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Abstract. This work presents a moving mesh methodology based on the solution of
a pseudo flow problem. The mesh motion is modeled as a pseudo Stokes problem
solved by an explicit finite element projection method. The mesh quality requirements
are satisfied by employing a null divergent velocity condition. This methodology is
applied to triangular unstructured meshes and compared to well known approaches
such as the ones based on diffusion and pseudo structural problems. One of the test
cases is an airfoil with a fully meshed domain. A specific rotation velocity is imposed
as the airfoil boundary condition. The other test is a set of two cylinders that move
toward each other. A mesh quality criteria is employed to identify critically distorted
elements and to evaluate the performance of each mesh motion approach. The results
obtained for each test case show that the pseudo-flow methodology produces satisfac-
tory meshes during the moving process.
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1 Introduction

Nowadays for several CFD problems, the fluid domain encloses or is enclosed by mov-
ing boundaries. Thus, when the moving boundary is subjected to a large amplitude
motion, a moving mesh strategy is necessary. Therefore, a mesh motion algorithm has to
be employed throughout a simulation. This algorithm is basically a numerical solver that
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computes and updates mesh node displacements and velocities, evaluated at any given
time step.

The mesh motion algorithm must fulfill three conditions to be efficient and reliable [10,
11]:

• The algorithm must be compatible with the Geometric Conservation Law;

• The mesh after moving must have good quality;

• The computational effort for mesh motion must be small.

The geometric conservation law states that any change in the element control area or
volume between two consecutive time steps must be equal to the area or volume swept
by the cell boundary during these time steps [17, 19]. As a consequence, the geometric
quantities associated to the moving mesh must be computed in a way that the integration
preserves a uniform flow field. Literature shows that the geometric conservation law
can be represented by a null mesh velocity divergent constraint [21]. Also, there are
cases where the non-fulfillment of this constraint leads to numerical instabilities and as a
consequence to wrong flow solutions or spurious results [7, 17].

The first numerical schemes [2, 16] to solve the mesh motion problem modeled the
mesh as a fictitious structure where linear springs were placed between the nodes. The
stiffness of every linear spring is inversely proportional to the distance between the
nodes. The total stiffness of the pseudo structure has the contribution of each linear
spring. Due to the model characteristics, the finite element method (FEM) was a natural
choice for solving the problem. However, this procedure was limited to problems with
small mesh deformations between consecutive time steps because large deformations
may lead to element collapsing.

Other mesh motion approaches compute the mesh displacement field by solving a
diffusion problem. The displacements are associated to nodal velocity field. The prob-
lem formulation is based on the Laplacian of the nodal velocity field. Hence, the Laplace
equations are solved, and the mesh displacements are recovered by multiplying the re-
sulting velocity field by a predefined time step. The main drawback of this method is the
choice of the right diffusivity coefficient to avoid collapsed elements in the moving mesh
process.

Robust mesh motion approaches based on the solution of pseudo structure problems
use the superposition of linear and torsional springs [9]. From the beginning, the linear
and torsional springs method was developed for two-dimensional triangular elements.
Adapting this technique to three-dimensional elements such as tetrahedrons required a
repositioning of the torsional spring action plane which avoids the element face and vol-
ume collapse [6]. For large mesh deformation, distorted element might still be produced
and as a consequence this can lead to numerical stiffness and wrong flow solutions.

In the last few years several works in the literature proposed new mesh motion ap-
proaches employing geometrical function interpolation and mapping to tackle large mesh
deformation problems. For instance, [28] presented a mesh moving algorithm for dy-
namic meshes. A Delaunay graph is generated for the domain to represent the mov-
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ing boundary. The mesh deformation is performed through this graph. The authors
present some test cases. The results showed that this methodology is robust and ade-
quate for large deformations and oscillatory movement. Also, [25] presented a moving
mesh methodology that employs fixed meshes for different configurations of a moving
boundary. In other words, the flow is calculated in a fixed mesh. When the boundary
starts to move, the mesh is changed to another configuration. The authors defined this
method as a fixed Arbitrary Eulerian-Lagrangean (ALE). The mesh domain is defined
by a boundary function that changes the domain during the movement of the boundary.
These functions are level-set functions that hold similarities with the immersed boundary
method. However, this method is classified as a Cartesian grid method what differenti-
ates it from immersed boundary methods. The authors implemented an algorithm with
projection techniques based on a FEM framework. Several test cases were evaluated,
one of them is the lost foam casting in non-Newtonian fluids. The results obtained were
considered satisfactory.

The work in [29] presented a moving mesh methodology based on unstructured meshes
that uses direct and explicit interpolation. The mesh quality is maintained, according to
the authors, even for large deformations. A tree-code style technique is used for interpo-
lation optimization. It is also considered as a point-to-point method The tests presented
by the authors produced reasonable results. The article [24] investigated the computa-
tional cost of a mesh motion algorithm based on the Delaunay graph mapping of the
original mesh. This algorithm contemplates large mesh deformations by using a fast-
locating technique to optimize node repositioning. Also, the algorithm contemplates ad-
vances to determine background regions close to the moving nodes. Triangular meshes
were employed in CFD simulations over moving airfoils and moving aircraft parts. The
results obtained by the authors showed the computational cost and its decrease by opti-
mizing some aspects of the algorithm.

Reference [26] proposed solutions for some issues concerning mesh motion tech-
niques. One of these issues is how to deal with large mesh deformation. This issue limits
the algorithm to small boundary movements, and therefore reduces its applicability. The
authors proposed and discussed a mesh motion algorithm suited for large deformations.
Some cases were studied: a propeller, two falling spheres and a three-dimensional flow
with fluid-structure interaction. The algorithm was able to deal with large deformations
of different mesh sizes and refinement. The work in [27] proposed a mesh motion tech-
nique base on a reduced domain strategy. The mesh is divided into active and inactive
zones, in order to reduce computational costs. The mesh is partitioned and only the nodes
close to a moving boundary are moved. Tests with unstructured meshes were performed,
yielding good results with low computational cost.

The text in [31] presented a mesh motion algorithm that uses base functions and data
reduction. The idea is to allow deformations inside a given tolerance for unstructured
meshes. Within that tolerance, fewer nodes are used and interpolation errors are reduced.
The method is tailored for smooth deformations that are frequently present in aeroelas-
ticity problems. Good results are obtained with low computational cost. Reference [32]
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is a sequence of the previous work. At this time, structured meshes are employed and
tested by the mesh motion algorithm. Three error functions are employed by the algo-
rithm to optimize the mesh deformation. The results showed that the unitary error func-
tion produced the best outcomes. The work in [34] made comparisons among several
mesh motion techniques for ALE methodologies. Three techniques are highlighted: a
biharmonic partial differential equation, a linear-elastic technique and a harmonic partial
differential equation (PDE). All equations are discretized by the Galerkin FEM. This work
employed hexahedral meshes, and tests showed that the biharmonic technique yielded
precise results, but with higher computational cost.

The work in [30] reviewed mesh motion techniques based on the theory of linear elas-
ticity. These techniques do not contemplate rigid body rotation. The authors modified
the linear elasticity technique to be able to perform rigid body rotation. Therefore, the
algorithm became more robust, and large deformations could be achieved. A Galerkin
FEM is employed to discretize the mesh motion equations. Test cases based on Navier-
Stokes CFD solutions were employed. The cases yielded good results, but a real case is
needed to prove the efficiency of this technique. Reference [33] presented a node velocity
field mesh motion technique. Algorithms based on FEM are employed to discretize the
mesh equations. The geometric conservation law is used as a restraint to guarantee good
quality mesh after deformation. The tests yielded reasonable results.

The idea of using a nodal velocity approach to solve mesh motion problems is not
new [20]. One could understand it as a particular case of a pseudo flow problem. The
robustness of its solution can be improved by using a projection FEM as solver. The ad-
vantage of this approach is the possibility of obtaining a final mesh configuration with
better element quality. Projection methods have the characteristic of project the velocity
into a null divergent field [13]. Therefore, this strategy will fulfill the geometric conser-
vation law by default. As a consequence the null divergent constraint may guarantee
mesh quality by avoiding collapsed elements and the flow solution smoothness would
improve. The main difficulty of this methodology is still in the choice of reasonable dif-
fusion coefficient.

The goal of this paper is to present a mesh motion strategy based on a pseudo Stokes
flow problem, discretized by a projection FEM. The main advantages of this technique are
the null divergent constraint which guarantees the mesh quality after the motion, the use
of existing well known and tested numerical methodologies and algorithms now adapted
to solve a mesh motion problem and the possibility to apply to different types of mesh.
The results of the pseudo Stokes mesh motion approach are compared to four other tra-
ditional strategies: Laplacian Operator based on diffusion problems, Linear Spring Anal-
ogy, Torsional Spring Analogy and Linear-Torsional Spring Analogy. Two-dimensional
moving mesh test cases are devised: a rotating rigid airfoil with a prescribed constant ro-
tation velocity and two rigid cylinders moving toward each other with constant velocity.
Mesh quality is assessed by a proper parameter and by observation of the null divergent
constraint.

The structure of this paper is divided in five sections, including introduction as Sec-
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tion 1. Section 2 presents the mesh motion strategies, along its respective numerical meth-
ods. In Section 3, a parameter is introduced to evaluate the mesh quality. The numerical
results are presented in Section 4. Finally, Section 5 presents the main conclusions.

2 Mesh motion algorithms

In a context of fluid flow problems with moving boundaries, parts of the domain will
move, inducing a geometric modification. Considering two-dimensional triangular finite
element meshes, the node position is modified without modifying the element structure.
This geometric modification is defined by the prescribed motion of the moving boundary.
This motion is mathematically performed by a mapping function χt, inside a context of
continuum mechanics theory [18]. Therefore, the mathematical problem can be expressed
by the following statement:

Find x(X,t) such that
L(x)=0 (2.1)

with boundary conditions prescribed on Γw,t (moving boundary). x=xw. L(·) is a math-
ematical operator related to the mapping χt.

The strategies to solve the motion problem lies on two main approaches:

• Node displacement field; (x(t));

• Node velocity field; (w(t));

2.1 Node displacement field

The movement of a elastic pseudo-structural continuum domain is governed by the elas-
todynamic equations [9]:

ρps
∂2x

∂t2
−∇·T= fps (2.2)

with boundary condition set as the prescribed displacement at the moving boundary:

x(t)=x0(t) on Γw,t. (2.3)

Here, x is the displacement field, ρps is the pseudo-structural density, T is the Cauchy
stress tensor and fps is the reaction force vector acting on the domain. The displacement
field must describe a elastic domain who will endure small deformations in order to
satisfy (2.2).

The Cauchy stress tensor relation is given as follows [3, 18]:

T=λ(∇·x)I+2KE, (2.4)

where K is the diffusivity coefficient, λ is a material constant, I and E are the identity and
strain tensors respectively. Replacing on (2.2):

ρps
∂2x

∂t2
−λ∇(∇·x)−2K∇·E= fps. (2.5)
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The strain tensor can be written as follows [18, 23]:

E=0.5(∇x+(∇x)T). (2.6)

Inserting (2.6) in (2.5):

ρps
∂2x

∂t2
−(λ+K)∇(∇·x)−K∇2x= fps. (2.7)

Neglecting reaction forces and considering no volumetric variation of the domain (i.e.,
∇·x=0):

ρps
∂2x

∂t2
−K∇2x=0. (2.8)

The role of the diffusivity coefficient will be discussed in the next section.

2.2 Node velocity field

The governing equations for a laminar incompressible time-dependent pseudo-flow in a
continuum domain are given by:

∇·w=0, (2.9a)

∂w

∂t
+w·∇w=− 1

ρp f
∇p+νp f ∇2w+ fp f . (2.9b)

Here, w, e, p are the velocity and pressure fields, ρp f e νp f are the density and kinematic
viscosity and fp f is the body force term. The boundary conditions are defined at Γp f =
Γd

⋃

Γw,t
⋃

Γo, such as:

w(x,t)=w on Γw,t, p(x,t)= pre f on Γo. (2.10)

Γw,t represents the moving boundary. Γo is the boundary where a reference pressure pre f

is prescribed.
The Stokes problem, also known as creeping flow problem, is defined by predom-

inance of viscous forces over convective forces [1, 12]. As a consequence, the velocity
w and the length scales related to the flow are small. Under these circumstances and
admitting absence of body forces, (2.9b) becomes:

∂w

∂t
−νp f∇2w=− 1

ρp f
∇p. (2.11)

The diffusivity coefficient for displacement and velocity fields (K and νp f ) have the
utmost importance for this strategy, since its value yields adequate element deforma-
tion [20]. If one sets them as 1, a true Laplacian problem is recovered. The choice the dif-
fusivity coefficient determines the final mesh state. A direct Laplacian smoothing tends
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to distort small elements, while variable diffusivity coefficients tend to diminish this ef-
fect. These coefficients can be based on associating larger mesh velocity gradients to
larger elements, or on the distance to the moving boundary. Adequate coefficient values,
as well as strategies of variable diffusivity coefficient are well known at the literature for
edge-based and element-based algorithms [20].

The diffusivity can be varied based on the distance between the node and the moving
boundary. In general, small distances lead to large diffusivity values and large distances
result in small diffusivity values [20]. Its model is formulated as a function of the distance
l to the nearest moving boundary [15]. The present work employs a variable diffusivity
for the node velocity field and an imposed diffusivity for the node displacement field.
Node velocity calculation is stabilized with the proper choice of a viscosity value com-
patible with the time step for the projection method, such as:

νp f =
h2

2∆t
, (2.12)

where h is the element dimension, given as twice the element area. The advantage of us-
ing a variable diffusivity is to avoid local quality degeneration. This diffusivity coefficient
will enclose the deformation at the internal part of the mesh.

3 Discretization

3.1 Pseudo structure solution

The node displacement strategy treats the mesh as a dynamic system, with fictitious
mass, damping, and stiffness matrices. Its mechanical behavior is, after discretization,
governed by [2, 6]:

L(x)=Mẍ+Cẋ+Kx−R, (3.1)

where M, C and K are the mass, damping and stiffness matrices. The vector R is the
reaction force. For a quasi-static model, mass and damping matrices can be neglected,
resulting in:

L(x)=Kx−R. (3.2)

The construction of these matrices is made by association with a discrete mechanical
system by [9]:

• Lumping the mass matrix at the vertex;

• Lumping the damping matrix between two vertices;

• Adding pseudo-springs between two vertices or at the vertex.

A fictitious linear spring is set on each edge connecting two given vertices (Fig. 1)
and a fictitious torsional spring is attached to each vertex. The quasi-static formulation
is used because the motion equations obey the kinematic compatibility between flow



L. G. Noleto et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 194-211 201

Figure 1: Fictitious Springs at the nodes.

and structure. Therefore, it is suited for flow-structure problems. This compatibility will
determine how the mesh position x at the moving boundary will relate with the mesh
velocity in any given time step ∆t, such as:

xΓw,t =∆t wΓw,t . (3.3)

For one of the test cases of the present work the boundary nodes have a uniform rotation
movement of radius r with a constant angular velocity ω:

wΓw,t =ωr. (3.4)

The stiffness matrix and the reaction force vector can be divided in parts related to the
internal (I) and external (E) mesh degrees of freedom:

[

KEE KEI

KIE KI I

][

xE

xI

]

−
[

RE

RI

]

=L(x). (3.5)

Eq. (3.5) is solved with a null force condition at the internal mesh nodes (RE=0). Besides,
a quasi-static model is used accordingly with Eq. (3.2). The stiffness matrix is built using
the improved spring analogy method from [8]. Therefore, based on the pseudo-structural
methodology, three methods are tested [9]:

• Linear Springs;

• Torsional Springs;

• Linear-Torsional Springs.

Stiffness for the linear and torsional methods is calculated by geometric parame-
ters [9]. For moving boundary problems of small and medium scale, the solution strategy
involves direct methods for linear system resolution, due to its simplicity and robustness.
Mesh position xn+1 is updated by the sum of the mesh displacement vector to the previ-
ous configuration xn, such as [9]:

xn+1= xn+

[

xE

xI

]

. (3.6)
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3.2 Pseudo-Stokes projection algorithm

An explicit methodology is employed to solve Eqs. (2.9a) and (2.11). One can consider a
set of known variables at time t, given by (wn, pn, xn). The solution on time t+∆t, given
by (wn+1, pn+1, xn+1) is obtained by segregation of velocity and pressure calculations:

1

∆t
(w∗−wn)=− 1

ρp f
∇pn+νn

p f∇2wn, (3.7a)

1

∆t
(wn+1−w∗)=− 1

ρp f
∇(pn+1−pn), (3.7b)

∇·wn+1=0. (3.7c)

The fractional step algorithm introduces a predicted velocity w∗, that will be corrected at
the end of each step. One can obtain a Poisson equation for the pressure and its respective
boundary condition:

∇2(pn+1−pn)=
ρp f

∆t
∇·w∗, (3.8a)

∇(pn+1−pn)·n=
ρp f

∆t
w∗ ·n on Γ. (3.8b)

The projection method described here is called Incremental Projection Scheme. This
method is a modification of the version proposed by [4], which improves convergence
as reported in the literature [5, 14]. By considering the finite element space dimension
equals to N and defining base functions as:

Ni : i=1,··· ,N, Nj : j=1,··· ,N. (3.9)

The matrix form of the discrete finite element problem is:

1. Predict velocity by Momentum equation:

M·∆w∗=F∗
w(w

n,sn, pn); (3.10)

2. Pressure-Poisson problem:

A ·∆p=Fp(w
∗); (3.11)

3. Velocity correction:

M·∆wn+1=Fw(∆p); (3.12)

4. Mesh Update:

xn+1=xn+wn+1
∆t, (3.13)

where s is the weight function, used in a FEM framework. For Eqs. (3.10)-(3.13), the
matrices M and A are the mass and Laplacian matrices, respectively, and given as follows:

Mij =
1

∆t
(Ni,Nj); Ai,j=(∇Ni,∇Nj). (3.14)
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The vectors F∗
w, Fp and Fw are related to the right hand side discretization through Steps

1-3. The boundary integral terms concerning the boundary conditions are included on
these vectors.

An advantage of this numerical scheme resides on the mass matrix. This matrix is
lumped in a diagonal form, and it is mounted only when the mesh position is updated.
(3.11) is solved by a preconditioned conjugate gradient, where the preconditioner is the
Cholesky partial factorization.

4 Mesh quality

Meshing process is defined as the division of any given domain into smaller elements.
This division aims to allow numerical solution of a differential equation at this domain by
replacing it into a set of algebraic equations. Mesh generation is an important part of pre-
processing procedure. A high quality meshing process is necessary when one performs a
simulation with a moving mesh. Therefore, an evaluation method must be implemented
to assess the quality of every element. The present paper will use the work of [22], which
consists in evaluating the element quality with respect to the equilateral simplex, as the
reference of a element that is not distorted or collapsed. For a 2D triangular element, the
quality is expressed as:

q= f
A

a2+b2+c2
, (4.1)

where A is the area, a, b and c are the lengths of the element sides and f = 4/
√

3 is a
normalizing factor which levels the quality of an equilateral triangle to 1. This parameter
is calculated for every element. It is important to indicate which values of q are adequate
to ensure an accurate calculation.

Fig. 2(a) shows an equilateral triangle that has a quality equal to one. On Figs. 2(b)
and 2(c), deformed triangles are shown, with quality values equal to 0.7 and 0.5. One
can note that the last triangle (Fig. 2(d)) is highly deformed, almost collapsed. Such an
exaggerated deformation can lead to inaccurate calculations. Based on that result, an
important consideration can be stated: if the quality drops to very small values after
deformation, then the flow solution can be compromised by the element shape. However,
this quality evaluation method is only employed to show how the element shapes are
modified after the mesh motion process. Further conclusions about the flow solutions
related to the different levels of mesh quality, here introduced, are not possible, and more
investigation is still necessary.

The geometric conservation law represents another way to evaluate mesh quality. As
stated before, the computation of geometric quantities associated with a moving mesh
must be computed in a way that preserves a uniform flow field. The conservation law
starts by application of the integral form of the mass conservation equation on the ele-
ment. Hence, one can conclude after some mathematical manipulation that the geometric
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(a) q=1.0 (b) q=0.7

(c) q=0.5 (d) q=0.01

Figure 2: Mesh elements with different quality values.

conservation law can be represented by the following condition [21]:

∇·w=0. (4.2)

The main conclusion of Eq. (4.2) is the maintenance of a mesh velocity null divergent
field. Therefore, it represents a necessary condition to recover uniform flow after mesh
movement.

5 Results

Fig. 3 shows the deformed meshes of the airfoil for each methodology. Every node on the
airfoil was set to move to the final angle of attack of 30 degrees, and the rotation center is
on the trailing edge of the airfoil. One can note that some methodologies presented dif-
ferent shapes of deformed elements at the surroundings of the airfoil. The Laplacian and
Linear Springs methodologies presented a small number of flattened elements above the
airfoil. At the leading edge, the Linear Spring methodology presented elements with in-
valid triangulation [8]. This result caused the interruption of the simulation. One can note
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(a) Undeformed Mesh – Airfoil (b) Laplacian Operator

(c) Linear (d) Torsional

(e) Linear-Torsional (f) Pseudo-Stokes

Figure 3: Deformed meshes – Airfoil.

that wall nodes squeezed the elements at the Torsional and Linear-Torsional methodolo-
gies. This is a proof that these motion strategies are not moving the mesh with invalid
triangulations. Below the airfoil, elements of the previously mentioned methodologies
seem less stretched than the remaining ones. Base nodes of elements below the airfoil re-
main static, while nodes closer to the lower camber of the airfoil move with it. Torsional,
Linear-Torsional and Pseudo-Stokes methodologies show higher number of flattened ele-
ments when compared to previous methodologies, with slightly more stretched elements
below the airfoil.
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(a) Undeformed Mesh-Moving Cylinders (b) Laplacian Operator

(c) Linear (d) Torsional

(e) Linear-Torsional (f) Pseudo-Stokes

Figure 4: Deformed meshes – Moving Cylinders.

Fig. 4 shows deformed meshes of cylinders for each methodology. The cylinders were
set to move toward each other to the limit before happening negative area elements.
Laplacian and Linear Springs have less flattened elements between the cylinders. This
result is a consequence of invalid triangulation, causing the simulation to stop again. One
can observe the Torsional, Linear-Torsional and Pseudo-Stokes methodologies show less
stretched elements behind the cylinders. For these methodologies, there are squeezed ele-
ments between the cylinders, but with no sign of invalid triangulation. One can note that
cylinders for Torsional, Linear-Torsional and Pseudo-Stokes methodologies were able to
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(a) Laplacian Operator (b) Linear

(c) Torsional (d) Linear-Torsional

(e) Pseudo-Stokes

Figure 5: Quality Parameter – Airfoil.

come closer. From the computational point of view, one can observe that the Pseudo-
Stokes employs extra time to accomplish the full mesh motion test, when compared to
the Torsional and the Linear-Torsional methodologies that are also able to fulfill the mesh
motion task but with greater number of distorted elements. The extra time spent by the
Pseudo Stokes is necessary to ensure the node velocity field with a zero divergent value,
and also justified because the numerical scheme used is an explicit one. The performance
of the Pseudo Stokes method in time can be improved by using an implicit numerical
scheme.

Figs. 5 and 6 show the mesh quality parameter plotted for each methodology applied
to the airfoil and the cylinders after movement. Tables 1 and 2 show its minimum val-
ues. Laplacian and Linear methods show elements with quality below 0.5 at the trailing
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(a) Laplacian Operator (b) Linear

(c) Torsional (d) Linear-Torsional

(e) Pseudo-Stokes

Figure 6: Quality Parameter – Moving Cylinders.

edge and between the cylinders. Torsional, Linear-Torsional and Pseudo-Stokes methods
presented elements with better quality at the same locations. As seen previously, qual-
ity values that will compromise the flow solution are far below 1. Further studies must
be executed to determine minimum quality values that ensure good flow solution. Poor
quality mesh results computed with the Laplacian and the Linear methods were evident
by the invalid triangulation obtained. An important point to be highlighted here is that
the mesh quality is also related to the physical problem to be solved. Fluid and structure
problems demand different types of meshes. For example, fluid problems, specially for
turbulent flows near walls, the mesh quality is very important. Therefore, other mesh
quality evaluation methods still need to be considered and tested.
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Table 1: Minimum q and maximum mesh velocity divergence – rotating airfoil.

Min q Max ∇·w
Laplacian Operator 2,53E-02 9,08E-06

Linear 2,53E-04 9,76E-06
Torsional 0,25 9,78E-06

Linear Torsional 0,28 7,80E-06
Pseudo-Stokes 0,48 9,80E-06

Table 2: Minimum q and maximum mesh velocity divergence – moving cylinders.

Min q Max ∇·w
Laplacian Operator 5,32E-03 8,00E-06

Linear 1,73E-02 7,08E-06
Torsional 0,2 8,90E-06

Linear Torsional 0,27 9,00E-06
Pseudo-Stokes 0,4 8,00E-06

Tables 1 and 2 also show the maximum mesh velocity divergent calculated for each
methodology along the simulation for both cases. One can note that mesh velocity diver-
gent values are very low, never going above 10−5. The null divergent constraint can be
understood as a quality parameter showing that these kinds of elements fulfill the geo-
metric conservation law. Torsional, Linear-Torsional and Pseudo-Stokes methodologies
show values closer to zero when compared to the remaining ones. The Pseudo-Stokes
methodology has as one of its advantage the null velocity field divergent constraint. In
order to satisfy this constraint, an adequate value for the mesh viscosity must be com-
puted and a small time step has to be employed to guarantee stability of the explicit
projection FEM. Nevertheless, further studies need to be conducted to enhance stability
of the projection FEM scheme.

6 Conclusions

In this work a pseudo-Stokes methodology is employed to solve two mesh motion test
cases and compared to four other methodologies: Laplacian Operator, Linear Springs,
Torsional Springs and Linear-Torsional Springs.

Results for both test cases showed that the majority of methodologies were able to
move meshes reasonably. Visual mesh results obtained for these methodologies show
that the airfoil has moved to a position of 30 degrees with apparently satisfactory result-
ing final meshes. It was noted that the Linear methodology provided invalid triangu-
lations for the upper part of the airfoil, and the full rotation movement was not accom-
plished. For the cylinders, invalid triangulations happened for the Laplacian and the
Linear methodologies. The remaining methodologies produced good quality elements.



210 L. G. Noleto et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 194-211

Despite demanding adequate mesh viscosity the Pseudo-Stokes strategy completed ev-
ery test case with the best mesh quality indicator. The Pseudo Stokes method satisfy the
geometric conservation law because the restriction of node velocity field zero divergent.
One can also state that the main advantages of the Pseudo-Stokes methodology are the
mesh velocity zero divergent, the use of existing numerical algorithms and the possibility
of application to different types of mesh.

Based on these results, the Pseudo-Stokes strategy showed great potential. However,
future studies must be done in order to improve the methodology and solve few short-
coming.
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