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Abstract. Floor field methods are one of the most popular medium-scale navigation
concepts in microscopic pedestrian simulators. Recently introduced dynamic floor
field methods have significantly increased the realism of such simulations, i.e. agree-
ment of spatio-temporal patterns of pedestrian densities in simulations with real world
observations. These methods update floor fields continuously taking other pedestri-
ans into account. This implies that computational times are mainly determined by the
calculation of floor fields. In this work, we propose a new computational approach for
the construction of dynamic floor fields. The approach is based on the one hand on
adaptive grid concepts and on the other hand on a directed calculation of floor fields,
i.e. the calculation is restricted to the domain of interest. Combining both techniques
the computational complexity can be reduced by a factor of 10 as demonstrated by sev-
eral realistic scenarios. Thus on-line simulations, a requirement of many applications,
are possible for moderate realistic scenarios.
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1 Introduction

The study of pedestrian crowd dynamics is an emerging field in complexity science
[18, 35, 36, 42, 52]. Theoretical insights into crowd behaviour are valuable sources for
improving such diverse fields as the operation of large buildings and infrastructures, the
optimization of passenger exchange times, or the optimization of egress strategies [52].
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With respect to these applications the realism of the underlying models is of crucial im-
portance, since it ultimately determines the utility and reliability of computational pre-
dictions [44]. For a broad overview on the topic of pedestrian crowd simulations we refer
e.g. to [2, 3, 23, 30, 46, 52].

Theoretical approaches to pedestrian crowds either adopt a density based description
(e.g. [7, 10, 12, 13, 22, 25, 27–30, 58, 59]), i.e. adopt a continuum macroscopic point of view,
or explicitly resolve the behaviours of single pedestrians (e.g. [24, 34]), i.e. adopt an in-
dividual point of view. Within this work we will restrict ourselves to individual-based
models, often referred as microscopic models. Very recently also a hybrid multi-scale
approach combining the two modelling concepts has been proposed [10].

The most popular microscopic approaches are continuum social force field models
going back to [24], e.g. [8, 9, 37, 41, 45, 63], and discrete cellular automata models, e.g.
[4, 5, 16, 21, 26, 32, 34, 43, 52, 56, 60]. One of the central (computational) challenges of mi-
croscopic approaches is the navigation of single pedestrians through complex topologies
(for a review of navigation strategies in microscopic pedestrian crowd models we refer
e.g. to [32, 46, 52]). Navigation of pedestrians typically addresses different spatial scales:
long range, medium range and small range aspects. Long range navigation considers
more strategic aspects, e.g. navigation using maps, floor plans or signage rather than
direct visual information, and can be modelled quite well by a sequence of intermedi-
ate destinations. The typical scale is 10 ∼ 200m. Usually graph based approaches are
used to model long range navigation decisions [33] (and references therein) or even to
optimize long range routing [17, 19]. Medium scale navigation addresses the navigation
from one intermediate destination to the next along the shortest or fastest path, e.g. from
one graph node to the next. Thus medium scale navigation is based mostly on visibility,
i.e. typical scales are 5 ∼ 50m. The most popular approach for medium scale naviga-
tion is floor field based navigation. Floor fields are scalar continuum fields, usually of
a static nature, and are defined independently of pedestrians present in the scenario,
e.g. [4, 5, 32, 34, 52, 56, 60]. Interactions of pedestrian is typically modelled via dynamic
short range repulsion (focusing on distances up to 1∼10m). In contrast to the long range
part, this short range interaction is highly dynamic. It is typically modelled using social
force models (or corresponding potentials in cellular automaton models)

A common criticism [36] is that these classical navigation strategies do not mimic nat-
ural movement behaviour of humans. Most humans take other pedestrians into account
once they are visible (independently how far these are away) and not only once they are
close enough, i.e. in the short range of 1∼10m. That is, other pedestrians are included on
short as well as medium scale navigation decisions rather than only in short scale nav-
igation decision. This difference typically leads to artefacts in microscopic simulations
based on short range interactions of pedestrians (cf. Fig. 1(a)).

Recently, [21] and [36] have proposed independently a dynamic medium range nav-
igation strategy in the context of floor field methods in cellular automata based simula-
tions. (A generalization of these methods to other microscopic pedestrian simulations is
possible.) Both works are inspired by concepts for pedestrian navigation originally intro-
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(a) (b)

Figure 1: Pedestrians travelling around a corner (from bottom left to top right) – Following shortest paths
simulations might yield insufficient results if pedestrian densities are not considered during the calculation of
the floor field (a), i.e. unnatural congestions could emerge. Taking the densities into account (dynamic floor
field methods) more realistic patterns are recovered (b)

duced earlier in continuum models, e.g [27–29, 58, 59]. Combining density based models
for navigation with microscopic models for pedestrian movement, hybrid models for mi-
croscopic pedestrian dynamics are obtained. As a consequence, both approaches take
other pedestrians already within medium range navigation decisions into account. The
dichotomy of local versus non-local interactions is resolved. Thus the two approaches
yield significant more realistic results in terms spatio-temporal patterns of pedestrian
densities (cf. Fig. 1(b)). Within this work, we refer to a high degree of realism if spatio-
temporal patterns of densities – not tracks of single pedestrians – show a good agreement
with patterns observed in everyday life. Unfortunately, the availability of corresponding
data is very limited such that the notion of realism is at the moment somewhat arbitrary.
As already stressed above, the degree of reality of the movement patterns obtained by
pedestrian simulators is of crucial importance. Evacuation times are only reliable and
robust, if unrealistic congestions can be ruled out.

Although dynamic floor field methods explicitly considering dynamics of other pedes-
trians show more realistic results, their application is limited so far to academic scenarios
due to their computational complexity. At each time step of the simulation a floor field is
determined for the whole domain of interest. Thus the overall computational complex-
ity of the microscopic pedestrian simulation is mainly determined by the computation
of floor fields. The computational complexity might be further reduced by recalculating
the navigation field not every time step but rather every few time steps. This however
might lead to oscillating spatio-temporal patterns with a periodicity of the times between
updates (cf. Appendix B), i.e. realism would be sacrificed.

In this article, we introduce new computational concepts improving significantly the
computational efficiency of dynamic (and also static) floor field methods. Here, we rely
on the relative simple cellular automaton outlined in [34], which has been realized in
Java. Furthermore, we will restrict us to simple origin destination relations, i.e. typically
one origin and one destination, for the sake of clarity. Naturally, the approach can be ex-
tended to most other microscopic approaches, e.g. modelling more complex sociological
behaviour.
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The novel contributions of our work are:

• adaptive calculation of floor fields for navigation (Section 3);

• directed calculation of floor fields reducing the region in which floor fields have to
be calculated to a minimum (Section 4);

• inertial floor field methods allowing to reduce the frequency which floor fields have
to be updated (Appendix B).

The combination of the three concepts leads to a significant reduction of computational
times (factor 10∼50). Thus realistic scenarios can be computed with acceptable (from an
end-user point of view [44]) computational effort. In difference to purely mathematical
oriented approaches, we do not aim at improving computational speed-up without im-
pacting the convergence of the macro-scale evolution of pedestrian densities, but rather
aim at computational efficiency without loosing realism of the microscopic pedestrian
simulations. It is important to note that the underlying mathematical model can only
formalize the assumed crowd navigation logic to a certain degree. In contrast to most
physical phenomena, the modelling of social phenomena is very likely to be subject to
non-negligible modelling errors. Therefore, we accept sacrifice of formal convergence as
long as the results are sufficiently accurate for the simulation purposes, the prediction of
crowd evolution.

The article is structured as follows: In Section 2 we review the concept of static and
dynamic floor field methods, i.e. field based navigation. Then we show how to combine
floor field methods with the concept of grid adaptivity in Section 3. Together with a di-
rected calculation (Section 4), i.e. a restriction of the calculation to minimal domains, a
performance increase by a factor 10 can be achieved. This increase in computational per-
formance is shown in Section 5 simulating pedestrian flows on the Marienplatz in Mu-
nich. Furthermore, we shortly revisit the cellular automaton model of [34] in Appendix
A. In Appendix B we introduce the idea of inertial floor fields, allowing a significant de-
crease of the frequency navigation fields have to be updated, i.e. recalculated. This leads
to a reduction of computational efforts in combination with the other two methods by a
factor ∼ 50 in total.

2 Floor field methods

Let us shortly revisit the concept of floor field based navigation. To do so, we consider a
single destination to which pedestrians are moving towards within the domain of interest
Ω. The main idea of floor field methods is to construct for all ~x∈Ω a continuous scalar
field F(~x,t) – the floor field – which takes a minimum at the destination, given by the
curve Γ⊂Ω, and which is strictly increasing moving away from the destination. This floor
field could depend on t, but typically it is considered to be static. If no other pedestrians
are present, the navigation strategy of a single pedestrian reduces to moving down the
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gradient of the scalar field F(~x). The influence of other pedestrians is usually modelled
via additional local interaction potentials. Thus in general pedestrians move down the
gradient of the summed potentials (for more details c.f Appendix A).

Here, we follow the approach of [21]: The main idea is to construct navigation fields in
the context of microscopic pedestrian simulations by solving the Eikonal equation using
the fast marching method (FMM) [54], i.e. the navigation field and thus fastest/shortest
paths are determined by calculating arrival times of waves expanding from the destina-
tion. In contrast to most other microscopic approaches (considering static floor fields),
e.g. [4, 5, 32, 34, 43, 52, 56, 60], this method adopts a dynamic point of view, i.e. dynam-
ically recalculates the navigation field taking other pedestrians into account (dynamic
floor field method). This leads to an increased realism in simulations. An equivalent
ansatz has been independently developed by [36] and similar ideas in a continuum set-
ting can be found e.g. in [26, 28, 58].

First, we will consider the static case and then the generalized dynamic case. The
latter is inherently more complex from a computational point of view, and efficient tech-
niques to deal with this challenge is the major focus of this contribution.

2.1 Static floor fields based on fast marching methods

The central idea of [21] is to construct an appropriate floor field F(~x) by an estimation of
travel/arrival times using the Eikonal equation:

V(~x)|∇F(~x)|=1 in Ω, (2.1a)

F(~x)=0 on Γ, (2.1b)

where F(~x) is the arrival time of a wave originating from Γ in T=0 and which is spreading
with a normal speed V(~x) in the domain Ω. The Eikonal equation (2.1) can be solved
efficiently on the dual grid of the cellular automaton, i.e. on the grid given by the graph
Al,~x0

(cf. Appendix A and Fig. 2a) using the fast marching method (FMM), cf. [31, 55]
for the FMM on triangulated/simplicial meshes and [54] for a general overview. Thus
F(~x) is determined only in cell centers ~xi ⊂VA

l,~x0
and is approximated piecewise linear in

between, i.e.
F(~x)∈{F∈C(Ω) : F|T ∈P1(T) ∀T∈T }, (2.2)

where T is the set of triangles spanned by the cellular automaton graph Al,~x0
. Assuming

that pedestrians move with the same expected/estimated speed V in the whole Ω one
chooses V(~x)≡V. (Of course a spatial dependence is also possible, e.g. due to inclina-
tions.) Compared to most other approaches, e.g. [4, 5, 32], using Dijkstra’s algorithm [14]
to determine navigation fields, i.e. navigation fields measure distances/travel times in
the 1-metric (Manhattan metric), the approach of [21] shows significantly more realistic
results.

The central idea of the FMM is to systematically construct an approximation of F(~x)
using only values upwind in the direction of information propagation. Similar to stan-
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dard upwind discretization schemes, it is thus ensured that information is only trans-
ported from small values of F(~x) to large values [54]. From an algorithmic point of view,
the FMM basically reduces to iteratively finding the vertex~xi with the smallest F(~xi) from
a set of vertices. Making use of min-heap data structures [53] an efficient implementa-
tion of the FMM with complexity N logN, where N is the number of grid points, can be
achieved. That is, the FMM can be considered as a modified heap sort algorithm sorting
vertices according to the key

κ(~xi)=F(~xi). (2.3)

Using standard template libraries of modern programming languages allows a fast and
from a computational point of view efficient implementation of the fast marching method.

2.2 Dynamics floor field methods

Static floor fields neglect the influence of other pedestrians on the medium scale navi-
gation behaviour. Most approaches model this influence separately using short range
repulsion (1∼10m), i.e. interactions are considered to be local. However, human naviga-
tion typically takes other pedestrians and especially congestions on long ranges (5∼50m)
into account, i.e. interactions are non-local. Thus many microscopic pedestrian simula-
tors typically reflect unrealistic movement patterns (cf. Fig. 1(a)), i.e. spatio-temporal
patterns of pedestrian densities do not agree.

To enhance the realism and hence the predictive capabilities of microscopic approaches
the concept of dynamic floor fields has been introduced [21,36], resolving the dichotomy
between local and non-local interactions. The central idea of [21] (and similar of [36]) is to
consider in equation (2.1) an estimated travel speed V(~x,t) depending on the local pedes-
trian density which comes significantly closer to real navigation, i.e. the floor field F(~x,t)
depends on space and time. A typical ansatz is V(~x,t) = (1+ωρ(~x,t))−1 with constant
ω and local pedestrian density ρ(~x,t). Different methods can be used for an estimation
of ρ(~x,t), e.g. local averaging or following [39]. Here, we consider ρ(~x,t) to be piece-
wise constant on cells of the cellular automaton, with either ρ= 0 ped./m2 if the cell is
not occupied or ρ=5.4 ped./m2 if the cell is occupied. This long range consideration of
other pedestrians within dynamic floor field methods significantly enhances the realism
of microscopic pedestrian simulators (cf. Fig. 1(b)).

Static floor fields are calculated in the initialization phase of the simulation, thus com-
putational efficiency of floor field calculation does not play a crucial role. Introducing the
more realistic dynamic floor fields, floor fields have to be recalculated every time step (or
at least every couple of time steps) since pedestrian distributions change in time. Thus the
computational efficiency of dynamic floor field methods is the bottleneck of the overall ef-
ficiency of microscopic pedestrian simulators. Therefore, increasing their computational
efficiency is one of the central challenges in microscopic pedestrian simulators.



270 D. Hartmann and P. Hasel / Commun. Comput. Phys., 16 (2014), pp. 264-286

3 Adaptive floor fields

In the field of scientific computing, grid adaptivity has been proven a valuable approach
to reduce computational complexity and thus computational times [40]. Since the con-
struction of floor fields basically reduces to the solution of the Eikonal equation (2.1), the
application of adaptive grid refinement is a promising approach in the field of micro-
scopic pedestrian simulators.

The grid on which the solution of the Eikonal equation is computed in the context of
a cellular automaton is given by the dual grid of the cellular automaton lattice, i.e. the
graph Al,~x0

shown in Fig. 2(a). Obstacles blocking the way of pedestrians are modelled
by cutting connections, i.e. edges, from one cell to a neighbouring cell (cf. Fig. 2(b) and
Appendix A). Using an adaptive grid concept coarsened grids have to be a subset of
this microscopic triangulation. Otherwise obstacles would not be considered correctly.
Thus, we propose to take the opposite way of classical adaptive grid strategies: instead
of refining the computational grid in critical regions, we coarsen the grid in uncritical
regions (cf. Fig. 2(c) and (d)).

Here, we restrict us to a static adaptation of computational grids. That is, in the ini-
tialization phase the grid is adapted and then is kept for the whole simulation. Since the
solution of the Eikonal equation and thus in turn the navigation of pedestrians depends
on local pedestrian densities, the ultimate goal would be a dynamic adaptive scheme,
which adjusts the computational grid also according to pedestrian densities.

(a) (b) (c) (d)

Figure 2: Grids used by the fast marching algorithms and the corresponding Voronoi diagrams to determine
pedestrian densities – a non adaptive grids for a simple rectangular domain with L=A (a) as well as a more
complex domain with L 6=A (b) and corresponding adaptive grids (c) and (d) are shown.

3.1 Algorithm

The coarsening starts from the graph A0 =Al,~x0
. It is a subset of the lattice graph Ll,~x0

.
All triangles belonging to the graph will be referred to triangles of level n = 1 in the
following. In general, we will consider a triangle to be of level n if it belongs to the lattice
graph L2n l,~x0

, i.e. a triangle of level n+1 consists of edges of length 2·2n ·l and triangles
which are composed of 4 triangles of the level n.

Let us now outline the coarsening algorithm in detail: The algorithm basically tries
to coarsen the grid by forming larger triangles of level n+1 from 4 triangles of level n.
Here, we require that only coarse triangles are allowed which would be included in the
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(a) (b)

Figure 3: Schematic coarsening of 4 triangles of level n=0 to one of level n=1 with updated neighbourhood
relations used by the FMM. Note that not all neighbourhood relations are two folded.

coarser lattice grid L2n+1l,~x0
(cf. Fig. 3). To decide whether the triangles can be coarsened

we have to distinguish two separate cases: Coarsening triangles from level n=0 to n=1,
one has to ensure that within the larger triangle one does neither find any obstacles, walls
nor destinations. Otherwise this information would be lost. Coarsening from level n to
n+1 with n>0 it is sufficient to check that the new triangle of level n+1 will consist of 4
triangles of level n and that neighbouring triangles are not smaller than level n. The latter
condition ensures that no obtuse angles are present in the computational grid, as required
by the FMM. The process of coarsening leads to a sequence of grids/graphs A0,A1,··· ,An

with vertices VAn+1

2n+1l,~x0
⊂VAn

2nl,~x0
. The coarsest grid, which by definition consists of triangles

of different levels smaller or equal n, is then used to compute the corresponding floor
field with the FMM.

We would like to point out, that this algorithm leads inevitably to hanging nodes, as
shown in Fig. 3. Neighbourhood relations used for the FMM are not two fold any more,
i.e. they are directed and a vertex must not necessarily be a neighbouring vertex of a
neighbour vertex. That is the sets EA

2nl,~x0
are directed. Hanging nodes (cf. Fig. 3) are as-

sumed to have only one sided neighbour relations. Thus, neighbourhood relations have
to be stored for each vertex separately. When coarsening the triangles the corresponding
data structures are adjusted accordingly, i.e. neighbourhood relations for the FMM are
updated. This approach implies that degenerate triangles could occur. Before updating
we therefore check the validity of angles. If the angle is obtuse, we fall back to updat-
ing the node according to the distance to the neighbour with the smallest value, i.e. a
quasi 1D update scheme. We would like to underline, that this makes the application of
all prior formal convergence proofs inapplicable. However, our numerical results in the
next section confirm that the convergence is still there for our class of examples.

In the coarsened grid not all cell centers ~xi of the cellular automaton lattice are repre-
sented any more as vertexes of the coarsened grid. Thus relation (2.2) has to be adopted
accordingly, i.e.

F(~x)∈{F∈C(Ω) : F|T ∈P1(T) ∀T∈T n}, (3.1)

where T n is the set of triangles spanned by the cellular automaton graph An. That is,
using linear interpolation the floor field value can be determined efficiently.
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Dynamic floor field methods consider other pedestrians during the construction of
navigation fields. Thus we need a proper notion of pedestrian densities. Here, we adopt
the following approach assuming an adaptive grid of level n. Let Cn be the set of Voronoi
cells of the vertices VAn

2nl,~x0
of the adaptive cellular automation grid An of level n, i.e.

Cn ={Cn
1 ,Cn

2 ,. . .} with

Cn
i ={~x∈Ω | d(~x,~xi)≤d(~x,xj) ∀j 6= i}, (3.2)

with vertices ~xi∈VA
2n l,~x0

. The the pedestrian density ρ(~x,t) is considered to be a piecewise
constant function on the set of Voronoi cells, i.e.

ρ(~x,t)∈{BV(Ω) : ρ|C ∈P0(C) ∀C∈Cn}. (3.3)

The natural approach is then to choose ρ(~x,t) such that in each cell Cn
i it corresponds to

the average density of the cell, i.e. ρi =# ped. in Cn
i /‖Cn

i ‖. As before, we choose V(~xi)=
(1+wρ(~xi))

−1 in (2.1) with constant ω. Adopting this approach, on the finest level n=0
this definition agrees with the definition given in Section 2.

Summarising, the ansatz to calculate navigation fields with the FMM using an adap-
tive grid needs only minor modifications compared to algorithms relying on non-adaptive
grids. The main difference is the introduction of one sided neighbourhood relations. At
the same time, even considering relatively coarse grids results differ only slightly. In-
teraction of pedestrians on the small scale is still covered by local short scale repulsion
typically considered in most microscopic models. However, without the additional short
range repulsion, the spatial average of larger Voronoi cells leads to unrealistic traces of
pedestrians around other pedestrians, i.e. an unrealistic short range navigation.

3.2 Examples

First of all, let us consider the most simple scenario, a square domain with a single pedes-
trian travelling from the bottom to the top. Since we consider a single pedestrian a re-
calculation of the navigation field is not necessary, i.e. we consider a static floor field
ansatz.

In the first step, we have verified the convergence of the scheme (cf. Fig. 4). As ex-
pected the error is decreasing when decreasing the discretization length scale. However,
we would like to stress that the length scale of discretization is determined by the spatial
discretization of the cellular automaton underlying the pedestrian simulation. This in
turn is restricted by the maximum density of pedestrians per square meter. According
to [57] it is therefore bounded from below by l = 0.46m. Additionally, we have investi-
gated how the computational complexity, i.e. the computation time, scales with the size
of the domain. The result is shown in Fig. 5. Although the adaptive fast marching method
(aFMM) is significantly faster than the classical FMM, the complete performance of the
aFMM is worse, since one also has to construct an adaptive grid before computing the
floor field using the aFMM (Both steps are shown separately in Fig. 5). The construction
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Figure 4: Absolute error of the FMM of a path around an obstacle (65.6m) for different discretization length
scales l0.

Figure 5: Scaling of computational complexity with increasing size of a simple square domain (from 100m×100m
to 600m×600m and destination at the bottom). Computation times for the calculation of a single static floor
field using different algorithms (leading to navigation fields of different quality) are shown.

of an adaptive grid is as complex as the solution of the original FMM. However, consider-
ing scenarios where a dynamic recalculation of the floor field is necessary, cf. Section 2.2,
the aFMM outperforms the classical FMM since the adaptive grid has to be constructed
only once. Furthermore, also the classical Dijkstra’s algorithm is outperformed in the case
of a dynamically recalculated floor field as shown in Fig. 5. We would like to emphasize
that the different algorithms lead to navigation fields of different quality. Thus the com-
parison considers solely computational efforts disregarding the quality of the navigation
field. Furthermore, we would like to point out, that a comparison with [6] shows a sig-
nificant difference in computational efficiency. Thus the computational efficiency is very
likely to be improved switching to a different programming language than Java.
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Figure 6: Scaling of computational complexity with increasing level nmax of coarsening for a 300m×300m
domain (destination at the bottom). Computation times for the calculation of a single static floor field are
shown.

In the next step, we have fixed the size of the domain to 300m×300m and furthermore
limited the maximal coarsening level allowed to nmax. Results for different levels of nmax

are shown in Fig. 6. One observes that the gain of computational complexity beyond a
coarsening level of nmax=3 is rather negligible.

As a third example, we consider a pedestrian crowd travelling around a corner – one
of the most fundamental scenarios requiring a continuous recalculation of floor fields
for navigation. In Fig. 7 the corresponding example is shown for different levels nmax of
coarsening. The algorithm shows promising results up to level nmax = 3, i.e. pedestrian

(a) (b)

(c) (d)

Figure 7: Pedestrians travelling around a corner (from bottom left to the top right) – results of different levels
of adaptivity: nmax=0 (a), nmax=1 (b), nmax=2 (c), nmax=3 (d).
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streams show the expected behaviour and do not differ qualitatively from simulations
using non-adaptive grids. Thus the accuracy is sufficient with respect to our require-
ments. For larger nmax (results not shown) the pedestrian patterns show less realistic
results since a detailed and relative exact representation of pedestrian densities is not
possible. For small nmax the local repulsion ensures a realistic short range path planning.
However, for larger levels the short range planning is insufficient to cope with the lower
accuracy of the approximation introduced by grid coarsening ultimately leading to un-
realistic patterns. Introducing dynamic adaptive schemes which also dynamically adjust
the scheme according to local pedestrian densities would likely resolve this issue. How-
ever, since for levels nmax>3 the speed-up using an adaptive FMM compared to nmax=3
is rather small, a restriction to nmax=3 is acceptable.

4 Directed floor fields

Following the classical FMM a floor field, respectively navigation field, is determined in
the whole domain Ω. However, in many situations pedestrian paths cover only a small
portion of the domain of interest – which unfortunately does not have to be known in
advance. Large areas are not entered by pedestrians and thus a floor field is calculated in
vain.

In the context of path planning the directed calculation of navigation fields similar
to the concept of the A∗ algorithm [20] has been well established in the last years, e.g.
[11,15,47–51,61,62]. The central idea is to sort cells~xi in the FMM algorithm not according
to a key given by the field value F(~xi) but rather according to a key being a combination
of F(~xi) and the direct distance to the current position of the underwater vehicle ~p, i.e.
instead of (2.3) the following key is chosen

κ(~xi,p)=αF(~xi)+(1−α)βddirect(~xi,~p). (4.1)

Here, 0≤α≤1 and β>0 are constants determining the detailed weight. In the case α=1
the original FMM is recovered. Choosing α < 1, vertices being closer to the underwa-
ter vehicle are preferred and thus the floor field is calculated with a preference in the
direction of the underwater vehicle.

In the presence of many obstacles, it is however questionable whether the use of direct
distances not considering obstacles leads to minimal areas, where the navigation field is
calculated, as well as realistic pedestrian flows (cf. Fig. 8). Therefore, we suggest to use
the exact distance dexact of the shortest path around obstacles and not the direct distance
ddirect as in (4.1). The corresponding distance field dexact can be calculated efficiently using
again the FMM evolving now from the origin (cf. Fig. 9(b)). Since the corresponding
distance field has to be calculated in the whole domain, efficiency is only gained if the
floor field used for navigation is computed sufficiently often (dexact needs to be evaluated
only once).
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Figure 8: Directed floor fields for a simple scenario with a origin (lower left), destination (lower right) and
an obstacle/wall in between using the approach of [48], i.e. the key (4.1) considering direct distances (not
considering walls) to the origin. Here, we have chosen α= 0.6 and β= 1.0. The path taken by pedestrians is
exemplary shown by a white line.

4.1 Algorithm

Let us assume a single origin (at position~s) and a single destination Γ for the moment.
Instead of using the distance to the current position of pedestrians in (4.1) one uses the
exact distance from the current cell ~xi to the origin~s, i.e. dexact(~xi,~s) (which is calculated
using the FMM evolving from the origin and needs to be evaluated only once since ori-
gins are fixed). Thus the floor field is calculated using a directed FMM evolving from the
destination with the following key

κ(~xi,s)=αF(~xi)+(1−α)βdexact(~xi,~s). (4.2)

Furthermore, we adopt the following ”lazy” strategy to determine navigation fields
within microscopic pedestrian simulations: In the initialization phase of the simulation,
we calculate the distance field dexact(~xi,~s) using a classical FMM. However, with respect
to the navigation Field F(~x,t) we set up only the initial heap structure for the FMM∗, i.e.
”the seeds”. Once a navigation field value for a cell, which has not been calculated so far,
is requested by a pedestrian, the FMM starts/continues the calculation of the navigation
floor field until a value for the corresponding cell has been determined. This ”lazy”
strategy ensures that the number of cells for which a floor field is calculated is minimal,
i.e. the computational effort spend is as small as possible.

We would like to emphasize that the A∗-style modifications of FMM adopted here
produce additional errors compared to the unrestricted FMM and that those errors do not
disappear under grid refinement [11], i.e. convergence of the scheme to the solution of
the Eikonal equation is not given. Recently, [62] have shown that a scaled-down version
of the naive (Euclidean distance-based) heuristic does not produce any such errors on
triangulated meshes. Since their study did not consider adaptively coarsened meshes,
a direct transfer of their method is not straight forward. However, the results in the
following example section, cf. paths taken by pedestrians in Appendix B, show that
the additional errors introduced by these modifications are negligible with respect to
predicting pedestrian flows.
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According to the notion A∗, we will denote the directed fast marching method with
the key given in (4.2) in the following FMM∗.

4.2 Examples

Results for different values of α (β = 1) are shown in Fig. 9 for a simple scenario with
one obstacle. One of the main differences between the approach used here and the ideas
outlined in [48] is the use of exact distances dexact rather than direct distances ddirect. Com-
paring the two approaches, cf. Figs. 9(d) and 8 (α= 0.6 and β= 1.0), we find significant
better results in terms of the region where a floor field is calculated (scaling with the
computational effort) and the quality of the paths chosen by single pedestrians.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Directed floor fields for the scenario shown in (a) (a snapshot of the simulation is shown) based on
shortest path distances to the origin (b). Depending on α different floor fields are obtained (β=1): α=1.0 (c),
α=0.6 (d), α=0.5 (e), α=0.4 (f). The paths taken by a single pedestrians using the calculated fields shown in
Figs. (c)-(e) is visualized by a white line. The paths are more realistic than the path obtained by the classical
algorithm [48], cf. Fig. 8.
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Figure 10: Scaling of computational complexity (overall simulation time) with increasing size of the domain
(increasing the hight of the scenario shown in Fig. 9a where the wall, origin, and destination are kept fixed).

Adopting the approach outlined here, on the one hand the quality of movement pat-
terns is as exact as it is for the case of an undirected calculation of floor fields – at least up
to the eye metric. Thus although we have sacrificed formal convergence for calculating
the navigation fields, the accuracy is sufficient with respect to the behaviour of pedes-
trian crowds. On the other hand, the computational efficiency increases significantly. In
Fig. 10, we compare the computational efficiency of the different algorithms and how
they scale with the height of the scenario considered in Fig. 9 (without the initialization
phase, which includes the calculation of start fields for each origin). The computation
times in the case of the FMM∗ are increasing only mildly with respect to the size of the
domain, as expected.

5 An Example – The Marienplatz in Munich

Above we have shown how the efficiency of floor field methods for navigation in micro-
scopic pedestrian simulators can be increased significantly using grid adaptivity and a
directed FMM. The examples considered in Sections 3.2 and 4.2 have been more or less
of an academic nature. To investigate the performance gain in realistic scenarios we con-
sider pedestrian streams on the Marienplatz in Munich. Pedestrians are entering the sce-
nario from subway exits and are moving towards the Mariensäule or other destinations
further away. A snapshot of a simulation is shown in Fig. 11(a). The overall computation
times shown in Fig. 11(b) indicate that a factor of 10 is gained for realistic scenarios using
the approaches outlined in this paper.

The concept introduced in this paper allows to significantly increase the computa-
tional efficiency of dynamic floor field methods, thus that dynamic floor field methods
can now be applied for realistic medium scale scenarios with acceptable computational
times.
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(a) (b)

Figure 11: (a) Snapshot of a simulation of the Marienplatz in Munich. Pedestrians are entering the scenario
from the underground station (yellow regions) and are steering towards the destinations (blue). (b) Overall
computation times for the algorithms calculating floor fields outlined in this paper are compared.

6 Discussion and outlook

In this article, we have considered new algorithmic methods in the context of microscopic
pedestrian simulations to increase the computational performance of the calculation of
dynamic navigation floor fields. One of the most realistic navigation strategies in micro-
scopic pedestrian simulators. Using adaptive strategies as well as a directed calculation
of floor fields a performance of factor 10 can be gained without loosing quality of the
simulation for realistic scenarios. Here, the notion of quality is not understood in the
mathematical sense of accuracy, i.e. convergence of results with the discretization getting
finer and finer, but rather in a weaker notion whether the evolution of pedestrian densi-
ties agrees with observations in reality or not, e.g. agreement of evacuation times. The
underlying PDEs are used only as a rule of thumb, formalizing the assumed crowd nav-
igation logic. Thus that the considered mathematical model is very likely to be subject
to modelling errors. Therefore, a highly accurate solution of the underlying PDEs would
not improve the overall predictive capability of the model. Hence, we accept sacrifice of
convergence in terms of computational efficiency as long as the results are sufficiently
accurate for the simulation purposes, the prediction of crowd evolution.

Considering a dynamic approach to navigation, floor fields have to be recomputed
every few steps. Actually, the overall computational time is mostly determined by the
time spend for dynamically calculating floor fields. Thus also the overall computational
time is decreased by a factor of 10. Furthermore, at the same time one could also in-
crease the time between update of the floor field using the concept outlined in Appendix
Appendix B. Thus in total a decrease of a factor 50 in overall computational time of micro-
scopic pedestrian simulations for realistic scenarios is possible. Large realistic scenarios
can now be simulated with a high degree of realism using dynamic floor field methods
within acceptable times.
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Within this paper we have considered a static adaptive grid. Coarsening the grid up
to high levels, this might lead to unrealistic navigation of pedestrians due to the crude
approximations in coarse cells. Therefore, we have restricted the coarsening to medium
levels, where the local short range repulsion could still resolve unrealistic movement pat-
terns. The extension of the concepts to a dynamic adaptation scheme taking pedestrian
densities into account is an open issue. Furthermore, we have restricted our analysis
to simple origin destination relations. Considering large scenarios one often encounters
complex origin destination relations typically given with multiple intermediate desti-
nations [52]. These scenarios can be efficiently modelled using a combination of graph
based and field based navigation [33]. The algorithms introduced in this contribution
can be extended straight forward to such a combination of graph and field based naviga-
tion. Since the recalculation of the floor fields only increases the realism of simulations if
quite crowed regions are involved, a further lever to increase computational efficiency is
additionally available: Only on crowded edges of the underlying graph a recalculation
of floor fields is undertaken. The combination of both methods in the case of a soccer
stadium is under current investigation [1].

The quality of the simulations, i.e. their realism, is more or less based on the eye
metric, i.e. whether the evolution of pedestrians looks correct. As long as we do not have
sufficient empirical data about the evolution of crowds the notion of accuracy has to be
somewhat inexact in the field of pedestrian modelling. A more quantitative approach is
therefore an open issue. But since experimental quantitative studies are more and more
subject to research, e.g. [38], the next step would be to verify the simulation results with
empirical studies.

The outlined algorithms in this paper will enable us to achieve realistic predictions
of evolution of pedestrian densities also in the case of relative high pedestrian densities,
typically occurring in evacuation studies for large scenarios, with acceptable computa-
tional effort (a factor 50 compared to existing approaches has been shown in this paper).
The realism of the virtual pedestrian streams is of utmost importance in such applica-
tions, since predicted evacuation times and thus decisions of security staff depend on
the prediction of these [44]. At the same time such approaches would be used only if
computational times are in an acceptable range.
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A Cellular automaton model

Although the concept of small to medium navigation is independent of a specific mi-
croscopic simulator, we rely within this article on the simple cellular automaton model
introduced in [34]. However, generalizations to other microscopic models, e.g. including
more complex social behaviour, should be straight forward.

The cellular automaton is based on a lattice graph

Ll,~x0
={VL

l,~x0
,EL

l,~x0
} (A.1)

with vertices VL
l,~x0

= {~x |~x=~x0+αl~eα+βl~eβ with α,β∈Z}, spacing l and a distinguished

node ~x0. Here we restrict us to hexagonal geometries, i.e. we choose~eα =(1,0) and~eβ =

(1/2,
√

3/2). The edges are given by connection of nearest neighbours (Von-Neumann
neighbourhood).

Choosing an appropriate subset VA
l,~x0

⊂VL
l,~x0

and EA
l,~x0

⊂EL
l,~x0

the spatial discretization

of the cellular automaton is determined. Centers of hexagonal cells are given by VA
l,~x0

and

neighbourhood relations are given by EA
l,~x0

, where edges from EL
l,~x0

cutting walls have

been removed. In the following, we will use the notion Al,~x0
={VA

l,~x0
,EA

l,~x0
}⊂Ll,~x0

for the
graph associated with the cellular automaton discretization. The size of a single hexagon
is chosen such that it accommodates an average European male person having a size of
0.185 m2 [57], i.e. l = 0.46m. Each hexagon can be in two states, it is either empty or
occupied by a single pedestrian or obstacle.

Similarly, the time is discretized into equidistant time steps δt. Here, we typically use
δt =0.17s, such that a person mowing every time step can move at maximum with a ve-
locity of 2.7 m/s. In each time step, a subset of the persons on the cellular automaton is
chosen and allowed to move. We rely on a sequential update which ensures that pedes-
trians with higher free flow velocities are allowed to move more often according to their
speed. Following [57] Gaussian distribution is assumed.

Each pedestrian allowed to move in a time step chooses one of its neighbour cells
to move to. This decision is based on potentials borrowing ideas from electro-statics.
To each intermediate destination an attractive potential is assigned in the simplest case
given by the shortest Euclidean distance (for more details we refer to Section 2). This
long range potential used for medium scale navigation (i.e. to the next intermediate
destination) is often referred to as floor field or navigation field. Furthermore, to each
pedestrian and obstacle a short range (1-2m) repulsive potential is assigned, i.e. a local
interaction is considered. The pedestrian then moves to the unoccupied neighbour cell
with the smallest summed potential value.

The potential based approach is somewhat equivalent to a force based one using con-
servative forces. The gradient always points to the direction of the neighbouring cell
with the minimal potential. This simple field based approach sketched above is further-
more extended to keep spatial and temporal discretization artefacts to a minimum. For a
detailed treatment of the complete concept we refer to the original work of [34].
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B Inertial navigation fields

Dynamic floor field methods, require a constant update of floor fields in order to dynami-
cally take into account other pedestrians for medium range navigation decisions. Within
our approach, we rely on fixed update intervals ∆t = u·δt with u ∈ N and a time step
length δt of the microscopic simulator, i.e. floor fields are updated every u time steps.
We have found u= 5 to be a good choice (δt= 0.17s) yielding the same pedestrian flow
patterns (cf. Fig. 12(a)) as choosing an instant update, i.e. u=1.

On the one hand increasing u implies a corresponding decrease in computation times,
since the overall computation time of a microscopic simulation is mainly influenced by
the time taken for calculating navigation fields. On the other hand, increasing u unfortu-
nately also implies a decrease in realism since pedestrians do not respond ”immediately”
to evolving congestions. An example considering counter flows is shown in Fig. 12(b).
Increasing u by a factor of 2 (from u=5 to u=10) leads to the formation of stripe patterns:
Once a region of a higher density has formed, pedestrians avoid this region after an up-
date of the floor field leading to a low pedestrian density. Since this region has now a
lower density than surrounding regions, most pedestrian try to walk through this region
after the next update of the floor field. This leads again to a higher density. Alternating
stripe patterns of high and low pedestrian densities form. Similar artefacts are found in
many other different scenarios.

An elegant way to cope with these unrealistic patterns is to include some inertia ef-
fects in the floor field, respectively the estimation of expected travel speeds V(~x,t), i.e. to
introduce some kind of memory. Instead of considering V(~x,t)= f (ρ(~x,t)) in the Eikonal
equation (2.1), we rather determine the speed Vn+1(~x) at time step n+1 as a combination
of the speed in the previous time step and the current pedestrian density ρn+1(~x), i.e.

Vn+1(~x)=(1−∆tα)V
n(~x)+∆tα f (ρn+1(~x)), (B.1)

with ∆t = uδt and f (ρ)= 1/(1+ωρ) as discussed in Section 2. Choosing α= 1/∆t again
the original relation is recovered. We would like to remark, that an interpretation of (B.1)
in terms of an evolution law discretized with an implicit Euler scheme and time step ∆t

is possible.

Let us now compare the results of different α and ∆t. The results for a counterflow at
a narrowing is shown in Fig. 12. One clearly finds that using an inertial update scheme
unnatural stripe patterns are not found, cf. Fig. 12(b) vs. (c). The update time can be even
further increased without observing unnatural patterns, cf. Fig. 12(d).

Thus, we can conclude that introducing an inertial update a factor of 25 can be gained
with respect to computational efficiency without loosing realism of the microscopic pedes-
trian simulations – respectively a factor of 5 compared to u=5 where no artificial stripe
patterns are seen considering standard calculation of floor fields.
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(a) (b) (c) (d)

Figure 12: Pedestrian flow patterns of a counterflow with a narrowing due to walls. Pedestrians are moving
from the top to bottom and vice versa. Floor fields are updated according to (B.1) with different values of α
and ∆t=uδt. (a) u=5, ∆tα=1.0, (b) u=10, ∆tα=1.0, (c) u=10, ∆tα=0.5, (d) u=25, ∆tα=0.5.
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[17] S. Göttlich, S. Kühn, J. Ohst, S. Ruzika, and M. Thiemann. Evacuation dynamics influenced

by spreading hazardous material. Netw. Heterog. Media, 6:443–464, 2011.
[18] H.W. Hamacher, S. Heller, and B. Rupp. Flow location (FlowLoc) problems: dynamic net-

work flows and location models for evacuation planning. Ann. Oper. Res., 207:161–180, 2013.
[19] H.W. Hamacher and Tjandra S. Mathematical modeling of evacuation problems: State of the

art. In M. Schreckenberg and S.D. Sharma, editors, Pedestrian and Evacuation Dynamcis,
pages 227–266. Springer, 2002.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100V107,
1968.

[21] D. Hartmann. Adaptive pedestrian dynamics based on geodesics. New J. Phys.,
12(4):043032, 2010.

[22] D. Helbing. A fluid-dynamic model for the movement of pedestrians. Complex systems,
6(6):391–415, 1992.

[23] D. Helbing and A. Johansson. Pedestrian, crowd and evacuation dynamics. Encyclopedia
of Complexity and Systems Science, 16:6476–6495, 2010.

[24] D. Helbing and P. Molnár. Social force model for pedestrian dynamics. Phys. Rev. E,
51:4282V4286, 1995.

[25] L. F. Henderson. On the fluid mechanics of human crowd motion. Transport. Res., 8:509–515,
1974.

[26] H.-J. Huang and R.-Y. Guo. Static floor field and exit choice for pedestrian evacuation in
rooms with internal obstacles and multiple exits. Phys. Rev., 78(2):021131, 2008.

[27] L. Huang, S.C. Wong, M. Zhang, C-W. Shu, and W.H.K. Lam. Revisiting hughes’ dynamic
continuum model for pedestrian flow and the development of an efficient solution algo-
rithm. Transport. Res. B - Meth., 43:127–141, 2009.

[28] R. L. Hughes. A continuum theory for the flow of pedestrians. Transport. Res. B - Meth.,
36:507–535, 2002.

[29] R. L. Hughes. The flow of human crowds. Annu. Rev. Fluid Mech., 35:169–182, 2003.
[30] P. Kachroo, S. J. Al-nasur, S. A. Wadoo, and A. Shende. Pedestrian Dynamics - Feedback

Control of Crowd Evacuation. Springer, New York, 2008.
[31] R. Kimmel and J.A. J.A. Sethian. Computing geodesic paths on manifolds. Proc. Natl. Acad.

Sci. USA, 95:8431V–8435, 1998.
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