z := (u, x) ∈ R+ ×R
n.

(iii) The Jacobi matrix of H(z), z ∈ L(z0) is bounded.

Proof. (i) From Assumption 4.2, Lemma 2.3 and the construction of H(z), we can know

that all components of H(z) are Lipschitz continuous at any z := (u, x) ∈ R+ ×R
n, so (i)

holds.

(ii) From Lemma 4.2, we can know that q(µ,ω) is a strongly semismooth function

on R2, and from Assumption 4.2, ∇cE(x),∇cI(x) are Lipschitz continuous which implies
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ci(z) = ci(x), i ∈ E ∪ I are strongly semismooth at z = (u, x) ∈ R+ × R
n. So from Theo-

rem 19 in [19], we know that p(z) is strongly semismooth at z because the composition

of strongly semismooth functions is still a strongly semismooth function. Thus H(z) is

strongly semismooth at z := (u, x) ∈ R+×R
n.

(iii) If u > 0, from (2.6) and (2.8), we can easily get that if ∇cE(x),∇cI(x) are

bounded, then H ′(z) is bounded for any z := (u, x) ∈ R++ × R
n. If u = 0, the gener-

alized derivative of max{0, ci(x)} about x i is l ·∂ ci(x)/∂ x i, where l ∈ [0,1]. So we can get

that the generalized Jacobi matrix of H(z) is bounded when ∇cE(x),∇cI(x) are bounded.

�

The following theorem shows the global convergence for Algorithm 3.1.

Theorem 4.2. Suppose that Assumption 4.1 is satisfied. Assume that for any zk ∈ R++ ×
R

n, rank(H ′(zk)) = m + 1 and the smoothing function is (2.2). Let z∗ := (u∗, x∗) be an

accumulation point of {zk} which is generated by Algorithm 3.1, then z∗ is a solution of

H(z) = 0.

Proof. From Assumption 4.1, we can know that the accumulation point z∗ of {zk} is

nonempty and without loss of generality, we assume z∗ = (u∗, x∗) is the limit point of {zk}.
From Remark 3.1(iii), the sequence {ψ(zk)} is monotonically decreasing and we can get

ψ(zk)→ψ(z∗).

Now we need to show H(z∗) = 0. Assume, on the contrary, that ‖H(z∗)‖> 0, then

β(z∗)> 0, ψ(z∗)> 0, u∗ > 0.

Hence H(z∗) is continuously differentiable at z∗. From (3.6), there exists zk+1 = z∗ +

λk∆z∗,λk ∈ (0,1] which satisfies

ψ(zk+1)≤ [1− 2σ(1− γū)λk]ψ(z
∗)<ψ(z∗) (4.1)

for all sufficiently large k. This contradicts the fact the sequence {ψ(zk)} converges to

ψ(z∗)> 0. Consequently, H(z∗) = 0. �

We now state the local quadratic convergence of Algorithm 3.1 in the following theo-

rem.

Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 are satisfied. Assume that for any

zk ∈ R++ × R
n, rank(H ′(zk)) = m + 1 and the smoothing function is (2.2). Let z∗ be an

accumulation point of the infinite sequence {zk} generated by Algorithm 3.1. If all V ∈ ∂ H(z∗)

are of full rank m+ 1, then {zk} converges to z∗ quadratically, i.e.,

‖zk+1− z∗‖= O (‖zk − z∗‖2). (4.2)
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Proof. From Theorem 4.2, we know that z∗ is a solution of H(z) = 0. So it follows from

(3.3), (3.5), the strongly semismoothness of H(z), and the boundedness of ‖H ′(z)‖, that

for all zk sufficiently close to z∗,

‖zk +∆zk − z∗‖

= ‖zk +H ′(zk)+[−H(zk) + βkz̄]− z∗‖

≤ ‖H ′(zk)+‖ · ‖H ′(zk)zk −H(zk)−H ′(zk)z∗ + βkz̄)‖

= O
�

‖H(zk)−H(z∗)−H ′(zk)(zk − z∗)‖+ βkū
�

= O (‖zk − z∗‖2) + O (ψ(zk)). (4.3)

Because H is strongly semismooth at z∗, H is locally Lipschitz continuous around z∗, for all

zk sufficiently close to z∗, we have

ψ(zk) = ‖H(zk)‖2 = O (‖zk − z∗‖2). (4.4)

So from (4.3), we have

‖zk +∆zk − z∗‖= O (‖zk − z∗‖2). (4.5)

Then we only need to prove λk = 1 when k is sufficiently large and zk is sufficiently

close to z∗. First, we can verify that for all zk is sufficiently close to z∗, when k is sufficiently

large,

‖zk − z∗‖ = O (‖H(zk)−H(z∗)‖). (4.6)

This is because

‖zk − z∗‖ ≤ ‖∆zk‖+ ‖zk +∆zk − z∗‖. (4.7)

Then by (3.5), we get

‖∆zk‖ ≤ ‖(H ′(zk))+‖(‖H(zk)‖+ ‖βkz̄‖)

≤ ‖(H ′(zk))+‖(1+ γū‖H(zk)‖)‖H(zk)‖

≤ c‖H(zk)‖. (4.8)

It follows from (4.5) and (4.7) that

‖zk − z∗‖ ≤ ‖∆zk‖+ o(‖zk − z∗‖); (4.9)

and from (4.8), we have

‖zk − z∗‖ ≤ c1‖H(z
k)‖= c1‖H(z

k)−H(z∗)‖, (4.10)

which gives (4.6).

From (4.4)-(4.6), we have

ψ(zk +∆zk) = ‖H(zk +∆zk)‖2

= O (‖zk +∆zk − z∗‖2) = o(‖zk − z∗‖2)

= o(‖H(zk)−H(z∗)‖2) = o(ψ(zk)). (4.11)
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Consequently, when k is sufficiently large, we have

zk+1 = zk +∆zk, (4.12)

i.e., λk = 1. Then from (4.5), we get

‖zk+1− z∗‖= O (‖zk − z∗‖2).

This completes the proof of (4.2). �

5. Numerical results

In this section, we carry out some numerical experiments for Algorithm 3.1. The algo-

rithm was implemented in MATLAB. The problems that we tested are the constraint sets

of a subset of the test examples for nonlinear programming from [20]. The parameters in

the algorithm were

δ = 0.5, σ = 0.5× 10−4, γ= 0.2×min
n

1,
1

‖ū‖

o

, ū = 0.1, z0 = (ū,0),

and the stopping rule is ‖H(z)‖ ≤ 10−6.

In Table 1, columns 1-4 give the data of the problem. In particular, the first column

gives the problem name. The second column gives the dimension (number of variables) of

the problem. The third and fourth columns give the number of equalities and the number

of inequalities, respectively. In the fifth and sixth columns we list, respectively, the average

number of iterations and the average number of function evaluations needed by Algorithm

3.1 to converge from different starting points to points that satisfy the stopping criterion.

In the seventh and eighth columns we list the corresponding results of the single-model

trust-region method given in [7]. In the ninth and tenth columns we list the corresponding

results of the multimodel trust-region method [7]. S-N denotes the smoothing Newton-like

algorithm, S-T denotes the single-model trust-region algorithm in [7], M-T denotes the

multimodel trust-region algorithm in [7].Table 1: Numerial results for the test problem.
Problem data S-N S-T M-T

Prob. name n |E| |I | iter. nfunc iter nfunc iter. nfunc

HS10 2 0 1 5.2 9.4 11.2 12.2 11.2 12.2

HS11 2 0 1 4.4 7.8 9.8 12.2 9.8 12.2

HS12 2 0 1 4 7 7.6 8.6 7.6 8.6

HS14 2 1 1 3.8 6.6 9.6 11.2 9.6 11.2

HS22 2 0 2 6.2 11.5 10.6 13 9.6 12

HS29 3 0 1 3 5 7.2 8.2 7.2 8.2

HS43 4 0 3 5.2 9.4 10.8 14 4 5

HS113 10 0 8 4.5 8 10 12.4 14.8 19.8
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All problems we selected are constraints of nonlinear programming problems, so we

get a feasible point of a system of equalities and inequalities by the smoothing Newton-like

method. From the numerical results, we can see that the number of function evaluations

and the iterations obtained by our smoothing Newton-like method are less than those

obtained by the trust-region algorithms.

In summary, we have proposed a new smoothing Newton-like method for solving the

system of equalities and inequalities. This smoothing Newton-like method only needs to

solve one system of linear equations and to perform one line search at each iteration. It

keeps the good structure of the classical Newton method and has good convergence under

mild conditions.
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