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Abstract. A convex variational formulation is proposed to solve multicomponent signal
processing problems in Hilbert spaces. The cost function consists of a separable term,
in which each component is modeled through its own potential, and of a coupling term,
in which constraints on linear transformations of the components are penalized with
smooth functionals. An algorithm with guaranteed weak convergence to a solution to
the problem is provided. Various multicomponent signal decomposition and recovery
applications are discussed.
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1. Problem statement

The processing of multicomponent signals has become increasingly important due, on
the one hand, to the development of new imaging modalities and sensing devices, and,
on the other hand, to the introduction of sophisticated mathematical models to represent
complex signals. It is for instance required in applications dealing with the recovery of
multichannel signals [8, 33, 34, 40], which arise in particular in color imaging and in the
multi- and hyperspectral imaging techniques used in astronomy and in satellite imaging.
Another important instance of multicomponent processing is found in signal decomposition
problems, e.g., [2,5–7,15,43,44]. In such problems, the ideal signal is viewed as a mixture
of elementary components that need to be identified individually.
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Mathematically, a multicomponent signal can be viewed as an m-tuple (x i)1≤i≤m, where
each component x i lies in a real Hilbert spaceHi. A generic convex variational formulation
for solving multicomponent signal recovery or decomposition problems is

minimize
x1∈H1,··· , xm∈Hm

Φ(x1, · · · , xm), (1.1)

where Φ: H1 ⊕ · · · ⊕Hm → ]−∞,+∞] is a convex cost function. At this level of gener-
ality, however, no algorithm exists to solve (1.1) reliably in the sense that it produces m
sequences (x1,n)n∈N, · · · , (xm,n)n∈N converging (weakly or strongly) to points x1, · · · , xm,
respectively, such that (x i)1≤i≤m minimizes Φ. Let us recall that, even in the elementary
case when m= 2 andH1 =H2 = R, the basic Gauss-Seidel alternating minimization algo-
rithm does not possess this property [28]. In this paper, we consider the following, more
structured version of (1.1).

Problem 1.1. Let m ≥ 2 and p ≥ 1 be integers, let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert
spaces, and let (τk)1≤k≤p be in ]0,+∞[. For every i ∈ {1, · · · , m}, let fi :Hi → ]−∞,+∞] be
a proper lower semicontinuous convex function and, for every k ∈ {1, · · · , p}, let ϕk : Gk→ R
be convex and differentiable with a τk-Lipschitz continuous gradient, and let Lki : Hi → Gk

be linear and bounded. It is assumed that min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +

p∑

k=1

ϕk

� m∑

i=1

Lki x i

�

, (1.2)

under the assumption that solutions exist.

Let us note that (1.2) is a particular case of (1.1), in which Φ is decomposed in two
terms, namely

Φ(x1, · · · , xm) =

m∑

i=1

fi(x i)

︸ ︷︷ ︸

separable term

+

p∑

k=1

ϕk

� m∑

i=1

Lki x i

�

︸ ︷︷ ︸

coupling term

. (1.3)

Each function fi in the separable term promotes an intrinsic property of the ith component
x i of the signal. On the other hand, the coupling term models p interactions between
the m components (x i)1≤i≤m. An elementary interaction is associated with a potential ϕk

acting on a linear transformation
∑m

i=1 Lki x i of the components. The coupling is smooth
in the sense that the function ϕk is differentiable with a Lipschitz gradient. As will be
seen in subsequent sections, Problem 1.1 not only captures existing formulations for which
reliable solution methods are not available, but it also allows us to investigate a wide
range of new problems. In addition, it can be solved reliably by the following proximal
algorithm recently developed in [4] (the definition of the proximity operator prox fi

of a
convex function fi :Hi → ]−∞,+∞] is given in Section 2.2).

Algorithm 1.1. Set

β1 =
1

p max
1≤k≤p

τk

m∑

i=1

‖Lki‖2
, (1.4)



Multi-Component Signal Decomposition and Recovery 487

and fix ǫ in
�

0,min{1,β1}
�

, (λn)n∈N in [ǫ, 1], (γn)n∈N in
�
ǫ, 2β1− ǫ
�

, and (x i,0)1≤i≤m in
H1× · · · ×Hm. For every i ∈ {1, · · · , m} set, for every n ∈ N,

x i,n+1 = x i,n+λn

�

proxγn fi

�

x i,n− γn

� p∑

k=1

L∗ki∇ϕk

� m∑

j=1

Lk j x j,n

�

+ bi,n

��

+ ai,n− x i,n

�

, (1.5)

where (ai,n)n∈N and (bi,n)n∈N are sequences inHi such that
∑

n∈N
‖ai,n‖ < +∞ and

∑

n∈N
‖bi,n‖ < +∞. (1.6)

Algorithm 1.1 generates m sequences (x1,n)n∈N, · · · , (xm,n)n∈N in parallel. It also tol-
erates errors ai,n and bi,n in the implementation of the proximity operator and of the
gradients, respectively. Its convergence to a solution to Problem 1.1 is guaranteed by the
following theorem. Let us stress that, although some algorithms are available for specific
instances of Problem 1.1 with m = 2 (see [1,3,10], and [23, Section 4.4]), no method with
such convergence properties seems to be available in the literature in the general setting
we consider here.

Theorem 1.2. [4, Theorem 4.3] Let (x1,n)n∈N, · · · , (xm,n)n∈N be sequences generated by
Algorithm 1.1. Then, for every i ∈ {1, · · · , m}, (x i,n)n∈N converges weakly to a point x i ∈Hi,
and (x i)1≤i≤m is a solution to Problem 1.1.

The paper is organized as follows. In Section 2, we introduce our notation and recall
some important definitions and properties from convex analysis, and discuss proximity
operators. In Section 3, we study the particular case when the coupling functions are
Moreau envelopes and address specific situations. Section 4 is devoted to problems in
which the coupling functions are quadratic. In Section 5, the focus is placed on quadratic
coupling terms involving linear combinations of the components. Finally, Section 6 is
devoted to an application to multiframe signal representation.

2. Notation and background

Throughout the paper,H and (Hi)1≤i≤m are real Hilbert spaces. Their scalar products
are denoted by 〈· | ·〉 and the associated norms by ‖ · ‖. Moreover, Id denotes the identity
operator and B(x ;ρ) the closed ball of center x ∈ H and radius ρ ∈ ]0,+∞[. In this
section, we recall some useful definitions and facts from convex analysis [31, 36, 46] and
provide background and new results on proximity operators.

2.1. Convex analysis

We denote by Γ0(H ) the class of lower semicontinuous convex functions ϕ : H →
]−∞,+∞] which are proper in the sense that domϕ =

�
x ∈H
�
� ϕ(x)< +∞	 6= ∅.
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Let ϕ ∈ Γ0(H ). The set of minimizers of ϕ is denoted by Argminϕ and, if ϕ has a
unique minimizer, this minimizer is denoted by argminx∈H ϕ(x). The conjugate of ϕ is
the function ϕ∗ ∈ Γ0(H ) defined by

ϕ∗ : H → ]−∞,+∞] : u 7→ sup
x∈H
〈x | u〉 −ϕ(x) (2.1)

and the subdifferential of ϕ is the set-valued operator

∂ ϕ :H → 2H : x 7→
n

u ∈H
�
� (∀y ∈H ) 
y − x | u�+ϕ(x)≤ ϕ(y)

o

. (2.2)

The Fenchel-Moreau theorem states that

ϕ∗∗ = ϕ. (2.3)

In addition,

(∀x ∈H )(∀u ∈H )
(

ϕ(x)+ϕ∗(u)≥ 〈x | u〉,
ϕ(x)+ϕ∗(u) = 〈x | u〉 ⇔ u ∈ ∂ ϕ(x). (2.4)

The next lemma follows directly from [17, Corollary 3.5].

Lemma 2.1. Let g : H → [0,+∞[ be a continuous convex function and let φ ∈ Γ0(R).
Suppose that φ is increasing on [0,+∞[ and that there exists a point z ∈ H such that
g(z) ∈ intdomφ. Then, for every x ∈H ,

∂ (φ ◦ g)(x) =
⋃

ν∈∂φ(g(x))∩[0,+∞[
ν ∂ g(x). (2.5)

Now, let C be a nonempty closed convex subset ofH . The indicator function of C is

ιC : x 7→
(

0, if x ∈ C ,

+∞, if x /∈ C;
(2.6)

the normal cone operator of C is

NC = ∂ ιC : x 7→
(�

u ∈ H
�
� (∀y ∈ C)



y − x | u�≤ 0
	
, if x ∈ C ,

∅, otherwise;
(2.7)

the support function of C is

σC = ι
∗
C :H → ]−∞,+∞] : u 7→ sup

x∈C
〈x | u〉, (2.8)

and the distance from x ∈H to C is dC(x) = infy∈C ‖x− y‖. For every x ∈H , there exists
a unique point PC x ∈ C such that dC(x) = ‖x − PC x‖; PC x is called the projection of x
onto C and it is characterized by

(∀p ∈H ) p = PC x ⇔ x − p ∈ NC p. (2.9)



Multi-Component Signal Decomposition and Recovery 489

We have

(∀x ∈H ) ∂ dC(x) =







�
x − PC x

dC(x)

�

, if x ∈H \ C ,

NC x ∩ B(0; 1), if x ∈ C .
(2.10)

Lemma 2.2. Let C be a nonempty convex closed subset of H , let φ : R → ]−∞,+∞] be
increasing on [0,+∞[ and even, and set ϕ = φ ◦ dC . Then ϕ∗ = σC +φ

∗ ◦ ‖ · ‖.
Proof. Set, for every η ∈ [0,+∞[, Dη =

�
z ∈H
�
� ‖z‖ = η	. For every x ∈ H , since

infy∈C ‖x − y‖ = ‖x − PC x‖ and since φ is increasing on [0,+∞[, we have

(∀z ∈ C) inf
y∈C
φ(‖x − y‖)≤ φ(‖x − PC x‖) = φ

�

inf
y∈C
‖x − y‖
�

≤ φ(‖x − z‖), (2.11)

which implies that infy∈C φ(‖x− y‖) = φ(infy∈C ‖x− y‖). Hence, sinceH =⋃η∈[0,+∞[ Dη
and since φ is even, we have

(∀u ∈ H ) ϕ∗(u) = sup
x∈H
〈x | u〉 −φ
�

inf
y∈C
‖x − y‖
�

= sup
x∈H
〈x | u〉 − inf

y∈C
φ(‖x − y‖)

= sup
y∈C

sup
x∈H
〈x | u〉 −φ(‖x − y‖)

= sup
y∈C



y | u�+ sup

z∈H
〈z | u〉 −φ(‖z‖)

= sup
y∈C



y | u�+ sup

η∈[0,+∞[
sup
z∈Dη
〈z | u〉 −φ(η)

= sup
y∈C



y | u�+ sup

η∈[0,+∞[
η‖u‖ −φ(η)

= sup
y∈C



y | u�+ sup

η∈R
η‖u‖ −φ(η)

= σC (u)+φ
∗(‖u‖), (2.12)

which completes the proof. �

Lemma 2.3. Let φ ∈ Γ0(R) be such that 0 ∈ intdomφ, let ξ ∈ ]0,+∞[ ∩ dom∂ φ, and let
ν ∈ ∂ φ(ξ). Then

max∂ φ(0)≤ ν . (2.13)

Proof. Since 0 ∈ intdomφ, ∂ φ(0) is a nonempty compact set [36, p. 215 and Theo-
rem 23.4]. Moreover, (2.2) yields

(∀µ ∈ ∂ φ(0))
(

(ξ− 0)µ+φ(0)≤ φ(ξ),
(0− ξ)ν +φ(ξ) ≤ φ(0). (2.14)

Adding these inequalities results in

(∀µ ∈ ∂ φ(0)) µξ≤ νξ, (2.15)

from which we deduce (2.13). �
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2.2. Proximity operators

For a detailed account of the theory of proximity operators, see [23,31] and the classi-
cal paper [35].

Let ϕ ∈ Γ0(H ) and let γ ∈ ]0,+∞[. The Moreau envelope of index γ of ϕ is the
continuous convex function

γϕ : H → R : x 7→ inf
y∈H ϕ(y) +

1

2γ
‖x − y‖2. (2.16)

For every x ∈H , the infimum in (2.16) is achieved at a unique point denoted by proxγϕ x ,
which is characterized by the inclusion

(∀p ∈H ) p = proxγϕ x ⇔ x − p ∈ γ∂ ϕ(p). (2.17)

The proximity operator of ϕ is defined as

proxϕ :H →H : x 7→ argminy∈H ϕ(y) +
1

2
‖x − y‖2. (2.18)

The Moreau envelope γϕ satisfies

γϕ ≤ ϕ and Argmin γϕ = Argminϕ. (2.19)

Moreover, it is Fréchet differentiable and

∇ γϕ = 1

γ
(Id −proxγϕ) = proxϕ∗/γ(·/γ) is 1/γ-Lipschitz continuous. (2.20)

Lemma 2.4. [19, Proposition 11] Let G be a real Hilbert space, let ψ ∈ Γ0(G ), let L :H →
G be linear and bounded, and set ϕ =ψ◦L. Suppose that L◦L∗ = κ Id , for some κ ∈ ]0,+∞[.
Then ϕ ∈ Γ0(H ) and

proxϕ = Id +
1

κ
L∗ ◦ (proxκψ− Id ) ◦ L. (2.21)

If C is a nonempty closed and convex subset C ofH , we have

proxγιC = PC . (2.22)

Closed-form expressions for the proximity operators of various functions can be found
in [16, 19–21, 23, 35]. We now derive new examples, some of which will be used in Sec-
tion 3.3.

Proposition 2.1. Let C be a nonempty closed convex subset ofH , let φ ∈ Γ0(R) be even, and
set ϕ = φ ◦ dC . Then ϕ ∈ Γ0(H ). Moreover, proxϕ = PC if φ = ι{0}+η for some η ∈ R and,
otherwise, for every x ∈H ,

proxϕ x =









x +
proxφ∗ dC(x)

dC(x)
(PC x − x), if dC(x)>max∂ φ(0),

PC x , if x /∈ C and dC(x)≤max∂ φ(0),

x , if x ∈ C .

(2.23)
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Proof. If φ = ι{0} + η for some η ∈ R, then ϕ = ιC +η, which implies that ϕ ∈ Γ0(H )
and that proxϕ = PC . Now assume that φ 6= ι{0} +η with η ∈ R. Since φ is even, convex,
and proper, we have 0 ∈ int domφ and it follows that

(∀z ∈ C) dC(z) = 0 ∈ intdomφ. (2.24)

Thus, ∅ 6= C ⊂ domϕ, which shows that ϕ is proper. Next, since dC is continuous and φ is
lower semicontinuous, ϕ is lower semicontinuous. Moreover, since φ is convex and even,
it is increasing on [0,+∞[ and, by convexity of dC , we deduce that ϕ is convex. Altogether
ϕ ∈ Γ0(H ).

Now, let x ∈H and set p = proxϕ x . We derive from (2.17) that

x − p ∈ ∂ (φ ◦ dC)(p). (2.25)

Therefore, in view of (2.24), taking g = dC in Lemma 2.1 yields

x − p ∈
⋃

ν∈∂ φ(dC (p))∩[0,+∞[
ν ∂ dC(p). (2.26)

We examine two alternatives.

(a) p ∈ C: In this case, dC(p) = 0 and, from (2.10), ∂ dC(p) = NC p ∩ B(0; 1). Hence,
(2.26) asserts that there exists ν ∈ ∂ φ(0)∩ [0,+∞[ such that

x − p ∈ NC p ∩ B(0;ν). (2.27)

Using (2.9), we first deduce that
p = PC x . (2.28)

In addition,
dC(x) = ‖x − PC x‖= ‖x − p‖ ≤ ν ≤max∂ φ(0). (2.29)

(b) p /∈ C: In this case, dC(p) > 0 and (2.10) yields ∂ dC(p) = {(p − PC p)/dC (p)}.
Hence, (2.26) implies that there exists ν ∈ ∂ φ(dC (p))∩ [0,+∞[ such that

x − p = ν
p− PC p

dC(p)
, (2.30)

which can be written equivalently as

x − PC p =
ν + dC(p)

dC(p)
(p− PC p). (2.31)

Since (2.9) asserts that p−PC p ∈ NC(PC p), (2.31) yields x−PC p ∈ NC(PC p) and, therefore,

PC x = PC p. (2.32)

Consequently, (2.31) is equivalent to

x − PC x =
ν + dC(p)

dC(p)
(p− PC p). (2.33)
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In turn, upon applying the norm, we obtain

dC(x) = ν + dC(p). (2.34)

Since ν ∈ ∂ φ(dC(p)), we deduce from (2.34) that

dC(x)− dC(p) ∈ ∂ φ(dC (p)), (2.35)

which yields dC(p) = proxφ dC(x) by (2.17). Thus, it follows from (2.34) and (2.20) that

ν = proxφ∗(dC(x)). (2.36)

On the other hand, it follows from (2.33) and (2.34) that

p− PC p

dC(p)
=

x − PC x

ν + dC(p)
=

x − PC x

dC(x)
. (2.37)

Hence, using (2.36) and (2.37), we deduce from (2.30) that

p = x +
proxφ∗(dC(x))

dC(x)
(PC x − x). (2.38)

In view of (2.28) and (2.38), it remains to show that

p ∈ C ⇔ dC(x)≤max∂ φ(0). (2.39)

To this end, we first observe that (2.29) yields p ∈ C ⇒ dC(x) ≤ max∂ φ(0). For the
reverse implication, suppose that dC(x) ≤ max∂ φ(0) and that p /∈ C . Then, we deduce
from Lemma 2.3 and (2.34) that

max∂ φ(0) + dC(p) ≤ ν + dC(p) = dC(x)≤max∂ φ(0), (2.40)

which implies that dC(p) = 0 and therefore that p ∈ C = C , which contradicts our assump-
tion. �

Proposition 2.2. Let C be a nonempty closed convex subset ofH , let φ ∈ Γ0(R) be even and
nonconstant, and set ϕ = σC +φ ◦ ‖ · ‖. Then ϕ ∈ Γ0(H ) and, for every x ∈H ,

proxϕ x =









proxφ dC(x)

dC(x)
(x − PC x), if dC(x)>maxArgminφ,

x − PC x , if x /∈ C and dC(x)≤maxArgminφ,

0, if x ∈ C .

(2.41)

Proof. Set ψ = φ∗ ◦ dC . Since φ is an even function in Γ0(R), φ
∗ is likewise. Hence,

it follows from Proposition 2.1 that ψ ∈ Γ0(H ). Using the facts that ∂ φ∗(0) = Argminφ,
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that φ∗ is not of the form ι{0} + η with η ∈ R, and that, by (2.3), φ∗∗ = φ, we also derive
from Proposition 2.1 that, for every x ∈ H ,

proxψ x =









x +
proxφ dC(x)

dC(x)
(PC x − x), if dC(x)>maxArgminφ,

PC x , if x /∈ C and dC(x)≤maxArgminφ,

x , if x ∈ C .

(2.42)

On the other hand, Lemma 2.2 yields ψ∗ = σC +φ
∗∗ ◦ ‖ · ‖= σC +φ ◦ ‖ · ‖ = ϕ. Hence, it

follows from (2.20) (with γ = 1) that proxϕ = proxψ∗ = Id −proxψ. In view of (2.42), we
thus obtain (2.41). �

Proposition 2.3. Let C be a nonempty closed convex subset of a real Hilbert space G and let
z ∈ G . Let φ ∈ Γ0(R) be even and not of the form φ = ι{0}+η with η ∈ R, let L : H →G be
a bounded linear operator such that L ◦ L∗ = κ Id for some κ ∈ ]0,+∞[, and set

ϕ : H → ]−∞,+∞] : x 7→ φ(dC (Lx − z)). (2.43)

Then ϕ ∈ Γ0(H ) and, for every x ∈H ,

proxϕ x =



















x +
prox(κφ)∗ dC(Lx − z)

κ dC (Lx − z)
L∗
�

PC(Lx − z) + z − Lx
�
,

if dC(Lx − z) > κmax∂ φ(0),

x +
1

κ
L∗
�

PC (Lx − z) + z − Lx
�
,

if Lx − z /∈ C and dC(Lx − z) ≤ κmax∂ φ(0),

x , if Lx − z ∈ C .

(2.44)

Proof. Set g = φ ◦ dC . It follows from Proposition 2.1 that g ∈ Γ0(G ) and that, for
every y ∈ G ,

proxκg y =







y +
prox(κφ)∗ dC(y)

dC(y)
(PC y − y), if dC(y) > κmax∂ φ(0),

PC y, if dC(y) ≤ κmax∂ φ(0).
(2.45)

We also observe that, since ϕ = g ◦ (L · −z) and L is linear and continuous, ϕ ∈ Γ0(H ).
Now take x ∈ H and set p = proxϕ x . Using (2.17), the identity L ◦ L∗ = κ Id , and
elementary subdifferential calculus, we obtain

p = proxϕ x ⇔ x − p ∈ ∂ ϕ(p) = L∗∂ g(Lp− z)

⇔ (x − κ−1 L∗z)− (p− κ−1 L∗z) ∈ L∗∂ g(L(p− κ−1 L∗z))
⇔ (x − κ−1 L∗z)− (p− κ−1 L∗z) ∈ ∂ (g ◦ L)(p− κ−1 L∗z)
⇔ p− κ−1 L∗z = proxg◦L(x − κ−1 L∗z). (2.46)
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Hence, by Lemma 2.4,

p = κ−1 L∗z + (x − κ−1 L∗z) + κ−1 L∗
�

proxκg(L(x − κ−1 L∗z))− L(x − κ−1 L∗z)
�

= x + κ−1 L∗
�

proxκg(Lx − z) + z − Lx
�
. (2.47)

Upon combining (2.47) and (2.45) we obtain (2.44). �

3. Coupling with Moreau envelopes

In this section we interpret Problem 1.1 as a relaxation of a problem with a non-smooth
coupling term.

3.1. Problem formulation

As seen in (2.20), the Moreau envelope of index ρk ∈ ]0,+∞[ of a function gk ∈ Γ0(G )
is a convex function which is 1/ρk-Lipschitz differentiable everywhere. We can therefore
set

(∀k ∈ {1, · · · , p}) ϕk =
ρkgk (3.1)

in Problem 1.1 to obtain the following formulation.

Problem 3.1. Let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert spaces, and let (ρk)1≤k≤p be in
]0,+∞[. For every i ∈ {1, · · · , m} and k ∈ {1, · · · , p}, let fi ∈ Γ0(Hi), let gk ∈ Γ0(Gk), and
let Lki :Hi →Gk be linear and bounded. It is assumed that

min
1≤k≤p

m∑

i=1

‖Lki‖2 > 0. (3.2)

The problem is to

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +

p∑

k=1

ρkgk

� m∑

i=1

Lki x i

�

, (3.3)

under the assumption that solutions exist.

The functions (ρkgk)1≤k≤p are approximations to the functions (gk)1≤k≤p in the sense
of (2.19). Thus, (3.3) can be regarded as a relaxation of the problem

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +

p∑

k=1

gk

� m∑

i=1

Lki x i

�

. (3.4)

Since this problem involves not necessarily smooth coupling functions (gk)1≤k≤p, it will in
general be harder to solve than (3.3) and, in some cases, it may not possess any solution
while (3.3) does (see [18] for an illustration of the latter situation).

In view of (3.1) and (2.20), the specialization of Algorithm 1.1 to Problem 3.1 assumes
the following form.
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Algorithm 3.1. Set

β1 =
1

p
min

1≤k≤p

ρk
∑m

i=1 ‖Lki‖2
, (3.5)

and fix ǫ in
�

0,min{1,β1}
�

, (λn)n∈N in [ǫ, 1], (γn)n∈N in
�
ǫ, 2β1− ǫ
�

, and (x i,0)1≤i≤m in
H1× · · · ×Hm. For every i ∈ {1, · · · , m} set, for every n ∈ N,

x i,n+1 = x i,n+λn

�

proxγn fi

�

x i,n+ γn

� p∑

k=1

L∗ki

�proxρk gk
− Id

ρk

�� m∑

j=1

Lk j x j,n

�

+ bi,n

��

+ ai,n − x i,n

�

, (3.6)

where (ai,n)n∈N and (bi,n)n∈N are sequences inHi such that

∑

n∈N
‖ai,n‖< +∞,

∑

n∈N
‖bi,n‖< +∞. (3.7)

We obtain the weak convergence of this algorithm as a direct application of Theo-
rem 1.2.

Corollary 3.1. Let (x1,n)n∈N, · · · , (xm,n)n∈N be sequences generated by Algorithm 3.1. Then,
for every i ∈ {1, · · · , m}, (x i,n)n∈N converges weakly to a point x i ∈ Hi, and (x i)1≤i≤m is a
solution to Problem 3.1.

Remark 3.1. In the particular case of m = 1 variable, Problem 3.1 reduces to [23, Prob-
lem 4.1], which was itself shown in [23, Section 4] to cover several signal decomposition
and recovery problems.

3.2. Relaxation of problems with hard coupling

As a first application of the results of Section 3.1, we consider problems in which hard
constraints on p linear mixtures of the signals are available. More precisely, the constraints
are of the form

(∀k ∈ {1, · · · , p})
m∑

i=1

Lki x i ∈ Dk, (3.8)

where each Dk is a nonempty closed convex subset of Gk and, for every i ∈ {1, · · · , m}, Lki

is a bounded linear operator from Hi to Gk. In our setting, this leads to the hard-coupled
problem

minimize
x1∈H1,··· , xm∈Hm∑m

i=1 L1i xi∈D1,··· ,∑mi=1 Lpi xi∈Dp

m∑

i=1

fi(x i), (3.9)

which amounts to setting
(∀k ∈ {1, · · · , p}) gk = ιDk

(3.10)
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in (3.4). Let us note that, due to inaccuracies in the definition of the sets (Dk)1≤k≤p

[18, 29], (3.9) may be infeasible in the sense that
⋂p

k=1 Dk = ∅. On the other hand, the
approximate problem (3.3), which becomes

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +

p∑

k=1

1

2ρk
d2

Dk

� m∑

i=1

Lki x i

�

, (3.11)

will admit solutions under mild assumptions [23, Proposition 3.1(i)]. Moreover, using
(2.22), the iteration (3.6) in Algorithm 3.1 reduces to (we set ai,n ≡ 0, bi,n ≡ 0, and
λn ≡ 1 for simplicity)

x i,n+1 = proxγn fi

�

x i,n+ γn

p∑

k=1

L∗ki

� PDk
− Id

ρk

�� m∑

j=1

Lk j x j,n

��

. (3.12)

As an illustration of the construction of the sets (Dk)1≤k≤p, let us consider the problem of
finding m sources (x i)1≤i≤m from the noisy observation of p mixtures

(∀k ∈ {1, · · · , p}) zk =

m∑

i=1

Lki x i +wk, (3.13)

where wk ∈ Gk represents the noise corrupting the kth measurement. As discussed in
[22,39], a wide range of probabilistic a priori information on the kth noise process can be
translated into constraints of the form zk −

∑m
i=1 Lki x i ∈ Ek, where Ek is a closed convex

subset of Gk. This corresponds to (3.8), where Dk = zk − Ek. For instance, if a statistical
bound ηk is available on the energy of the kth noise process, we obtain Dk = B(zk;

p
ηk).

3.3. Relaxation of problems with hard constraints and hard coupling

We place ourselves in the same setting as in Section 3.2 and make the additional as-
sumption that hard constraints are available for each signal, namely

(∀i ∈ {1, · · · , m}) x i ∈ Ci, (3.14)

where each Ci is a nonempty closed convex subset of Hi. In this context, (3.9) coincides
with the feasibility problem

Find x1 ∈ C1, · · · , xm ∈ Cm such that
m∑

i=1

L1i x i ∈ D1, · · · ,
m∑

i=1

Lpi x i ∈ Dp. (3.15)

Let us relax the p constraints
∑m

i=1 Lki x i ∈ Dk as in (3.11) and the m constraints in (3.14)
by penalizing the distances to the sets via functions

(∀i ∈ {1, · · · , m}) fi = φi ◦ dCi
, (3.16)
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where (φi)1≤i≤m are nonzero even functions in Γ0(R)r {ι{0}} such that φi(0) ≡ 0. Thus,
(3.11) becomes

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

φi(dCi
(x i)) +

p∑

k=1

1

2ρk
d2

Dk

� m∑

i=1

Lki x i

�

, (3.17)

which is our relaxation of (3.15). Corollary 3.1 asserts that this problem can be solved
via Algorithm 3.1 where, by virtue of Proposition 2.1, (3.6) reduces to (we set ai,n ≡ 0,
bi,n ≡ 0, and λn ≡ 1 for simplicity)






















yi,n = x i,n+ γn

p∑

k=1

L∗ki

� PDk
− Id

ρk

�� m∑

j=1

Lk j x j,n

�

x i,n+1 =













yi,n +
prox(γnφi)

∗ dCi
(yi,n)

dCi
(yi,n)

(PCi
yi,n − yi,n),

if dCi
(yi,n)> γn max∂ φi(0),

PCi
yi,n, if yi,n /∈ Ci and dCi

(yi,n)≤ γn max∂ φi(0),

yi,n, if yi,n ∈ Ci.

(3.18)

4. Quadratic coupling

In this section, we study Problem 1.1 when the coupling functions (ϕk)1≤k≤p are of the
form

(∀k ∈ {1, · · · , p}) ϕk =
1

2
‖zk − ·‖2, where zk ∈ Gk. (4.1)

4.1. Problem formulation

We first restate Problem 1.1 under assumption (4.1).

Problem 4.1. Let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert spaces. For every i ∈ {1, · · · , m},
let fi ∈ Γ0(Hi) and, for every k ∈ {1, · · · , p}, let zk ∈ Gk and let Lki :Hi →Gk be linear and
bounded. It is assumed that min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +
1

2

p∑

k=1






zk −
m∑

i=1

Lki x i






2

, (4.2)

under the assumption that solutions exist.

Here is a variant of Algorithm 1.1 for solving Problem 4.1.

Algorithm 4.1. Set

β2 =
1

p∑

k=1

m∑

i=1

‖Lki‖2
, (4.3)
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and fix ǫ in
�

0,min{1,β2}
�

, (λn)n∈N in [ǫ, 1] (γn)n∈N in
�
ǫ, 2β2− ǫ
�

, and (x i,0)1≤i≤m in
H1× · · · ×Hm. For every i ∈ {1, · · · , m} set, for every n ∈ N,

x i,n+1 = x i,n+λn

�

proxγn fi

�

x i,n+ γn

� p∑

k=1

L∗ki

�

zk −
m∑

j=1

Lk j x j,n

�

+ bi,n

��

+ ai,n − x i,n

�

, (4.4)

where (ai,n)n∈N and (bi,n)n∈N are sequences inHi such that

∑

n∈N
‖ai,n‖< +∞,

∑

n∈N
‖bi,n‖ < +∞. (4.5)

Remark 4.1. The Lipschitz constant of each ∇ϕk is τk = 1. Hence, the bound β1 of (1.4)
is β1 = 1/
�

p max1≤k≤p

∑m
i=1 ‖Lki‖2
�
. If we used this bound in (4.3), we could derive at

once the convergence of Algorithm 4.1 from Theorem 1.2. However, we use the bound β2

of (4.3), which is better than the general bound β1 since

β1 =

�

p max
1≤k≤p

m∑

i=1

‖Lki‖2
�−1

≤
� p∑

k=1

m∑

i=1

‖Lki‖2
�−1

= β2. (4.6)

Theorem 4.2. Let (x1,n)n∈N, · · · , (xm,n)n∈N be sequences generated by Algorithm 4.1. Then,
for every i ∈ {1, · · · , m}, (x i,n)n∈N converges weakly to a point x i ∈ Hi, and (x i)1≤i≤m is a
solution to Problem 4.1.

Proof. We setH =H1⊕· · ·⊕Hm, i.e.,H is the real Hilbert space obtained by endowing
H1 × · · · × Hm with the scalar product 〈〈· | ·〉〉: (x , y) 7→ ∑mi=1



x i | yi
�
, with associated

norm ||| · ||| : x 7→
p∑m

i=1 ‖x i‖2, where x = (x i)1≤i≤m denotes a generic element inH . We
also introduce

g : H → R : x 7→ 1

2

p∑

k=1






zk −
m∑

j=1

Lk j x j






2

, (4.7)

and, for every i ∈ {1, · · · , m}, we let Bi be the gradient of g with respect to the ith variable.
Thus, ∇g = (Bi)1≤i≤m, where

Bi :H →Hi : x 7→
p∑

k=1

L∗ki

� m∑

j=1

Lk j x j − zk

�

. (4.8)

Now take x and y inH . Since, in view of (4.1), (4.4) is a special case of (1.5), proceeding
as in the proof of [4, Theorem 4.3], to reach the announced conclusion it is enough to
show that

m∑

i=1



Bi(x )− Bi(y) | x i − yi

� ≥ β2

m∑

i=1


Bi(x )− Bi(y)



2
, (4.9)
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or, equivalently, that 〈〈∇g (x )−∇g (y) | x − y〉〉 ≥ β2|||∇g(x ) − ∇g (y)|||2. Since g is
convex, it follows from the Baillon-Haddad theorem [9, Corollary 10] that this inequality
is equivalent to |||∇g (x )−∇g (y)||| ≤ |||x − y|||/β2, i.e., to

m∑

i=1


Bi(x )− Bi(y)



2 ≤ |||x − y |||2/β2
2 . (4.10)

For every i ∈ {1, · · · , m}, (4.8) and the Cauchy-Schwarz inequality imply that


Bi(x )− Bi(y)



2
=






m∑

j=1

p∑

k=1

L∗ki Lk j(x j − y j)






2

≤
� m∑

j=1

p∑

k=1

‖Lki‖‖Lk j‖‖x j − y j‖
�2

=

� p∑

k=1

‖Lki‖
m∑

j=1

‖Lk j‖‖x j − y j‖
�2

≤
� p∑

k=1

‖Lki‖2
� p∑

k=1

� m∑

j=1

‖Lk j‖‖x j − y j‖
�2

≤
� p∑

k=1

‖Lki‖2
� p∑

k=1

� m∑

j=1

‖Lk j‖2
�� m∑

j=1

‖x j − y j‖2
�

=

� p∑

k=1

‖Lki‖2
�

|||x − y |||2/β2. (4.11)

Hence,

m∑

i=1


Bi(x )− Bi(y)



2 ≤
� m∑

i=1

p∑

k=1

‖Lki‖2
�

|||x − y |||2/β2 = |||x − y |||2/β2
2 , (4.12)

which yields (4.10). �

4.2. Split feasibility problems

Suppose that m = p+1. For every k ∈ {1, · · · , p}, set zk = 0, Gk =Hk+1, and, for every
i ∈ {2, · · · , m},

Lki =

(

− Id , if i = k+ 1,

0, otherwise.
(4.13)

Then (4.2) becomes

minimize
x1∈H1,··· ,xm∈Hm

m∑

i=1

fi(x i) +
1

2

m−1∑

k=1

‖Lk1 x1 − xk+1‖2. (4.14)
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Setting errors to zero and λn ≡ 1 for simplicity, the updating rule (4.4) in Algorithm 4.1
reduces to






x1,n+1 = proxγn f1

�

x1,n− γn

m−1∑

k=1

L∗k1

�
Lk1 x1,n− xk+1,n

�
�

,

x i,n+1 = proxγn fi

�

(1− γn)x i,n+ γn Li−1,1 x1,n

�

, for 2≤ i ≤ m.

(4.15)

In particular, if each fi in (4.14) is the indicator function of a nonempty closed convex
set Ci ⊂H1, we obtain

minimize
x1∈C1,··· ,xm∈Cm

1

2

m−1∑

k=1

‖Lk1x1 − xk+1‖2, (4.16)

which can be regarded as a relaxation of the split feasibility problem

find x1 ∈ C1 such that L11 x1 ∈ C2, L21 x1 ∈ C3, · · · , Lm−1,1 x1 ∈ Cm. (4.17)

For m= 2, this type of problem was introduced in [13] and further studied in [11,14,23].
In [42] a problem similar to (4.14) is investigated in the case when m = 2, in which

the linear operator depends on the partial derivatives of one component.

5. Strong coupling

An important instance of Problem 4.1 occurs when the linear mixtures describing the
interactions between the components in (4.2) reduce to linear combinations. Such a cou-
pling is referred to as strong.

5.1. Problem formulation

Problem 5.1. For every i ∈ {1, · · · , m}, let fi ∈ Γ0(H ) and, for every k ∈ {1, · · · , p}, let
ξki ∈ R and let zk ∈H . It is assumed that min1≤k≤p

∑m
i=1 |ξki| > 0. The problem is to

minimize
x1∈H ,··· , xm∈H

m∑

i=1

fi(x i) +
1

2

p∑

k=1






zk −
m∑

i=1

ξki x i






2

, (5.1)

under the assumption that solutions exist.

To solve this problem, we propose the following variant of Algorithm 4.1, which fea-
tures a better bound than (4.3).

Algorithm 5.1. Set Ξ = [ξki] ∈ Rp×m, ∆= Ξ⊤Ξ = [δi j], and

β3 =
1

λmax
, (5.2)
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where λmax is the largest eigenvalue of∆. Fix ǫ in
�

0,min{1,β3}
�

, (λn)n∈N in [ǫ, 1], (γn)n∈N
in
�
ǫ, 2β3− ǫ
�

, and (x i,0)1≤i≤m inH m. For every i ∈ {1, · · · , m} set, for every n ∈ N,

x i,n+1 = x i,n+λn

�

proxγn fi

�

x i,n+ γn

p∑

k=1

ξki

�

zk −
m∑

j=1

ξk j x j,n

��

+ ai,n− x i,n

�

, (5.3)

where (ai,n)n∈N is a sequence inH such that
∑

n∈N ‖ai,n‖< +∞.

Remark 5.1. Using standard matrix norm inequalities, we obtain

λmax ≤
p∑

k=1

m∑

i=1

|ξki|2 ≤ p max
1≤k≤p

m∑

i=1

|ξki|2, (5.4)

which yields

β3 =
1

λmax
≥ β2 =

1
p∑

k=1

m∑

i=1

|ξki|2
≥ β1 =

1

p max
1≤k≤p

m∑

i=1

|ξki|2
. (5.5)

In other words, in the problem under consideration, the bound of (5.2) is better than that
of (4.3), which is itself better than that of (1.4).

Theorem 5.2. Let (x1,n)n∈N, · · · , (xm,n)n∈N be sequences generated by Algorithm 5.1. Then,
for every i ∈ {1, · · · , m}, (x i,n)n∈N converges weakly to a point x i ∈ H , and (x i)1≤i≤m is a
solution to Problem 5.1.

Proof. Define H as in the proof of Theorem 4.2 (with Hi ≡H ), set

g : H → R : x 7→ 1

2

p∑

k=1






zk −
m∑

i=1

ξki x i






2

, (5.6)

and introduce the bounded linear operator

B : H →H : x 7→
� p∑

k=1

m∑

j=1

ξkiξk j x j

�

1≤i≤m
. (5.7)

As in the proof of Theorem 4.2, it is sufficient to prove that∇g is β−1
3 -Lipschitz continuous.

Since ∆ is a real m × m symmetric matrix, there exists an orthogonal matrix Π =
[πi j] ∈ Rm×m such that ∆ = ΠΛΠ⊤, where Λ is the diagonal matrix the diagonal entries
of which are the eigenvalues (λi)1≤i≤m of ∆. Now set D : H →H : x 7→ �λi x i

�

1≤i≤m and
U :H →H : x 7→ �∑mj=1πi j x j

�

1≤i≤m. Then U is unitary and

|||B|||2 = |||UDU∗|||2 = |||D|||2 = sup
|||x |||≤1

m∑

i=1

λ2
i ‖x i‖2 = λ2

max. (5.8)

Hence, for every x and y inH , we have

|||∇g(x )−∇g (y)|||2 = |||Bx − By |||2 ≤ λ2
max|||x − y |||2, (5.9)

which implies that ∇g is β−1
3 -Lipschitz continuous and completes the proof. �
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5.2. Signal decomposition

Suppose that an ideal signal x ∈H can be decomposed as

x =
m∑

i=1

x i, where (∀i ∈ {1, · · · , m}) x i ∈H . (5.10)

A common problem is to recover the components (x i)1≤i≤m from some measurement z of
x and some prior information. Assuming that the prior information on each component x i

is promoted by a potential fi ∈ Γ0(H ) and using a least-squares data fitting term leads to
the variational problem

minimize
x1∈H ,··· ,xm∈H

m∑

i=1

fi(x i) +
1

2






z −
m∑

i=1

x i






2

. (5.11)

Instances of this problem have been considered in [5,7,23,41,42] for m = 2, in [6,27] for
m= 3, and in [15] for m= 4.

We observe that (5.11) is a special case of (5.1), where p = 1, z1 = z, and, for every
i ∈ {1, · · · , m}, ξ1i = 1. Thus, Ξ = [1 · · · 1] ∈ R1×m and β3 = 1/m in Algorithm 5.1.
Moreover, the updating rule (5.3) now assumes the form

x i,n+1 = x i,n+λn

�

proxγn fi

�

x i,n+ γn

�

z −
m∑

j=1

x j,n

��

+ ai,n − x i,n

�

. (5.12)

The weak convergence of the m sequences so generated to a solution to (5.11) is guaran-
teed by Theorem 5.2. For m = 2, an alternative weakly convergent method is proposed
in [23, Section 4.4], which subsumes that of [5] (see also the alternative method of [3]).
However, for m > 2, no weakly convergent algorithm seems to be available in the litera-
ture. Thus, in [15], a model of the form (5.11) with m = 4 component is investigated but
no convergence proof is furnished for the proposed cyclic minimization algorithm; in [6],
a model with m = 3 components is investigated in H = RN and a coordinate descent
algorithm with modest convergence properties is utilized.

For the sake of illustration, consider the case when m = 3. Then (5.2) yields β = 1/3.
Taking for simplicity γn ≡ 1/2, λn ≡ 1, and, for every i ∈ {1,2,3}, ai,n ≡ 0, (5.12) leads to
the simple parallel scheme







x1,n+1 = prox f1/2
�
(z + x1,n− x2,n− x3,n)/2

�
,

x2,n+1 = prox f2/2
�
(z − x1,n+ x2,n− x3,n)/2

�
,

x3,n+1 = prox f3/2
�
(z − x1,n− x2,n+ x3,n)/2

�
.

(5.13)

On the other hand, if m= 2, (5.11) becomes

minimize
x1∈H , x2∈H

f1(x1) + f2(x2) +
1

2
‖z − x1− x2‖2. (5.14)
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This problem is studied in [23], where an alternating algorithm is proposed which con-
verges weakly to a solution to (5.14). In particular, if we take f1 to be the indicator
function of a nonempty closed convex set C1 ⊂H and f2 = σC2

to be the support function
of a nonempty closed convex set C2 ⊂H , (5.14) becomes

minimize
x1∈C1, x2∈H

σC2
(x2) +

1

2
‖z − x1− x2‖2. (5.15)

This problem is studied in [5].
The role of each potential fi in (5.11) is to promote certain known properties of the

component x i. For instance, if some properties of the coefficients (〈x i | eik〉)k∈N of the
decomposition of x i in an orthonormal basis (eik)k∈N of H are available, we can take
(see [16,20,25] for specific choices of the potentials (φik)k∈N)

fi :H → ]−∞,+∞] : x i 7→
∑

k∈N
φik
�


x i | eik
��

, (5.16)

where, for every k ∈ N, φik ∈ Γ0(R) satisfies φik ≥ φik(0) = 0. If we adopt this model for
each component in (5.11), we obtain

minimize
x1∈H ,··· ,xm∈H

m∑

i=1

∑

k∈N
φik
�


x i | eik
��
+

1

2






z −
m∑

i=1

x i






2

. (5.17)

In addition, we derive from (5.16) and [23, Example 2.19] that (5.12) reduces to (we set
λn ≡ 1 and ai,n ≡ 0 for simplicity)

x i,n+1 =
∑

k∈N
proxγnφik

�
¬

x i,n | eik

¶

+ γn

�


z | eik
�−

m∑

j=1

¬

x j,n | eik

¶
��

eik. (5.18)

5.3. Signal synthesis

Let p = m(m− 1)/2 be the cardinality of the set K =
�
(i, j) ∈ {1, · · · , m}2

�
� j > i
	
. For

every k = (k1, k2) ∈K set zk = 0 and

ξki =







1, if i = k1,

−1, if i = k2,

0, otherwise.

(5.19)

With this scenario, Problem 5.1 features pairwise quadratic couplings, which yields

minimize
x1∈H ,··· , xm∈H

m∑

i=1

fi(x i)+
1

2

m∑

i=1

m∑

j=i+1

‖x i − x j‖2. (5.20)

For instance, when m = 2 and f1 and f2 are the indicator functions of nonempty closed
convex sets C1 and C2 inH , we obtain the classical problem

minimize
x1∈C1,x2∈C2

‖x1− x2‖2, (5.21)
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which has been studied in [29,45]. Another instance of (5.20) with m = 2, is that obtained
by taking f2 : x 7→ ‖y − Lx‖2/2, where L is a bounded linear operator from H to a real
Hilbert space G and y ∈ G . In this case (5.20) becomes

minimize
x1∈H ,x2∈H

f1(x1) +
1

2
‖y − Lx2‖2 +

1

2
‖x1− x2‖2. (5.22)

This formulation arises in the image restoration problems of [32,44] for specific choices of
f1 in finite dimensional spaces.

Since the matrix ∆ = Ξ⊤Ξ = m Id −1 · 1⊤ has largest eigenvalue λmax = m, we have
β3 = 1/m in Algorithm 5.1. In addition, (5.3) becomes

x i,n+1 = x i,n+λn

�

proxγn fi

�

(1−mγn)x i,n+ γn

m∑

j=1

x j,n

�

+ ai,n− x i,n

�

. (5.23)

In particular, upon setting γn ≡ 1/m, λn ≡ 1, and ai,n ≡ 0, we obtain the parallel method














x1,n+1 = prox f1/m

�
1

m

m∑

j=1

x j,n

�

,

...

xm,n+1 = prox fm/m

�
1

m

m∑

j=1

x j,n

�

.

(5.24)

6. Application to multiframe signal representation

This section is devoted to an application to multiframe signal processing in a real
Hilbert space G . Recall that a sequence (ek)k∈N in G is a frame if there exist constants
µ and ν in ]0,+∞[ such that [24,30,38]

(∀y ∈ G ) µ‖y‖2 ≤
∑

k∈N

�
�



y | ek
��
�
2 ≤ ν‖y‖2. (6.1)

The associated frame operator is the injective bounded linear operator

F : G → ℓ2(N) : y 7→ �
y | ek
��

k∈N, (6.2)

and its adjoint is the surjective bounded linear operator

F∗ : ℓ2(N)→G : (ηk)k∈N 7→
∑

k∈N
ηkek. (6.3)

Frames extend the notion of orthonormal bases and they have been used in a number
of variational signal processing problems due to their ability to efficiently capture a wide
range signal features, e.g., [12, 16, 26]. We consider a variational formulation which ex-
ploits information on the frame representation of each signal component. In the case of
m= 1 component, a similar setting is considered in [16].
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Problem 6.1. SetH = ℓ2(R) and let ϕ ∈ Γ0(G ) be a τ-Lipschitz differentiable function, for
some τ ∈ ]0,+∞[. For every i ∈ {1, · · · , m}, let (eik)k∈N be a frame of G with associated
frame operator Fi and, for every k ∈ N, let φik ∈ Γ0(R) be such that φik ≥ φik(0) = 0. The
problem is to

minimize
(η1k)k∈N∈H ,··· ,(ηmk)k∈N∈H

m∑

i=1

∑

k∈N
φik(ηik) +ϕ

� m∑

i=1

∑

k∈N
ηikeik

�

, (6.4)

under the assumption that solutions exist.

Algorithm 6.1. SetH = ℓ2(R) and

β4 =
1

τ
∑m

i=1 νi

, (6.5)

where, for every i ∈ {1, · · · , m}, νi ∈ ]0,+∞[ is the upper frame constant of (eik)k∈N
(see (6.1)). Fix ǫ in

�
0,min{1,β4}
�

, (λn)n∈N in [ǫ, 1], (γn)n∈N in
�
ǫ, 2β4− ǫ
�

, and let
(η1k,0)k∈N, · · · , (ηmk,0)k∈N be sequences inH . For every i ∈ {1, · · · , m} set, for every n ∈ N,

(∀k ∈ N) ηik,n+1 = ηik,n+λn

�

proxγnφik

�

ηik,n− γn

��

∇ϕ
� m∑

j=1

∑

k∈N
η jk,ne jk

� �
�
�
�

eik

�

+βik,n

��

+αik,n−ηik,n

�

, (6.6)

where (αik,n)(k,n)∈N2 and (βik,n)(k,n)∈N2 are real sequences such that

∑

n∈N

r∑

k∈N
|αik,n|2 < +∞ and

∑

n∈N

r∑

k∈N
|βik,n|2 < +∞. (6.7)

Remark 6.1. In some cases, it may be possible to obtain a sharper bound than (6.5);
see [16, Remark 5.3].

Corollary 6.1. Let
�
(η1k,n)k∈N
�

n∈N, · · · ,
�
(ηmk,n)k∈N
�

n∈N be sequences generated by Algo-
rithm 6.1. Then, for every i ∈ {1, · · · , m} and k ∈ N, (ηik,n)n∈N converges to a point ηik ∈ R,
and
�
(ηik)k∈N
�

1≤i≤m is a solution to Problem 6.1.

Proof. Problem 6.1 is a particular case of Problem 1.1 in which p = 1, ϕ1 = ϕ, and for
every i ∈ {1, · · · , m}, Hi = H = ℓ2(R), fi : H → ]−∞,+∞] : (ηk)k∈N 7→

∑

k∈Nφik(ηk),
and L1i = F∗i . In addition, we derive from (6.5), (1.4), and (6.1) that β4 ≤ β1. Finally, us-
ing [23, Example 2.19], we deduce that Algorithm 6.1 is a particular case of Algorithm 1.1.
The result therefore follows from Theorem 1.2. �

We conclude with a specific instance of Problem 6.1.
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Example 6.1. Let K be a real Hilbert space, let z ∈ K , and let L : G → K be linear and
bounded. Set ϕ = ‖z− L · ‖2/2 and, for every i ∈ {1, · · · , m} and k ∈ N, set φik = wik| · |pi ,
where pi ∈ [1,2] and wik ∈ ]0,+∞[. Then (6.4) becomes

minimize
(η1k)k∈N∈H ,··· ,(ηmk)k∈N∈H

m∑

i=1

∑

k∈N
wik|ηik|pi +

1

2






z − L

� m∑

i=1

∑

k∈N
ηikeik

�




2

. (6.8)

This problem is studied in [37].
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