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Abstract. In this work, we concern with the numerical comparison between different
kinds of design points in least square (LS) approach on polynomial spaces. Such a
topic is motivated by uncertainty quantification (UQ). Three kinds of design points are
considered, which are the Sparse Grid (SG) points, the Monte Carlo (MC) points and
the Quasi Monte Carlo (QMC) points. We focus on three aspects during the compari-
son: (i) the convergence properties; (ii) the stability, i.e. the properties of the resulting
condition number of the design matrix; (iii) the robustness when numerical noises
are present in function values. Several classical high dimensional functions together
with a random ODE model are tested. It is shown numerically that (i) neither the MC
sampling nor the QMC sampling introduce the low convergence rate, namely, the ap-
proach achieves high order convergence rate for all cases provided that the underlying
functions admit certain regularity and enough design points are used; (ii)The use of SG
points admits better convergence properties only for very low dimensional problems
(say d ≤ 2); (iii)The QMC points, being deterministic, seem to be a good choice for
higher dimensional problems not only for better convergence properties but also in
the stability point of view.

AMS subject classifications: 65C20, 65M70

Key words: Least square, polynomial approximations, uncertainty quantification, condition num-
ber.

1 Introduction

In recent years, there has been a growing need for including uncertainty in mathematical
models and quantify its effect on given outputs of interest used in decision making. In
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general, a probabilistic setting can be used to include these uncertainties in mathemat-
ical models. In such framework, the input data are modeled as random variables, or
more generally, as random fields with a given correlation structure. Thus, the goal of the
mathematical and computational analysis becomes the prediction of statistical moments
of the solution or statistics of some quantities of physical interest of the solution, given
the probability distribution of the input random data. Examples of quantities of interest
could be the mean or the variance of the exact solution, the solution values in a given
region, etc. This is the so called Uncertainty Quantification (UQ).

A fundamental problems in UQ is to approximate a multivariate function Z =
f (x,Y1,Y2,··· ,YN) with random parameters {Yi}N

i=1, which might be a solution resulting
from a stochastic PDE problem or other complex models. Stochastic modeling methods
for uncertainty quantification are being well developed in recent years. A traditional
approach is the Monte Carlo (MC) method [7]. In MC method, one first generates a num-
ber of random realizations for the prescribed random inputs and then utilizes existing
deterministic solvers for each realization. Although the convergence rate of Monte Carlo
method is relatively slow (converges asymptotically at a rate of 1√

K
with K realizations), it

is independent of the dimensionality of the random space, i.e., independent of the num-
ber of random variables used to characterize the random inputs. Significant advances
have been made in improving the efficiency of Monte Carlo schemes during the past
years. Stochastic collocation (SC) [17,18,23,24] method is another non-intrusive method.
Like MC method, the SC method can be easily implemented and leads naturally to the
solution of uncoupled deterministic problems, even in presence of input data which de-
pend nonlinearly on the driving random variables. When the number of input random
variables is small, the SC method is a very effective numerical tool. However, in many
cases, a large number of collocation points are still needed to get a good convergence rate.

One of the most popular intrusive methods is the generalized polynomial chaos (gPC)
methods [10, 25], which are the generalizations of the Wiener-Hermite polynomial chaos
expansion developed in [22]. Compared to the SC method, the gPC methods need rel-
atively smaller number of degree of freedom, and such methods also exhibit fast con-
vergence rates with increasing order of the expansions, provided that solutions are suf-
ficiently smooth with respect to the random variables. However, the resulting set of de-
terministic equations is often coupled, thus, care is needed to design efficient and robust
solver, and furthermore, the form of the resulting equations can become very complicated
if the underlying differential equations have nontrivial and nonlinear forms [2, 28].

To efficiently build such a gPC approximation, we consider in this work the lease
square projection onto the polynomial spaces. The LS approach is actually a combi-
nation of the SC method and gPC method. It sakes a polynomial approximation for
the unknown solution while using collocation points to evaluate the expansion coeffi-
cients. Such an idea has been used by many researchers and been given several different
names [1,5,6,12,13], to name a few. To assure the well-posedness, the number of samples
drawn from the input distribution is typically taken to be 2 to 3 times the dimension of
the polynomial space.
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We will focus on the choice of the design points used in the LS approach. Three kinds
of points will be considered, namely, the sparse grid points, the low-discrepancy Ham-
mersley/Halton (QMC) points and the random points. The comparison between these
choices will be done in three aspects: (i) we investigate the efficiency and convergence
properties; (ii) we investigate the stability; (iii) we assess the robustness when numerical
noises are present in function values. Despite the large amount of the literature, such
problems have not been well studied.

The rest of the paper are organized as following: we give a brief introduce of the
LS approach in Section 2. Different choices of design points are introduced in Section
3. Detail numerical comparisons are provided in Section 4, and we finally give some
conclusions in Section 5.

2 The least square approach

In this section, we follow closely the work [4, 15, 27] to give a basic introduction for the
LS approach.

Let Y=(Y1,··· ,YN)
T be a vector with N random variables, taking values in Γ⊂R

N .
For simplicity, we assume that Γ≡ [−1,1]d. We assume that the random variables {Yi}N

i=1

are independent with each other and there is a probability density function ρi for each
random variable Yi. We denote with ρ(Y) =∏

N
i=1ρi(Yi) : Γ→R

+ the probability density
function of Y. The problem considered here is to approximate a function Z= f (Y) taking
values in R. The case for functions with values in some Banach space, which representing
the solution of a (possibly non-linear) differential or integral problem (Z= f (x,Y)) can be
discussed in a similar way.

The mean of Z= f (Y) is defined as

E[Z] :=
∫

Γ
f (Y)ρ(Y)dY. (2.1)

We assume that the functions considered in this paper are in the space L2
ρ endowed with

the norm

|| f ||L2
ρ
=
(

∫

Γ
f 2(Y)ρ(Y)dY

)1/2
. (2.2)

Considering problems with only one stochastic dimension, the best type of approx-
imation polynomial can be chosen according to the measure of the random variable, for
example, Legendre polynomials for uniform distribution, Hermite polynomials for Gaus-
sian distribution and so on [25]. For higher dimensional case, one can construct the mul-
tivariate polynomial basis by tensorizing 1D orthogonal polynomials with respect to each
weight {ρn}N

n=1 separately. To do this, let us first define the following multi-index:

n=(n1,··· ,nd)∈Nd, with |n|=n1+···+nd.
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Then, every d dimensional polynomial can be written as

Φn(Y)=
d

∏
i=1

φi
ni
(Yi), (2.3)

where {φi
k}∞

k=1 are one dimension orthonormal polynomials with respect to Yi.
Let Λ⊂Nd be an finite multi-index set which is monotonous [15]. The dimension of

an index set Λ will be denoted by #Λ. A finite dimension polynomial spaces introduced
by Λ can be defined by

PΛ :=span{Φn(Y), n∈Λ}. (2.4)

For convenience, we arrange the index set Λ in the lexicographical order, namely, given
n′,n′′∈Λ

n′
<n′′ ⇔ ∃ j : n′

j <n′′
j ∧(n′

i =n′′
i , ∀i≤ j). (2.5)

According to this order, we can denote by nj the jth multi-index of Λ, and then, the bases

in PΛ can be denoted as {Φj}#Λ
j=1.

To construct a polynomial approximation f Λ∈PΛ for the function Z= f (Y) by LS ap-
proach, we first compute the exact function f (Y) in M>#Λ collocation points y1,··· ,yM.
Then, we find a discrete least square approximation φΛ by requiring

f Λ =PΛ
M f =argmin

v∈PΛ

1

M
M
∑
k=1

( f (yi)−v(yi))
2 . (2.6)

We introduce the discrete inner product

(u,v)M=
1

M
M
∑
k=1

u(yi)v(yi) (2.7)

and the corresponding discrete norm ||u||M=(u,u)1/2
M .

Remark 2.1. We remark that we are considering here the standard least square approach
(2.6). While it will be interesting if one considers the weighted LS approach in the follow-
ing sense

f Λ =PΛ
M f =argmin

v∈PΛ

1

M
M
∑
k=1

ωi( f (yi)−v(yi))
2 . (2.8)

When dealing with different original weight functions ρ, adding some suitable weights
into the LS approach can indeed make the approach more stable. We will report such
weighted LS approaches in our forthcoming paper [27]. However, in this paper, we only
consider the uniform least square approach (2.6).
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2.1 High dimensional polynomial spaces

One traditional high dimensional polynomial space is the full tensor product (TP) space

Pd
q :=span

{

Φn(x) : n∈N
d, max

j=1,···,d
nj≤q

}

. (2.9)

The dimension of such TP space is

#Λ=dim(Pd
q)=(q+1)d. (2.10)

Note that when d≫1 the cardinality of TP polynomial spaces grows exponentially with
the polynomial degree q. This is the so-called curse of dimensionality, and this is also the
reason why the full TP spaces are rarely used in real applications when d>5.

In real applications, the following total degree (TD) polynomial space is often used
instead of the TP spaces [17, 25]

Wd
q :=span

{

Φn(x) : n∈N
d, |n|=

d

∑
j=1

nj≤q

}

. (2.11)

The degree of freedom (DoF) of the TD space is

#Λ′=dim(Wd
q)=

(

q+d
q

)

. (2.12)

It is noted that the Dof of the TD spaces still increase when the degree q is increased,
however, such grows property is more slowly than that of the TP spaces. The differences
between the TP spaces and the TD spaces in 3 dimensional case are shown in Fig. 1.

Motivated by the above discussions, we will consider in this work the high dimen-
sional TD spaces.
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Figure 1: Degree of freedom of the polynomial spaces. TP space(left), TD space (right).
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2.2 Algebraic formulation

Consider the approximation in the space PΛ = span{Φj}#Λ
j=1 with collocation points

{yk}Mk=1, the least square solution can be written in

f Λ =
#Λ

∑
j=1

cjΦj, (2.13)

where c=(c1,··· ,c#Λ)
T is the coefficient vector. By using the collocation points {yk}Mk=1,

we get the following design matrix

D=
(

Φj(yk)
)

, j=1,··· ,#Λ, k=1,··· ,M. (2.14)

Then the algebraic problem to determine the unknown coefficient c can be formulated as:

c=argmin
c∈R#Λ

||Dc−b||2, (2.15)

where b contains the evaluations of the target function f in the collocation points. In
what follows, for notation simplicity, we denote with N the degree of freedom of the
polynomial space PΛ, e.g. N =#Λ.

The solution of the least square problem can also be computed by solving an N×N
system. Namely, one can solve the following system

Ac= f, (2.16)

with A=DTD,f=DTb, and furthermore, we have

f :=
(

( f ,Φj)M
)

j=1,···,N , A :=
(

(Φi,Φj)M
)

i,j=1,···,N . (2.17)

For the computation point of view, we can solve problem (2.15) by using QR factor-
ization. Alternatively, we can also solve (2.16) by Cholesky factorization.

3 Choices of nodal sets

As we mainly focus on the choices of collocation points in the LS approach, we intro-
duce in this section some nature choices of the collocation points. Various kinds of nodal
sets have been investigated by researchers when dealing with different problems, for ex-
ample, the random sampling method [15], the Hammersley/Halton dataset [11]. In [6],
sparse grid points set is also introduced. During the review procedure of this paper, Zhou
et al. also introduce a new type of specially designed points in [27]. However, as far as
we know, there is no detailed comparison between these choices. In this paper, we will
concern with such numerical comparison between these choices. To do this, we give in
the following a quickly review for the three kinds of design points mentioned above.
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3.1 Random sampling

A nature choice is the random sampling according to the measure ρ, which is well known
as Monte Carlo (MC) method. MC methods have been applied to many applications and
their implementations are straightforward. Although the convergence rate for the en-
semble mean of the direct MC simulation with M realizations converges asymptotically
at a rate 1√

M
is relatively slow, it is independent of the dimensionality of the random

space, i.e., independent of the number of random variables used to characterize the ran-
dom inputs. In LS framework, the use of MC points has been investigated in [4, 15] both
numerically and theoretically. For bounded measures ρ, it is shown in [15] that the least
square projection on a polynomial space with random samples leads to quasi optimal
convergence rates (up to logarithmic factors) provided that the number of samples scales
as M∼(#Λ)2 (Note this is an one dimensional result). Using different techniques, the au-
thors in [4] proved a more general result. In particular, The approach in [4] is not limited
to polynomial spaces. We remark that in [4,15], the convergence results are in probability,
e.g, convergent with high probability or convergent in the expectation sense, and this is
nature when random samples are used.

3.2 Sparse grid

The sparse grid quadrature was first proposed by Smolyak [21], and further development
has been done by researchers see, e.g., [19, 20]. It is noticed that the sparse grid reduce
dramatically the number of collocation points compared to the full tensor grid, while
preserving a high level of accuracy. The sparse grid quadrature points are introduced
in the LS approach in [6]. Unlike the tensor produce formula, the Smolyak algorithm is
a linear combination of product formulas, and the linear combination is chosen in such
a way that an interpolation property for d = 1 is preserved for d > 1. Compared to the
tensor product rule, only products with a relatively small number of points are used
and the resulting nodal set has significantly less number of nodes starting with the one-
dimensional interpolation formula, the Smolyak algorithm is given by

A(q,d)= ∑
q−d+1≤|i|≤q

(−1)l−|i|
(

d−1
l−|i|

)(

U i1 ⊗···⊗U id

)

,

where i=(i1,···,id) and U ik is the traditional one dimensional interpolation operator us-
ing ik collocation points. To compute A(q,d), we only need to evaluate function on the
sparse grid

Θ=H(q,d)=
⋃

q−d+1≤|i|≤q

(

Θ
i1
1 ⊗···⊗Θ

id
1

)

.

There are mainly two kinds of abscissas in the construction of the Smolyak formula. One
is the Clenshaw-Curtis abscissas. These abscissas are the extrema of Chebyshev poly-
nomials and can be constructed in a nested way. The other frequently used abscissas
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is the Gaussian abscissas, in which one uses the zeros of the orthogonal polynomials
with respect to some positive weight. But, these Gaussian abscissas are in general not
nested. The natural choice of the weight should be the probability density function ρi of
the random variables ξi. For details on the sparse grid, please refer to [18, 24] and refer-
ences therein. It has been shown that if we set q=d+k (the index k is called level), then
A(d+k,d) is exact for all polynomials in Wd

k [24].

3.3 Hammersley/Halton points

The Hammersley dataset and the Halton dataset, which belong to the low discrepancy
sequences [11] have been investigated in the area of the quasi-Monte Carlo integration
with large number of variables. The Hammersley and Halton points are closely related,
in the sense that if one drops the first dimension of the standard d-dimensional Ham-
mersley sequence, you get the standard Halton sequence of dimension d−1. Thus, they
are usually referred to as the Hammersley/Halton points. One can refer to [16] for a
comparison work between these datasets.

The standard Hammersley sequence has slightly better dispersion properties than the
standard Halton sequence. However, it suffers from the problem that you must know, be-
forehand, the number of points you are going to generate. Namely, if you have computed
a Hammersley sequence of length M, and you want to compute a Hammersley sequence
of length 2M, you have to discard your current values and start over. By contrast, you
can compute M points of a Halton sequence, and then M more, and this will be the same
as computing the first 2M points of the Halton sequence in one calculation.

In general, for the same sample size, Hammersley/Halton sample is more representa-
tive of the random distribution than the random generated samples. In low dimensions,
both the multidimensional Hammersley sequence and Halton sequence quickly fills up
the space in a well-distributed pattern. However, for higher dimensions (such as N=40),
the initial elements of the sequences can be very poorly distributed; it is only when M,
the number of sequence elements, is large enough relative to the spatial dimension, that
the sequence is properly behaved. Remedies for this problem were introduced by re-
searchers, see e.g., Kocis and Whiten [14].

We show in Fig. 2 the comparison of points distribution of the above three kinds of
datasets in the uniformly distribution case.
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Figure 2: Points distribution: MC (left), QMC (middle) and SG with level k=5 (right).
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Remark 3.1. We remark that the use of deterministic points in the LS approach is of
independent interest. In [27], specially designed deterministic points are used in the LS
framework, and similar analysis results as in [4, 15] are also provided in [27].

4 Numerical examples

In this section, we provide with several numerical examples to show the performance of
the datasets mentioned above in the LS approach. Throughout this section, the random
variables are set to be uniformly distributed random variables and the SG points are
set up based on the one dimensional Gauss-Legendre points. The main purpose is to
investigate the numerical performance of different points. It is well know that, unlike the
MC and QMC points, the number of the SG points is restricted by the level k, and thus
not continuous. To make a fair comparison, we thus adjust the number of MC and QMC
points according to the number of SG points. For one dimensional case, the number
of points with level k is defined by M = 2k+1. The following classic test functions are
considered:

• Gaussian function: f1(Y)=exp−∑
d
i=1 c2

i (Yi−wi)
2
;

• Meromorphic function: f2(Y)=
1

∑
d
i=1 wi+ciYi

;

• A function with lower regularity: f3(Y)=∑
d
i=1

∣

∣Yi

∣

∣

3
,

where wi,ci are randomly chosen constants.

4.1 One-dimensional tests

We begin with the one dimensional tests to show the basic properties of the LS approach.

In Fig. 3, we plot the convergence properties with respect to the polynomial order
of LS approach for the test function f1. The left plots are for MC, the middle plots are
for QMC and the right plots are for SG. The affect of noises in function values to the
convergence rate is also given, more precisely, no noises are introduced in top (a) plots,
0.01% Gaussian noises (e.g., f̃ = f ∗(1+0.01∗N(0,1))) are introduced into the function
values in the bottom (b) plots. It is shown in the pictures that: (i) neither the MC sampling
nor the QMC sampling introduce the low convergence rate, namely, the LS approach can
achieve high order convergence rate (with high level grids) using any kind of the three
points; (ii) the use of SG points results in good convergence properties than the other
two choices, and it is also noted that the LS approach using SG points is more stable
than the other choices in the one dimensional case; (iii) in presence of noise values, the
convergence rate is deteriorated for all the three cases, however, the LS approach with
SG points is more robust than the other two.
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Figure 3: One dimensional test: error decay for f1 with respect to polynomial order. a) noise free, b) 0.01%
Gaussian noise. MC points (left), QMC points (middle), and SG points (right).
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Figure 4: One dimensional tests: error decay for f3 with respect to polynomial order. a) noise free, b) 0.01%
Gaussian noise. MC points (left), QMC points (middle), and SG points (right).

Analogous plots are done for the test function f3 in Fig. 4. Similar conclusions can be
made as above discussion, nevertheless, the convergence rate for f3 is lower than that of
for f1, and this is due to the low regularity of the test function f3.

Let us now consider the properties of the resulting condition numbers of the LS ap-

proach, namely, cond(A)= σmax(A)
σmin(A)

. It is clear that the resulting condition number using
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Figure 5: One dimension tests: condition numbers for different points sets. PC order q=9 (left) and PC Order
q=4 (right).

MC points will be random. To deal with such randomness, it is nature to report the mean
condition number, namely, we repeat the computation M times and get the mean of con-
dition numbers. In the following, whenever the resulting condition number of MC points
is considered, it refers to the mean condition number of 1000 repeats. The comparison
between three choices are shown in Fig. 5, it is noticed that the SG points is more stable
in the stability point of view (smaller condition number). However, each choice of nodal
points result in small condition number when large number of points (or, high level grids)
are used.

Remark 4.1. Concerning the discussions above, we would like to make the following
remarks:

• For the one dimension case, the SG points are just the Gauss points, which is known
to be the best quadrature points. In fact, M>2q points are enough to guarantee the
optimal convergence when approximating functions in the polynomial space Pq.
Thus, the SG points works very well. However, one is more interested in higher
dimensional cases.

• Note that in Figs. 3-5, few points are used for low level grids. This is not the stan-
dard least square approach, as the number of points are less than the DoF of the
approximated spaces. However, it is not an issue in the computation point of view,
as one can solve the minimum norm least square solution. Alternatively, a standard
way to use less points is to use the L1 minimization approach [26]. In standard least
square approach, one is interested in the case where the number of points are larger
than the DoF. Typically, one may interested in the linear rule (M= c#Λ) and/or the
quadratic rule (M= c(#Λ)2).

• We noticed that for the MC points, there are peaks in the condition number plots.
The peaks happen when the number of points is the same as the number of the DoF,
and in such cases, the problem reduced to the interpolation problem. The peaks are
probably due to the bad distribution of the points.
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4.2 Two-dimensional tests

Let us now consider the two dimensional case. Again, we adjust the number of points
of MC and QMC according to SG. We remark that for level k, the number of SG points

behaves approximately as M∼ 2k

k! dk. In Fig. 6, we plot the convergence properties of LS
approach for f3. The left plots are for MC, the middle plots are for QMC and the right
plots are for SG. The affect of noises in function values to the convergence rate is also
given, more precisely, no noises are introduced in the top (a) plots, and 0.01% Gaussian
noises are introduced into the function values in the middle (b) plots. It is shown that the
SG points lost the dominant superiority in view of convergence rate, and the convergence
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Figure 6: Two dimension tests: error decay for f2 with respect to polynomial order. a) noise free, b) 0.01%
Gaussian noise. MC points (left), QMC points (middle), and SG points (right).
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Figure 7: Two dimension tests: condition number with respect to the number of points. Left: polynomial order
q=5. Right: polynomial order q=8.
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rate of MC and QMC becomes comparable with SG. Properties of the resulting condition
numbers is provided in Fig. 7. It can be seen the condition number for three kinds of
points are comparable.

4.3 High dimensional tests

Five dimensional problems are also tested. The tests are done in the same way as the
above sections (Figs. 8-9). It is noticed that the QMC points works better than the other
two both in the convergence (Fig. 8, for f3) and in the stability (Fig. 9) point of view.

As it has been shown in [15] that the quadratic rule M= c(#Λ)2 results in stable LS
approach when MC points are used. We would like to investigate this property here for

a)
10

0
10

1
10

−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

10
0

10
1

10
−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

10
0

10
1

10
−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

b)
10

0
10

1
10

−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

10
0

10
1

10
−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

10
0

10
1

10
−2

10
−1

10
0

10
1

polymomial order

er
ro

r

 

 

level=1
level=2
level=3
level=4
level=5

Figure 8: Five dimension tests: error decay for f3 with respect to the expansion term. a) noise free, b) with
0.01% Gauss distributed noise. (Left) MC (100 repetitions), (middle) QMC, (right) SG.
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Figure 9: Five dimension test: condition numbers. Left: q=3 and right: q=5.
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Figure 10: Eight dimension tests: condition numbers for q=5. Left: M= c#Λ. Right: M= c#Λ2.

QMC points. In Fig. 10, condition numbers are reported for MC and QMC points for
the eight dimensional TD space. The left plot is for the linear rule c(#Λ) and the right
plot is for the quadratic rule c(#Λ)2. It is noticed that the using of c(#Λ)2 points (right
plot) results in smaller condition numbers compared to the linear rule (left plot). In other
words, the QMC points share similar properties with the MC points, however, we do not
have corresponding proofs as in [4, 15].

4.4 A random ODE model: Genetic toggle switch

We now consider a random ODE model: the genetic toggle switch. Such model is used
to describe a genetic switch in EScherichia coli [9]. The system reads

du

dt
=

α1

1+vβ
−u,

dv

dt
=

α2

1+ωγ
−v, ω=

u

(1+[IPTG]/K)η
,

where α1, α2, β, γ, η, K are parameters and [IPTG] is a system input that controls the
behavior of the steady state solution.

We first choose (randomly) parameters α2,β as random variables on the form α =
〈α〉(1+σx), where 〈α〉= (15.6,2.5) are the expectation values, and x = (x1,x2) are uni-
formly distributed random variables with xi ∈ [−1,1], i=1,2. other parameters are fixed
as the mean values, One can refer to [8,23] for more details. A 10% variation is introduced
during the computation, that is, σ=0.1. We employ a 4th-order Runge-Kutta solver as the
deterministic solver and the Monte Carlo method with 10000 simples are used to get the
exact solutions. In Fig. 11, we show the convergence properties of LS approach with re-
spect to the polynomial order for different number of points. High order convergence
rate is obtained.

We then randomly choose parameters α2, β, γ, η as random variables with the vec-
tor form α= 〈α〉(1+σx), where 〈α〉=(15.6,2.5,1,2.0015) are the expectation values, and
x=(x1,x2,x3,x4) are uniformly distributed random variables with xi ∈ [−1,1], i=1,··· ,4.
We set again a 10% variation. The convergence rates are shown in Fig. 12. It is shown
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Figure 11: Two dimensional random ODE: error decay with respect to the polynomial order (T=2). MC (left),
QMC (middle) and SG (right).
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Figure 12: Four dimensional random ODE: error decay with respect to the PC order (T=1). MC (left), QMC
(middle) and SG (right).

that the LS approach with suitable design points can be a efficient way to approximate
the solution.

5 Conclusions

In this work, the numerical comparison between different kinds of nodal points for the LS
approach is considered. Three kinds of nodal points are introduced, namely, the Sparse
Grid points, the Monte Carlo points and the Quasi Monte Carlo points. It is shown nu-
merically that neither the MC sampling nor the QMC sampling introduce the low con-
vergence rate, namely, the LS approach can achieve high order convergence rate for all
the three kinds of nodal points. Furthermore, the use of SG points has better convergence
properties only for very low dimensional problems (say 1-2). The QMC points seems to
be a good choice for higher dimensional problems not only for better convergence prop-
erties but also in the stability point of view.

We remark that our setting here is quite standard. It would be more efficient if
weighted LS approach is considered, and we will report such results in our forthcom-
ing work [27]. Furthermore, one may also interested in testing other kinds of sparse grid
points such as Clenshaw-Curtis. We also remark that only one kind of QMC points is
tested, however, there are many other kinds of QMC points, and we would expect that
all the low discrepancy QMC points work well in the LS approach.
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