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Abstract. In this paper we find the solution of linear as well as nonlinear fractional
partial differential equations using discrete Adomian decomposition method. Here
we develop the discrete Adomian decomposition method to find the solution of frac-
tional discrete diffusion equation, nonlinear fractional discrete Schrodinger equation,
fractional discrete Ablowitz-Ladik equation and nonlinear fractional discrete Burger’s
equation. The obtained solution is verified by comparison with exact solution when
α=1.
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1 Introduction

Fractional differential equations have been the focus on many studies due to their fre-
quent appearance in various fields such as physics, chemistry and engineering. The frac-
tional derivative has been occurring in many physical problems such as frequency de-
pendent damping behavior of materials, motion of a large thin plate in Newtonian fluid,
creep and relaxation functions for viscoelastic material, the PIλDµ controller for the con-
trol of dynamical systems etc. Phenomena in electromagnetic, acoustics, viscoelasticity,
electrochemistry and material science are also described by differential equations of frac-
tional order [30]. The applicability of this type of equations motivates us to construct
efficient methods for solving fractional differential equations. The popular among them
are integral transform method [30,32], iterative method [13,19], and Adomian decompo-
sition method [4, 5, 17].
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Adomian decomposition method is introduced by Adomian and [4,5] has been proven
a very useful tool to deal with nonlinear equations. Wazwaz [39] has applied Adomian
decomposition method to solve variety of differential equations. While Shawagfeh [34]
has employed Adomian decomposition method for solving nonlinear fractional differ-
ential equations, Daftardar-Gejji and Jafri have obtained solution of numerous prob-
lems [12,25] by using Adomian decomposition method. Also Dhaigude and Birajdar [18]
extended the discrete Adomian decomposition method for obtaining the numerical solu-
tion of system of fractional partial differential equations.

Recently fractional diffusion equations have attracted attention of many researchers
due to its wide applicability both in the theory of mathematical science and technology.
They have been used in modelling many physical and chemical processes, heat, mass or
electron transfer, pollutants or liquid transport through porous media and engineering
problems. Fractional diffusion equations account for typical anomalous feature which
is observed in many systems, e.g., the dispersive transports in amorphous semiconduc-
tors, porous medium, colloid, proteins, biosystems or even in ecosystems [21, 22, 24, 29].
The recent papers [14, 23, 31] on fractional diffusion equations are valuable in this field.
Wyss [38] considered the time fractional diffusion equation and the solution is given in
closed form in terms of Fox function. Schneider and Wyss [33], Dhaigude and Nikam [20]
considered the time fractional diffusion equation and wave equation and obtained their
solutions. Existence and uniqueness of solution of fractional diffusion equations are well
studied by Dhaigude [16]. We develop the discrete Adomian decomposition method for
fractional discrete diffusion equation.

The nonlinear Schrodinger equation for integer order [15, 27] is a typical dispersive
nonlinear partial differential equation that plays a key role in a variety of areas in mathe-
matical physics. Wazwaz employed Adomian decomposition method for solving differ-
ent types of integer order Schrodinger equation in [36, 37]. Kaya and El-Sayed [26] have
solved coupled Schrodinger-KdV equation for integer order using Adomian decompo-
sition method. The Ablowitz-Ladik equation is discovered and studied by Ablowitz-
Ladik in [1, 2]. It is the particular case of Schrodinger equation the nonlinear term in the
Schrodinger equation is replaced by space discrete form. Bratsos et al. [9] proposed the
discrete Adomian decomposition method for the solution of integer order Schrodinger
equation. We extend discrete Adomian decomposition method to obtain the numerical
solution of nonlinear fractional discrete Schrodinger equation.

In 1915, Bateman [7] studied the Burger’s equation which was introduced by
Burger [10] in a mathematical modeling of turbulence, and hence it is referred as ”one
dimensional Burger’s equation” which has applications in physics, fluid dynamics, gas
dynamics, heat conduction etc. This equation arises in the theory of shock waves, in
turbulence problems and in continuous stochastic processes, gas dynamics, heat con-
duction, elasticity [6, 8]. Abbasbandy and Darvishi [3] developed the Adomian decom-
position method for numerical solution of Burger’s equation for integer order. Zhu et
al. [40] obtained the solution of two dimension integer order Burger’s equation by using
discrete Adomian decomposition method. We develop the discrete Adomian decompo-
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sition method for the solution of nonlinear fractional discrete Burger’s equation.
We organize the paper as follows. In Section 2, we define preliminary definitions

which are useful for development of our results. Section 3, is devoted for finding the solu-
tion of fractional discrete diffusion equation and solution is compare with exact solution
when α=1. In Section 4 we find the solution of discrete nonlinear fractional Schrodinger
equation as well as discrete fractional Ablowitz-Ladik equation (a particular case of dis-
crete fractional Schrodinger equation). In the last section we obtain the solution of non-
linear fractional discrete Burger’s equation.

2 Preliminaries and notations

In this section, we set up notations, basic definitions and main properties of Riemann-
Liouville integral, and the relation between Riemann-Liouville integral and Caputo frac-
tional derivative is also given.

Definition 2.1. (see [28]) A real function f (x), x>0 is said to be in space Cα, α∈ℜ if there
exists a real number p>α such that f (x)= xp f1(x), where f1(x)∈C[0,∞).

Definition 2.2. (see [28]) A function f (x), x> 0 is said to be in space Cm
α , m∈ N

⋃

{0} if
f m ∈Cα.

Definition 2.3. (see [30]) Let f ∈Cα and α≥−1, then Riemann-Liouville fractional integral
of f (x,t) with respect to t of order α is denoted by Jα f (x,t) and is defined as

Jα f (x,t)=
1

Γ(α)

∫ t

0
(t−τ)α−1 f (x,τ)dτ, t>0, α>0.

The well known property [30] of the Riemann-Liouville operatorJα is

Jαtγ =
Γ(γ+1)tγ+α

Γ(γ+α+1)
.

Definition 2.4. (see [11]) For m to be the smallest integer that exceeds α>0, the Caputo
fractional derivative of u(x,t) with respect to t of order α>0 is defined as

Dα
t u(x,t)=

∂αu(x,t)

∂tα
=















1

Γ(m−α)

∫ t

0
(t−τ)m−α−1 ∂mu

∂tm
dτ, for m−1<α<m,

∂mu(x,t)

∂tm
, for α=m∈N.

Note that the relation between Riemann-Liouville operator and Caputo fractional dif-
ferential operator is given as follows

Jα(Dα
t f (x,t))= Jα(Jm−α f (m)(x,t))= Jm f (m)(x,t)= f (x,t)−

m−1

∑
k=0

f (k)(x,0)
tk

k!
.
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3 Fractional discrete diffusion equation

Consider the time fractional space discrete diffusion equation

Dα
t uj(t)=D2

huj(t)+ jhDhuj(t)+uj(t), 0<α≤1, (3.1a)

with initial condition uj(0)= f j. (3.1b)

It is called discrete initial value problem (IVP). Suppose that ∆x = h and the function
u(x,t) = u(j∆x,t) is the discrete function and is denoted by uj(t). Similarly the func-
tion f (x,0)= f (j∆x) is the discrete function denoted by f j. The standard central differ-
ences [35] Dhuj(t) and D2

huj(t) are defined by

Dhuj(t)=
uj+1(t)−uj−1(t)

2h
, D2

huj(t)=
uj+1(t)−2uj(t)+uj−1(t)

h2
.

Note that initial value problem (3.1a)-(3.1b) is the discrete form of initial value problem
for diffusion equation

Dα
t u(x,t)=Duxx(x,t)+

∂

∂x
(G(x)u(x,t)), 0<α≤1, D>0, (3.2a)

with initial condition u(x,0)= f (x), (3.2b)

where Dα
t u(x,t) is Caputo fractional derivative of order α. In this problem we consider

D=1 and G(x)= x.
Using Adomian procedure we assume that Eq. (3.1a) has series solution

uj(t)=
∞

∑
n=0

ujn(t), (3.3)

where ujn(t) (n ≥ 0) is the approximation of uj(t). Now, operating Jα on both sides of
Eq. (3.1a) and using Eq. (3.3), we get

∞

∑
n=0

ujn(t)= f j+ Jα
( ∞

∑
n=0

D2
hujn(t)+

∞

∑
n=0

jhDhujn(t)+
∞

∑
n=0

ujn(t)
)

,

where

uj0(t)= f j,

uj1(t)= Jα
[

D2
huj0(t)+ jhDhuj0(t)+uj0(t)

]

,

uj2(t)= Jα
[

D2
huj1(t)+ jhDhuj1(t)+uj1(t)

]

,··· ,

ujn+1(t)= Jα
[

D2
hujn(t)+ jhDhujn(t)+ujn(t)

]

,

and so on.
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Example 3.1. Consider the time fractional diffusion equation

Dα
t u(x,t)=uxx(x,t)+xux(x,t)+u(x,t), 0<α≤1, (3.4a)

with initial condition u(x,0)= x. (3.4b)

The discrete form of initial value problem (3.4a)-(3.4b) is

Dα
t uj(t)=D2

huj(t)+ jhDhuj(t)+uj(t), 0<α≤1,

and initial condition uj(0)=(jh).

By using above procedure, we compute first few approximations

uj0(t)= jh, uj1(t)=(jh)
2tα

Γ(α+1)
, uj2(t)=(jh)

22t2α

Γ(2α+1)
,

uj3(t)=(jh)
23t3α

Γ(3α+1)
, ··· , ujn(t)=(jh)

2ntnα

Γ(nα+1)
.

On summing, we get

uj(t)=
∞

∑
n=0

(jh)
2ntnα

Γ(nα+1)
=(jh)Eα(2tα),

where Eα is Mittag-Leffler function.

In Fig. 1, we plot the solution uj(t) for different values of α and show that method has
good agreement with the exact solution when α=1.
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Figure 1: Numerical solution of Example 3.1 when t=0.01.



112 D. B. Dhaigude and G. A. Birajdar / Adv. Appl. Math. Mech., 6 (2014), pp. 107-119

4 Nonlinear fractional discrete Schrodinger equation

The time fractional space discrete nonlinear Schrodinger equation

iDα
t uj(t)+D2

huj(t)+q|uj(t)|
2uj(t)=0, t>0, 0<α≤1, (4.1a)

with initial condition uj(0)= f j, (4.1b)

is called discrete initial value problem.
Note that initial value problem (4.1a)-(4.1b) is the discrete form of fractional initial

value problem for Schrodinger equation

iDα
t u(x,t)+uxx(x,t)+q|u|2u=0, (4.2a)

with initial condition u(x,0)= f (x). (4.2b)

The Schrodinger Eq. (4.2a) together with initial condition (4.2b) is called initial value
problem.

Applying the operator Jα on Eq. (4.1a) and using initial condition, we have

uj(t)= f j+iJα
(

D2
huj(t)+q|uj(t)|

2uj(t)
)

. (4.3)

From the Adomian decomposition method the linear term uj(t) and the nonlinear term
should be decomposed by an infinite series of components such as

uj(t)=
∞

∑
n=0

ujn(t) (4.4)

and

|uj(t)|
2uj(t)=

∞

∑
n=0

An, (4.5)

respectively. Note that ujn(t), (n≥0) is the approximation of uj(t) and those will be ele-
gantly determined whereas An (n≥0) be Adomian polynomials those can be generated
for all forms of nonlinearity. Substituting these decomposition in Eq. (4.3), we obtain

∞

∑
n=0

ujn(t)= f j+iJα
( ∞

∑
n=0

D2
hujn(t)+q

∞

∑
n=0

An

)

. (4.6)

Since uj0(t) is identified by the initial data f j and using the following recurrence relations
we find the remaining approximations as follows

uj0(t)= f j,

uj1(t)= iJα
[

D2
huj0(t)+qA0

]

,

uj2(t)= iJα
[

D2
huj1(t)+qA1

]

,··· ,

ujn+1(t)= iJα
[

D2
hujn(t)+qAn

]

, n=0,1,2,··· ,
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where the Adomian polynomials is defined as

An =
1

n!

[ dn

dλn
M
( ∞

∑
k=0

λkujk(t)
)]

λ=0
, n≥0. (4.7)

Example 4.1. Consider the nonlinear fractional Schrodinger equation

iDα
t u(x,t)+uxx(x,t)+q|u(x,t)|2u(x,t)=0, t>0, 0<α≤1, (4.8a)

with initial condition u(x,0)= eikx . (4.8b)

The discrete form of initial value problem (4.8a)-(4.8b) is

iDα
t uj(t)+D2

huj(t)+q|uj(t)|
2uj(t)=0, j∈Z, t>0, 0<α≤1, (4.9a)

and initial condition uj(0)= eijkh . (4.9b)

Here the nonlinear term is |uj(t)|
2uj(t)=u2

j (t)ūj(t) which is decomposed as an Adomian

polynomials. We compute first few Adomian polynomial for the given nonlinear term as
follows

A0=u2
j0(t)ūj0(t),

A1=2uj0(t)uj1(t)ūj0(t)+u2
j0(t)ūj0(t),

A2=2uj0(t)uj2(t)ūj0(t)+u2
j1(t)ūj0(t)+2uj0(t)uj1(t)ūj1(t)+u2

j0(t)ūj2(t),

A3=2uj0(t)uj3(t)ūj0(t)+uj1(t)uj2(t)ūj0(t)+uj0(t)uj2(t)ūj1(t)

+uj0(t)uj1(t)ūj2(t)+u2
j1ūj1(t)+u2

j0(t)ūj3(t)+··· .

Here we calculate the components uj1(t),uj2(t),uj3(t),··· , as

uj0(t)= eijkh ,

uj1(t)= iJα
[

D2
huj0(t)+qA0)

]

=−
iweijkhtα

Γ(α+1)
,

uj2(t)= iJα
[

D2
huj1(t)+qA1)

]

=
−1

2
w2eijkh t2α

Γ(2α+1)
,

uj3(t)= iJα
[

D2
huj2(t)+qA2)

]

=
i

6
w3eijkh t3α

Γ(3α+1)
,

and so on. Finally summing up the iterates yield

uj(t)=
∞

∑
n=0

ujn(t)= eijkhEα(−iwtα).

Ablowitz-Ladik equation: The Ablowitz-Ladik equation [1, 2] is the particular case of
Schrodinger equation. The nonlinear term in the Eq. (4.1a) is replaced by discrete form
as |uj(t)|

2(uj+1(t)−uj−1(t))/2.
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Consider the fractional discrete Ablowitz-Ladik equation

iDα
t uj(t)+D2

huj(t)+q|uj(t)|
2 uj+1(t)−uj−1(t)

2
=0, t>0, 0<α≤1, (4.10a)

with initial condition uj(0)= f j, (4.10b)

it is called discrete initial value problem. Now, we consider the particular example as
follows.

Example 4.2. Consider the fractional discrete Ablowitz-Ladik equation

iDα
t uj(t)+D2

huj(t)+q|uj(t)|
2 uj+1(t)−uj−1(t)

2
=0 (4.11a)

and initial condition uj(0)= eijkh. (4.11b)

First we calculate the Adomian polynomials for given nonlinear term as follows

A0=uj0(t)
uj+10(t)+uj−10(t)

2
ūj0(t),

A1=
[

uj0(t)
uj+11(t)+uj−11(t)

2
+

uj+10(t)+uj−10(t)

2
¯uj1(t)

]

ūj2(t)

+uj0(t)
uj+11(t)+uj−11(t)

2
ūj1(t),

A2=
[

uj0(t)
uj+12(t)+uj−12(t)

2
+

uj+10(t)+uj−10(t)

2
uj2(t)

]

ūj0(t)

+uj1(t)
uj+11(t)+uj−11(t)

2
ūj0(t)

+
[

uj0(t)
uj+11(t)+uj−11(t)

2
+

uj+10(t)+uj−10(t)

2
uj1(t)

]

ūj1(t)

+uj0(t)
uj+10(t)+uj−10(t)

2
ūj2(t).

Here we find first few approximations as follows:

uj0= f j = eijkh,

uj1(t)= iJα
[

D2
huj0(t)+qA0

]

=
−iwtα

Γ(α+1)
eijkh,

uj2(t)= iJα
[

D2
huj1(t)+qA1

]

=
−1

2

w2t2α

Γ(2α+1)
eijkh,

uj3(t)= iJα
[

D2
huj2(t)+qA2

]

=
i

6

w3t3α

Γ(3α+1)
eijkh,

and so on. Summing all terms we get

uj(t)=
∞

∑
n=0

ujn(t)= eijkhEα(−iwtα).
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Figure 2: Numerical solution of Example 4.2 when t=0.01.

5 Nonlinear fractional discrete Burger’s equation

Consider the time fractional space discrete nonlinear Burger’s equation

Dα
t uj(t)+uj(t)Dhuj(t)=D2

huj(t) (5.1a)

with initial condition uj(0)= f j. (5.1b)

It is called discrete initial value problem.
Note that the initial value problem (5.1a)-(5.1b) is the discrete form of initial value

problem for nonlinear fractional Burger’s equation

Dα
t u(x,t)+u(x,t)ux(x,t)=uxx(x,t), t>0, x∈ℜ, 0<α≤1 (5.2)

with initial condition
u(x,0)= f (x). (5.3)

Now, operating the operator Jα on Eq. (5.1a) and using initial condition (5.1b), we get

uj(t)= f j− Jα
[

uj(t)Dhuj(t)−D2
huj(t)

]

. (5.4)

The nonlinear operator in Eq. (5.4) can be defined as

M(uj(t))=uj(t)Dhuj(t). (5.5)

Substituting Eq. (5.5) in Eq. (5.4), we have

uj(t)= f j− Jα(M(uj(t))−D2
huj(t)). (5.6)

As per Adomian procedure, the linear terms uj(t) and the nonlinear term M(uj(t))
should be decomposed by an infinite series of components such as

uj(t)=
∞

∑
n=0

ujn(t) (5.7)
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and

M(uj(t))=
∞

∑
n=0

An,

respectively, where An is an Adomian polynomials. Using zeroth component the remain-
ing components can be determined by using the recurrence relations as follows:

uj0(t)= f j, (5.8a)

ujn+1(t)=−Jα(An)+ Jα(D2
hujn(t)), n≥0. (5.8b)

We obtain first few terms of Adomian polynomials An which are given as follows:

A0=(Dhuj0(t))uj0(t),

A1=(Dhuj0(t))uj1(t)+(Dhuj1(t))uj0(t),

A2=(Dhuj0(t))uj2(t)+(Dhuj1(t))uj1(t)+(Dhuj2(t))uj0(t),

A3=(Dhuj0(t))uj3(t)+(Dhuj1(t))uj2(t)+(Dhuj2(t))uj1(t)+(Dhuj3(t))uj0(t),

and so on.
By using above recurrence relations we obtain uj1(t),uj2(t),··· , and its solution is

uj(t)=uj0+uj1(t)+uj2(t)+··· .

Example 5.1. Consider the nonlinear fractional Burger’s equation

Dα
t u(x,t)+u(x,t)ux(x,t)=uxx(x,t), t>0, x∈ℜ, 0<α≤1, (5.9a)

u(x,0)=sinx. (5.9b)

The discrete form of initial value problem (5.9a)-(5.9b) is

Dα
t uj(t)+uj(t)Dhuj(t)=D2

huj(t)

with initial condition uj(0)=sin jh.

Here we find first few iteration

uj0(t)=sin(jh),

uj1(t)=
[−1

2h
sin(2jh)sin(h)+v

2(1−cos(h))

h2
sin(jh)

] tα

Γ(α+1)
,

uj2(t)=
[ 1

4h

( sin(h)

h

)2
(sin(3jh)+sin(jh))+v

( 2(cos(h)−2)

h2

)2
sin(h)

] t2α

Γ(2α+1)
+··· ,

and so on. The solution of above initial value problem is

uj(t)=uj0(t)+uj1(t)+uj2(t)+··· .
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Figure 3: Numerical solution of Example 5.1 when t=0.01.

6 Conclusions

The discrete Adomian decomposition method is successfully applied to find the solutions
of linear as well as nonlinear fractional partial differential equations. The efficiency and
accuracy of the proposed method is demonstrated by test problems. It may also be a
promising method to solve other nonlinear partial differential equations.
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